summaryrefslogtreecommitdiff
path: root/elki/src/main/java/de/lmu/ifi/dbs/elki/distance/similarityfunction/cluster/ClusteringRandIndexSimilarityFunction.java
blob: 4719d1f6f57ec8d1255f182ff1f8de01e97f1cc8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
package de.lmu.ifi.dbs.elki.distance.similarityfunction.cluster;

/*
 This file is part of ELKI:
 Environment for Developing KDD-Applications Supported by Index-Structures

 Copyright (C) 2015
 Ludwig-Maximilians-Universität München
 Lehr- und Forschungseinheit für Datenbanksysteme
 ELKI Development Team

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

import de.lmu.ifi.dbs.elki.data.Clustering;
import de.lmu.ifi.dbs.elki.data.type.SimpleTypeInformation;
import de.lmu.ifi.dbs.elki.database.query.DistanceSimilarityQuery;
import de.lmu.ifi.dbs.elki.database.query.distance.PrimitiveDistanceSimilarityQuery;
import de.lmu.ifi.dbs.elki.database.relation.Relation;
import de.lmu.ifi.dbs.elki.distance.similarityfunction.AbstractPrimitiveSimilarityFunction;
import de.lmu.ifi.dbs.elki.evaluation.clustering.ClusterContingencyTable;
import de.lmu.ifi.dbs.elki.utilities.documentation.Reference;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizer;

/**
 * Measure the similarity of clusters via the Rand Index.
 *
 * Reference:
 * <p>
 * Rand, W. M.<br />
 * Objective Criteria for the Evaluation of Clustering Methods<br />
 * Journal of the American Statistical Association, Vol. 66 Issue 336
 * </p>
 *
 * @author Erich Schubert
 */
@Reference(authors = "Rand, W. M.", //
title = "Objective Criteria for the Evaluation of Clustering Methods", //
booktitle = "Journal of the American Statistical Association, Vol. 66 Issue 336", //
url = "http://www.jstor.org/stable/10.2307/2284239")
public class ClusteringRandIndexSimilarityFunction extends AbstractPrimitiveSimilarityFunction<Clustering<?>>implements ClusteringDistanceSimilarityFunction {
  /**
   * Static instance.
   */
  public static final ClusteringRandIndexSimilarityFunction STATIC = new ClusteringRandIndexSimilarityFunction();

  /**
   * Constructor - use the static instance {@link #STATIC}!
   */
  public ClusteringRandIndexSimilarityFunction() {
    super();
  }

  @Override
  public double similarity(Clustering<?> o1, Clustering<?> o2) {
    ClusterContingencyTable ct = new ClusterContingencyTable(false, true);
    ct.process(o1, o2);
    return ct.getPaircount().randIndex();
  }

  @Override
  public double distance(Clustering<?> o1, Clustering<?> o2) {
    ClusterContingencyTable ct = new ClusterContingencyTable(false, true);
    ct.process(o1, o2);
    return 1. - ct.getPaircount().randIndex();
  }

  @Override
  public boolean isMetric() {
    return false;
  }

  @Override
  public <T extends Clustering<?>> DistanceSimilarityQuery<T> instantiate(Relation<T> relation) {
    return new PrimitiveDistanceSimilarityQuery<>(relation, this, this);
  }

  @Override
  public SimpleTypeInformation<? super Clustering<?>> getInputTypeRestriction() {
    return new SimpleTypeInformation<>(Clustering.class);
  }

  /**
   * Parameterization class.
   *
   * @author Erich Schubert
   *
   * @apiviz.exclude
   */
  public static class Parameterizer extends AbstractParameterizer {
    @Override
    protected ClusteringRandIndexSimilarityFunction makeInstance() {
      return STATIC;
    }
  }
}