summaryrefslogtreecommitdiff
path: root/elki/src/main/java/de/lmu/ifi/dbs/elki/algorithm/outlier/lof/SimpleKernelDensityLOF.java
blob: af32988e54b102419bd3055ad3b7630aa026a304 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
package de.lmu.ifi.dbs.elki.algorithm.outlier.lof;

/*
 This file is part of ELKI:
 Environment for Developing KDD-Applications Supported by Index-Structures

 Copyright (C) 2015
 Ludwig-Maximilians-Universität München
 Lehr- und Forschungseinheit für Datenbanksysteme
 ELKI Development Team

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

import de.lmu.ifi.dbs.elki.algorithm.AbstractDistanceBasedAlgorithm;
import de.lmu.ifi.dbs.elki.algorithm.outlier.OutlierAlgorithm;
import de.lmu.ifi.dbs.elki.data.NumberVector;
import de.lmu.ifi.dbs.elki.data.type.CombinedTypeInformation;
import de.lmu.ifi.dbs.elki.data.type.TypeInformation;
import de.lmu.ifi.dbs.elki.data.type.TypeUtil;
import de.lmu.ifi.dbs.elki.database.Database;
import de.lmu.ifi.dbs.elki.database.datastore.DataStoreFactory;
import de.lmu.ifi.dbs.elki.database.datastore.DataStoreUtil;
import de.lmu.ifi.dbs.elki.database.datastore.WritableDoubleDataStore;
import de.lmu.ifi.dbs.elki.database.ids.DBIDIter;
import de.lmu.ifi.dbs.elki.database.ids.DBIDUtil;
import de.lmu.ifi.dbs.elki.database.ids.DBIDs;
import de.lmu.ifi.dbs.elki.database.ids.DoubleDBIDListIter;
import de.lmu.ifi.dbs.elki.database.ids.KNNList;
import de.lmu.ifi.dbs.elki.database.query.knn.KNNQuery;
import de.lmu.ifi.dbs.elki.database.relation.DoubleRelation;
import de.lmu.ifi.dbs.elki.database.relation.MaterializedDoubleRelation;
import de.lmu.ifi.dbs.elki.database.relation.Relation;
import de.lmu.ifi.dbs.elki.database.relation.RelationUtil;
import de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction;
import de.lmu.ifi.dbs.elki.logging.Logging;
import de.lmu.ifi.dbs.elki.logging.progress.FiniteProgress;
import de.lmu.ifi.dbs.elki.logging.progress.StepProgress;
import de.lmu.ifi.dbs.elki.math.DoubleMinMax;
import de.lmu.ifi.dbs.elki.math.MathUtil;
import de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions.EpanechnikovKernelDensityFunction;
import de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions.KernelDensityFunction;
import de.lmu.ifi.dbs.elki.result.outlier.OutlierResult;
import de.lmu.ifi.dbs.elki.result.outlier.OutlierScoreMeta;
import de.lmu.ifi.dbs.elki.result.outlier.QuotientOutlierScoreMeta;
import de.lmu.ifi.dbs.elki.utilities.DatabaseUtil;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.OptionID;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.constraints.CommonConstraints;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.Parameterization;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.IntParameter;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.ObjectParameter;

/**
 * A simple variant of the LOF algorithm, which uses a simple kernel density
 * estimation instead of the local reachability density.
 *
 * @author Erich Schubert
 *
 * @apiviz.has KNNQuery
 * @apiviz.has KernelDensityFunction
 *
 * @param <O> the type of objects handled by this Algorithm
 */
public class SimpleKernelDensityLOF<O extends NumberVector> extends AbstractDistanceBasedAlgorithm<O, OutlierResult> implements OutlierAlgorithm {
  /**
   * The logger for this class.
   */
  private static final Logging LOG = Logging.getLogger(SimpleKernelDensityLOF.class);

  /**
   * Parameter k.
   */
  protected int k;

  /**
   * Kernel density function
   */
  private KernelDensityFunction kernel;

  /**
   * Constructor.
   *
   * @param k the value of k
   * @param kernel Kernel function
   */
  public SimpleKernelDensityLOF(int k, DistanceFunction<? super O> distance, KernelDensityFunction kernel) {
    super(distance);
    this.k = k + 1; // + query point
    this.kernel = kernel;
  }

  /**
   * Run the naive kernel density LOF algorithm.
   *
   * @param database Database to query
   * @param relation Data to process
   * @return LOF outlier result
   */
  public OutlierResult run(Database database, Relation<O> relation) {
    StepProgress stepprog = LOG.isVerbose() ? new StepProgress("KernelDensityLOF", 3) : null;
    final int dim = RelationUtil.dimensionality(relation);
    DBIDs ids = relation.getDBIDs();

    LOG.beginStep(stepprog, 1, "Materializing neighborhoods w.r.t. distance function.");
    KNNQuery<O> knnq = DatabaseUtil.precomputedKNNQuery(database, relation, getDistanceFunction(), k);

    // Compute LRDs
    LOG.beginStep(stepprog, 2, "Computing densities.");
    WritableDoubleDataStore dens = DataStoreUtil.makeDoubleStorage(ids, DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_TEMP);
    FiniteProgress densProgress = LOG.isVerbose() ? new FiniteProgress("Densities", ids.size(), LOG) : null;
    for(DBIDIter it = ids.iter(); it.valid(); it.advance()) {
      final KNNList neighbors = knnq.getKNNForDBID(it, k);
      int count = 0;
      double sum = 0.0;
      // Fast version for double distances
      for(DoubleDBIDListIter neighbor = neighbors.iter(); neighbor.valid(); neighbor.advance()) {
        if(DBIDUtil.equal(neighbor, it)) {
          continue;
        }
        double max = knnq.getKNNForDBID(neighbor, k).getKNNDistance();
        if(max == 0) {
          sum = Double.POSITIVE_INFINITY;
          break;
        }
        final double v = neighbor.doubleValue() / max;
        sum += kernel.density(v) / MathUtil.powi(max, dim);
        count++;
      }
      final double density = sum / count;
      dens.putDouble(it, density);
      LOG.incrementProcessed(densProgress);
    }
    LOG.ensureCompleted(densProgress);

    // compute LOF_SCORE of each db object
    LOG.beginStep(stepprog, 3, "Computing KLOFs.");
    WritableDoubleDataStore lofs = DataStoreUtil.makeDoubleStorage(ids, DataStoreFactory.HINT_STATIC);
    // track the maximum value for normalization.
    DoubleMinMax lofminmax = new DoubleMinMax();

    FiniteProgress progressLOFs = LOG.isVerbose() ? new FiniteProgress("KLOF_SCORE for objects", ids.size(), LOG) : null;
    for(DBIDIter it = ids.iter(); it.valid(); it.advance()) {
      final double lrdp = dens.doubleValue(it);
      final double lof;
      if(lrdp > 0) {
        final KNNList neighbors = knnq.getKNNForDBID(it, k);
        double sum = 0.0;
        int count = 0;
        for(DBIDIter neighbor = neighbors.iter(); neighbor.valid(); neighbor.advance()) {
          // skip the point itself
          if(DBIDUtil.equal(neighbor, it)) {
            continue;
          }
          sum += dens.doubleValue(neighbor);
          count++;
        }
        lof = (lrdp == Double.POSITIVE_INFINITY) ? (sum == Double.POSITIVE_INFINITY ? 1 : 0.) : sum / (count * lrdp);
      }
      else {
        lof = 1.0;
      }
      lofs.putDouble(it, lof);
      // update minimum and maximum
      lofminmax.put(lof);

      LOG.incrementProcessed(progressLOFs);
    }
    LOG.ensureCompleted(progressLOFs);

    LOG.setCompleted(stepprog);

    // Build result representation.
    DoubleRelation scoreResult = new MaterializedDoubleRelation("Kernel Density Local Outlier Factor", "kernel-density-slof-outlier", lofs, ids);
    OutlierScoreMeta scoreMeta = new QuotientOutlierScoreMeta(lofminmax.getMin(), lofminmax.getMax(), 0.0, Double.POSITIVE_INFINITY, 1.0);
    OutlierResult result = new OutlierResult(scoreMeta, scoreResult);

    return result;
  }

  @Override
  public TypeInformation[] getInputTypeRestriction() {
    return TypeUtil.array(new CombinedTypeInformation(getDistanceFunction().getInputTypeRestriction(), TypeUtil.NUMBER_VECTOR_FIELD));
  }

  @Override
  protected Logging getLogger() {
    return LOG;
  }

  /**
   * Parameterization class.
   *
   * @author Erich Schubert
   *
   * @apiviz.exclude
   *
   * @param <O> vector type
   */
  public static class Parameterizer<O extends NumberVector> extends AbstractDistanceBasedAlgorithm.Parameterizer<O> {
    /**
     * Option ID for kernel density LOF kernel.
     */
    public static final OptionID KERNEL_ID = new OptionID("kernellof.kernel", "Kernel to use for kernel density LOF.");

    /**
     * The neighborhood size to use.
     */
    protected int k;

    /**
     * Kernel density function parameter
     */
    KernelDensityFunction kernel;

    @Override
    protected void makeOptions(Parameterization config) {
      super.makeOptions(config);

      final IntParameter pK = new IntParameter(LOF.Parameterizer.K_ID) //
      .addConstraint(CommonConstraints.GREATER_THAN_ONE_INT);
      if(config.grab(pK)) {
        k = pK.getValue();
      }

      ObjectParameter<KernelDensityFunction> kernelP = new ObjectParameter<>(KERNEL_ID, KernelDensityFunction.class, EpanechnikovKernelDensityFunction.class);
      if(config.grab(kernelP)) {
        kernel = kernelP.instantiateClass(config);
      }
    }

    @Override
    protected SimpleKernelDensityLOF<O> makeInstance() {
      return new SimpleKernelDensityLOF<>(k, distanceFunction, kernel);
    }
  }
}