summaryrefslogtreecommitdiff
path: root/elki/src/main/java/de/lmu/ifi/dbs/elki/algorithm/outlier/lof/SimplifiedLOF.java
blob: 5705e7aab95fcc8ae907188386b0996053a24627 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
package de.lmu.ifi.dbs.elki.algorithm.outlier.lof;

/*
 This file is part of ELKI:
 Environment for Developing KDD-Applications Supported by Index-Structures

 Copyright (C) 2015
 Ludwig-Maximilians-Universität München
 Lehr- und Forschungseinheit für Datenbanksysteme
 ELKI Development Team

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

import de.lmu.ifi.dbs.elki.algorithm.AbstractDistanceBasedAlgorithm;
import de.lmu.ifi.dbs.elki.algorithm.outlier.OutlierAlgorithm;
import de.lmu.ifi.dbs.elki.data.type.TypeInformation;
import de.lmu.ifi.dbs.elki.data.type.TypeUtil;
import de.lmu.ifi.dbs.elki.database.Database;
import de.lmu.ifi.dbs.elki.database.datastore.DataStoreFactory;
import de.lmu.ifi.dbs.elki.database.datastore.DataStoreUtil;
import de.lmu.ifi.dbs.elki.database.datastore.WritableDoubleDataStore;
import de.lmu.ifi.dbs.elki.database.ids.DBIDIter;
import de.lmu.ifi.dbs.elki.database.ids.DBIDUtil;
import de.lmu.ifi.dbs.elki.database.ids.DBIDs;
import de.lmu.ifi.dbs.elki.database.ids.DoubleDBIDListIter;
import de.lmu.ifi.dbs.elki.database.ids.KNNList;
import de.lmu.ifi.dbs.elki.database.query.knn.KNNQuery;
import de.lmu.ifi.dbs.elki.database.relation.DoubleRelation;
import de.lmu.ifi.dbs.elki.database.relation.MaterializedDoubleRelation;
import de.lmu.ifi.dbs.elki.database.relation.Relation;
import de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction;
import de.lmu.ifi.dbs.elki.logging.Logging;
import de.lmu.ifi.dbs.elki.logging.progress.FiniteProgress;
import de.lmu.ifi.dbs.elki.logging.progress.StepProgress;
import de.lmu.ifi.dbs.elki.math.DoubleMinMax;
import de.lmu.ifi.dbs.elki.result.outlier.OutlierResult;
import de.lmu.ifi.dbs.elki.result.outlier.OutlierScoreMeta;
import de.lmu.ifi.dbs.elki.result.outlier.QuotientOutlierScoreMeta;
import de.lmu.ifi.dbs.elki.utilities.Alias;
import de.lmu.ifi.dbs.elki.utilities.DatabaseUtil;
import de.lmu.ifi.dbs.elki.utilities.documentation.Reference;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.constraints.CommonConstraints;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.Parameterization;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.IntParameter;

/**
 * A simplified version of the original LOF algorithm, which does not use the
 * reachability distance, yielding less stable results on inliers.
 *
 * Reference:
 * <p>
 * Erich Schubert, Arthur Zimek, Hans-Peter Kriegel<br />
 * Local Outlier Detection Reconsidered: a Generalized View on Locality with
 * Applications to Spatial, Video, and Network Outlier Detection<br />
 * Data Mining and Knowledge Discovery, 28(1): 190–237, 2014.
 * </p>
 *
 * @author Erich Schubert
 * @since 0.5.5
 *
 * @apiviz.has KNNQuery
 *
 * @param <O> the type of data objects handled by this algorithm
 */
@Reference(authors = "E. Schubert, A. Zimek, H.-P. Kriegel", //
title = "Local Outlier Detection Reconsidered: a Generalized View on Locality with Applications to Spatial, Video, and Network Outlier Detection", //
booktitle = "Data Mining and Knowledge Discovery, 28(1): 190–237, 2014.", //
url = "http://dx.doi.org/10.1007/s10618-012-0300-z")
@Alias("de.lmu.ifi.dbs.elki.algorithm.outlier.SimpleLOF")
public class SimplifiedLOF<O> extends AbstractDistanceBasedAlgorithm<O, OutlierResult> implements OutlierAlgorithm {
  /**
   * The logger for this class.
   */
  private static final Logging LOG = Logging.getLogger(SimplifiedLOF.class);

  /**
   * The number of neighbors to query, excluding the query point.
   */
  protected int k;

  /**
   * Constructor.
   *
   * @param k the value of k
   */
  public SimplifiedLOF(int k, DistanceFunction<? super O> distance) {
    super(distance);
    this.k = k + 1; // + query point
  }

  /**
   * Run the Simple LOF algorithm.
   *
   * @param database Database to query
   * @param relation Data to process
   * @return LOF outlier result
   */
  public OutlierResult run(Database database, Relation<O> relation) {
    StepProgress stepprog = LOG.isVerbose() ? new StepProgress("Simplified LOF", 3) : null;
    DBIDs ids = relation.getDBIDs();

    LOG.beginStep(stepprog, 1, "Materializing neighborhoods w.r.t. distance function.");
    KNNQuery<O> knnq = DatabaseUtil.precomputedKNNQuery(database, relation, getDistanceFunction(), k);

    // Compute LRDs
    LOG.beginStep(stepprog, 2, "Computing densities.");
    WritableDoubleDataStore dens = DataStoreUtil.makeDoubleStorage(ids, DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_TEMP);
    computeSimplifiedLRDs(ids, knnq, dens);

    // compute LOF_SCORE of each db object
    LOG.beginStep(stepprog, 3, "Computing SLOFs.");
    WritableDoubleDataStore lofs = DataStoreUtil.makeDoubleStorage(ids, DataStoreFactory.HINT_STATIC);
    DoubleMinMax lofminmax = new DoubleMinMax();
    computeSimplifiedLOFs(ids, knnq, dens, lofs, lofminmax);

    LOG.setCompleted(stepprog);

    // Build result representation.
    DoubleRelation scoreResult = new MaterializedDoubleRelation("Simplified Local Outlier Factor", "simplified-lof-outlier", lofs, ids);
    OutlierScoreMeta scoreMeta = new QuotientOutlierScoreMeta(lofminmax.getMin(), lofminmax.getMax(), 0., Double.POSITIVE_INFINITY, 1.);
    OutlierResult result = new OutlierResult(scoreMeta, scoreResult);

    return result;
  }

  /**
   * Compute the simplified reachability densities.
   *
   * @param ids IDs to process
   * @param knnq kNN query class
   * @param lrds Density output
   */
  private void computeSimplifiedLRDs(DBIDs ids, KNNQuery<O> knnq, WritableDoubleDataStore lrds) {
    FiniteProgress lrdsProgress = LOG.isVerbose() ? new FiniteProgress("Densities", ids.size(), LOG) : null;
    for(DBIDIter iter = ids.iter(); iter.valid(); iter.advance()) {
      final KNNList neighbors = knnq.getKNNForDBID(iter, k);
      double sum = 0.0;
      int count = 0;
      for(DoubleDBIDListIter neighbor = neighbors.iter(); neighbor.valid(); neighbor.advance()) {
        if(DBIDUtil.equal(neighbor, iter)) {
          continue;
        }
        sum += neighbor.doubleValue();
        count++;
      }
      // Avoid division by 0
      final double lrd = (sum > 0) ? (count / sum) : Double.POSITIVE_INFINITY;
      lrds.putDouble(iter, lrd);
      LOG.incrementProcessed(lrdsProgress);
    }
    LOG.ensureCompleted(lrdsProgress);
  }

  /**
   * Compute the simplified LOF factors.
   *
   * @param ids IDs to compute for
   * @param knnq kNN query class
   * @param slrds Object densities
   * @param lofs SLOF output storage
   * @param lofminmax Minimum and maximum scores
   */
  private void computeSimplifiedLOFs(DBIDs ids, KNNQuery<O> knnq, WritableDoubleDataStore slrds, WritableDoubleDataStore lofs, DoubleMinMax lofminmax) {
    FiniteProgress progressLOFs = LOG.isVerbose() ? new FiniteProgress("Simplified LOF scores", ids.size(), LOG) : null;
    for(DBIDIter iter = ids.iter(); iter.valid(); iter.advance()) {
      final double lof;
      final double lrdp = slrds.doubleValue(iter);
      final KNNList neighbors = knnq.getKNNForDBID(iter, k);
      if(!Double.isInfinite(lrdp)) {
        double sum = 0.;
        int count = 0;
        for(DBIDIter neighbor = neighbors.iter(); neighbor.valid(); neighbor.advance()) {
          // skip the point itself
          if(DBIDUtil.equal(neighbor, iter)) {
            continue;
          }
          final double val = slrds.doubleValue(neighbor);
          sum += val;
          count++;
          if(Double.isInfinite(val)) {
            break;
          }
        }
        lof = sum / (lrdp * count);
      }
      else {
        lof = 1.0;
      }
      lofs.putDouble(iter, lof);
      // update minimum and maximum
      lofminmax.put(lof);

      LOG.incrementProcessed(progressLOFs);
    }
    LOG.ensureCompleted(progressLOFs);
  }

  @Override
  public TypeInformation[] getInputTypeRestriction() {
    return TypeUtil.array(getDistanceFunction().getInputTypeRestriction());
  }

  @Override
  protected Logging getLogger() {
    return LOG;
  }

  /**
   * Parameterization class.
   *
   * @author Erich Schubert
   *
   * @apiviz.exclude
   *
   * @param <O> Object type
   */
  public static class Parameterizer<O> extends AbstractDistanceBasedAlgorithm.Parameterizer<O> {
    /**
     * The neighborhood size to use.
     */
    protected int k = 2;

    @Override
    protected void makeOptions(Parameterization config) {
      super.makeOptions(config);

      final IntParameter pK = new IntParameter(LOF.Parameterizer.K_ID);
      pK.addConstraint(CommonConstraints.GREATER_EQUAL_ONE_INT);
      if(config.grab(pK)) {
        k = pK.getValue();
      }
    }

    @Override
    protected SimplifiedLOF<O> makeInstance() {
      return new SimplifiedLOF<>(k, distanceFunction);
    }
  }
}