summaryrefslogtreecommitdiff
path: root/elki/src/main/java/de/lmu/ifi/dbs/elki/algorithm/statistics/EvaluateRankingQuality.java
blob: 27c9d1ed89f0500938d99bb47fe713e48c05ae83 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
package de.lmu.ifi.dbs.elki.algorithm.statistics;

/*
 This file is part of ELKI:
 Environment for Developing KDD-Applications Supported by Index-Structures

 Copyright (C) 2015
 Ludwig-Maximilians-Universität München
 Lehr- und Forschungseinheit für Datenbanksysteme
 ELKI Development Team

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;

import de.lmu.ifi.dbs.elki.algorithm.AbstractDistanceBasedAlgorithm;
import de.lmu.ifi.dbs.elki.algorithm.clustering.trivial.ByLabelOrAllInOneClustering;
import de.lmu.ifi.dbs.elki.data.Cluster;
import de.lmu.ifi.dbs.elki.data.DoubleVector;
import de.lmu.ifi.dbs.elki.data.NumberVector;
import de.lmu.ifi.dbs.elki.data.model.Model;
import de.lmu.ifi.dbs.elki.data.type.CombinedTypeInformation;
import de.lmu.ifi.dbs.elki.data.type.TypeInformation;
import de.lmu.ifi.dbs.elki.data.type.TypeUtil;
import de.lmu.ifi.dbs.elki.database.Database;
import de.lmu.ifi.dbs.elki.database.ids.DBIDIter;
import de.lmu.ifi.dbs.elki.database.ids.DBIDUtil;
import de.lmu.ifi.dbs.elki.database.ids.DoubleDBIDPair;
import de.lmu.ifi.dbs.elki.database.ids.KNNList;
import de.lmu.ifi.dbs.elki.database.query.distance.DistanceQuery;
import de.lmu.ifi.dbs.elki.database.query.knn.KNNQuery;
import de.lmu.ifi.dbs.elki.database.relation.Relation;
import de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction;
import de.lmu.ifi.dbs.elki.evaluation.scores.ROCEvaluation;
import de.lmu.ifi.dbs.elki.logging.Logging;
import de.lmu.ifi.dbs.elki.logging.progress.FiniteProgress;
import de.lmu.ifi.dbs.elki.math.MathUtil;
import de.lmu.ifi.dbs.elki.math.MeanVariance;
import de.lmu.ifi.dbs.elki.math.linearalgebra.CovarianceMatrix;
import de.lmu.ifi.dbs.elki.math.linearalgebra.Matrix;
import de.lmu.ifi.dbs.elki.math.linearalgebra.Vector;
import de.lmu.ifi.dbs.elki.result.CollectionResult;
import de.lmu.ifi.dbs.elki.result.HistogramResult;
import de.lmu.ifi.dbs.elki.utilities.datastructures.histogram.MeanVarianceStaticHistogram;
import de.lmu.ifi.dbs.elki.utilities.datastructures.histogram.ObjHistogram;
import de.lmu.ifi.dbs.elki.utilities.documentation.Description;
import de.lmu.ifi.dbs.elki.utilities.documentation.Title;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.OptionID;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.constraints.CommonConstraints;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.Parameterization;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.IntParameter;

/**
 * Evaluate a distance function with respect to kNN queries. For each point, the
 * neighbors are sorted by distance, then the ROC AUC is computed. A score of 1
 * means that the distance function provides a perfect ordering of relevant
 * neighbors first, then irrelevant neighbors. A value of 0.5 can be obtained by
 * random sorting. A value of 0 means the distance function is inverted, i.e. a
 * similarity.
 *
 * In contrast to {@link RankingQualityHistogram}, this method uses a binning
 * based on the centrality of objects. This allows analyzing whether or not a
 * particular distance degrades for the outer parts of a cluster.
 *
 * TODO: Allow fixed binning range, configurable
 *
 * TODO: Add sampling
 *
 * @author Erich Schubert
 * @param <V> Vector type
 */
@Title("Evaluate Ranking Quality")
@Description("Evaluates the effectiveness of a distance function via the obtained rankings.")
public class EvaluateRankingQuality<V extends NumberVector> extends AbstractDistanceBasedAlgorithm<V, CollectionResult<DoubleVector>> {
  /**
   * The logger for this class.
   */
  private static final Logging LOG = Logging.getLogger(EvaluateRankingQuality.class);

  /**
   * Number of bins to use.
   */
  int numbins = 20;

  /**
   * Constructor.
   *
   * @param distanceFunction Distance function
   * @param numbins Number of bins
   */
  public EvaluateRankingQuality(DistanceFunction<? super V> distanceFunction, int numbins) {
    super(distanceFunction);
    this.numbins = numbins;
  }

  @Override
  public HistogramResult<DoubleVector> run(Database database) {
    final Relation<V> relation = database.getRelation(getInputTypeRestriction()[0]);
    final DistanceQuery<V> distQuery = database.getDistanceQuery(relation, getDistanceFunction());
    final KNNQuery<V> knnQuery = database.getKNNQuery(distQuery, relation.size());

    if(LOG.isVerbose()) {
      LOG.verbose("Preprocessing clusters...");
    }
    // Cluster by labels
    Collection<Cluster<Model>> split = (new ByLabelOrAllInOneClustering()).run(database).getAllClusters();

    // Compute cluster averages and covariance matrix
    HashMap<Cluster<?>, Vector> averages = new HashMap<>(split.size());
    HashMap<Cluster<?>, Matrix> covmats = new HashMap<>(split.size());
    for(Cluster<?> clus : split) {
      CovarianceMatrix covmat = CovarianceMatrix.make(relation, clus.getIDs());
      averages.put(clus, covmat.getMeanVector());
      covmats.put(clus, covmat.destroyToNaiveMatrix());
    }

    MeanVarianceStaticHistogram hist = new MeanVarianceStaticHistogram(numbins, 0.0, 1.0);

    if(LOG.isVerbose()) {
      LOG.verbose("Processing points...");
    }
    FiniteProgress rocloop = LOG.isVerbose() ? new FiniteProgress("Computing ROC AUC values", relation.size(), LOG) : null;

    // sort neighbors
    for(Cluster<?> clus : split) {
      ArrayList<DoubleDBIDPair> cmem = new ArrayList<>(clus.size());
      Vector av = averages.get(clus);
      Matrix covm = covmats.get(clus);

      for(DBIDIter iter = clus.getIDs().iter(); iter.valid(); iter.advance()) {
        double d = MathUtil.mahalanobisDistance(covm, relation.get(iter).getColumnVector().minusEquals(av));
        cmem.add(DBIDUtil.newPair(d, iter));
      }
      Collections.sort(cmem);

      for(int ind = 0; ind < cmem.size(); ind++) {
        KNNList knn = knnQuery.getKNNForDBID(cmem.get(ind), relation.size());
        double result = new ROCEvaluation().evaluate(clus, knn);

        hist.put(((double) ind) / clus.size(), result);

        LOG.incrementProcessed(rocloop);
      }
    }
    LOG.ensureCompleted(rocloop);
    // Collections.sort(results);

    // Transform Histogram into a Double Vector array.
    Collection<DoubleVector> res = new ArrayList<>(relation.size());
    for(ObjHistogram.Iter<MeanVariance> iter = hist.iter(); iter.valid(); iter.advance()) {
      DoubleVector row = new DoubleVector(new double[] { iter.getCenter(), iter.getValue().getCount(), iter.getValue().getMean(), iter.getValue().getSampleVariance() });
      res.add(row);
    }
    return new HistogramResult<>("Ranking Quality Histogram", "ranking-histogram", res);
  }

  @Override
  public TypeInformation[] getInputTypeRestriction() {
    return TypeUtil.array(new CombinedTypeInformation(getDistanceFunction().getInputTypeRestriction(), TypeUtil.NUMBER_VECTOR_FIELD));
  }

  @Override
  protected Logging getLogger() {
    return LOG;
  }

  /**
   * Parameterization class.
   *
   * @author Erich Schubert
   *
   * @apiviz.exclude
   *
   * @param <V> Vector type
   */
  public static class Parameterizer<V extends NumberVector> extends AbstractDistanceBasedAlgorithm.Parameterizer<V> {
    /**
     * Option to configure the number of bins to use.
     */
    public static final OptionID HISTOGRAM_BINS_ID = new OptionID("rankqual.bins", "Number of bins to use in the histogram");
    /**
     * Number of bins to use.
     */
    protected int numbins = 20;

    @Override
    protected void makeOptions(Parameterization config) {
      super.makeOptions(config);
      final IntParameter param = new IntParameter(HISTOGRAM_BINS_ID, 20) //
      .addConstraint(CommonConstraints.GREATER_THAN_ONE_INT);
      if(config.grab(param)) {
        numbins = param.getValue();
      }
    }

    @Override
    protected EvaluateRankingQuality<V> makeInstance() {
      return new EvaluateRankingQuality<>(distanceFunction, numbins);
    }
  }
}