summaryrefslogtreecommitdiff
path: root/elki/src/main/java/de/lmu/ifi/dbs/elki/index/tree/metrical/mtreevariants/mktrees/mkmax/MkMaxTree.java
blob: 3f2c807efe90e2d43228fea7e4f18d451b0eae54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
package de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax;

/*
 This file is part of ELKI:
 Environment for Developing KDD-Applications Supported by Index-Structures

 Copyright (C) 2015
 Ludwig-Maximilians-Universität München
 Lehr- und Forschungseinheit für Datenbanksysteme
 ELKI Development Team

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

import java.util.List;
import java.util.Map;

import de.lmu.ifi.dbs.elki.database.ids.DBID;
import de.lmu.ifi.dbs.elki.database.ids.DBIDIter;
import de.lmu.ifi.dbs.elki.database.ids.DBIDRef;
import de.lmu.ifi.dbs.elki.database.ids.DBIDUtil;
import de.lmu.ifi.dbs.elki.database.ids.DoubleDBIDList;
import de.lmu.ifi.dbs.elki.database.ids.DoubleDBIDListIter;
import de.lmu.ifi.dbs.elki.database.ids.KNNHeap;
import de.lmu.ifi.dbs.elki.database.ids.KNNList;
import de.lmu.ifi.dbs.elki.database.ids.ModifiableDBIDs;
import de.lmu.ifi.dbs.elki.database.ids.ModifiableDoubleDBIDList;
import de.lmu.ifi.dbs.elki.database.relation.Relation;
import de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.AbstractMkTreeUnified;
import de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.MkTreeSettings;
import de.lmu.ifi.dbs.elki.logging.Logging;
import de.lmu.ifi.dbs.elki.persistent.PageFile;
import de.lmu.ifi.dbs.elki.utilities.io.ByteArrayUtil;
import de.lmu.ifi.dbs.elki.utilities.pairs.DoubleIntPair;

/**
 * MkMaxTree is a metrical index structure based on the concepts of the M-Tree
 * supporting efficient processing of reverse k nearest neighbor queries for
 * parameter k <= k_max. The k-nearest neighbor distance for k = k_max is stored
 * in each entry of a node.
 *
 * @author Elke Achtert
 *
 * @apiviz.has MkMaxTreeNode oneway - - contains
 *
 * @param <O> the type of DatabaseObject to be stored in the MkMaxTree
 */
public abstract class MkMaxTree<O> extends AbstractMkTreeUnified<O, MkMaxTreeNode<O>, MkMaxEntry, MkTreeSettings<O, MkMaxTreeNode<O>, MkMaxEntry>> {
  /**
   * The logger for this class.
   */
  private static final Logging LOG = Logging.getLogger(MkMaxTree.class);

  /**
   * Constructor.
   *
   * @param relation Relation to index
   * @param pagefile Page file
   * @param settings Tree settings
   */
  public MkMaxTree(Relation<O> relation, PageFile<MkMaxTreeNode<O>> pagefile, MkTreeSettings<O, MkMaxTreeNode<O>, MkMaxEntry> settings) {
    super(relation, pagefile, settings);
  }

  /**
   * Performs a reverse k-nearest neighbor query for the given object ID. In the
   * first step the candidates are chosen by performing a reverse k-nearest
   * neighbor query with k = {@link #getKmax()}. Then these candidates are refined
   * in a second step.
   */
  @Override
  public DoubleDBIDList reverseKNNQuery(DBIDRef id, int k) {
    if (k > this.getKmax()) {
      throw new IllegalArgumentException("Parameter k has to be equal or less than " + "parameter k of the MkMax-Tree!");
    }

    // get the candidates
    ModifiableDoubleDBIDList candidates = DBIDUtil.newDistanceDBIDList();
    doReverseKNNQuery(id, getRoot(), null, candidates);

    if (k == this.getKmax()) {
      candidates.sort();
      // FIXME: re-add statistics.
      // rkNNStatistics.addTrueHits(candidates.size());
      // rkNNStatistics.addResults(candidates.size());
      return candidates;
    }

    // refinement of candidates
    ModifiableDBIDs candidateIDs = DBIDUtil.newArray(candidates.size());
    for (DBIDIter candidate = candidates.iter(); candidate.valid(); candidate.advance()) {
      candidateIDs.add(candidate);
    }
    Map<DBID, KNNList> knnLists = batchNN(getRoot(), candidateIDs, k);

    ModifiableDoubleDBIDList result = DBIDUtil.newDistanceDBIDList();
    for (DBIDIter iter = candidateIDs.iter(); iter.valid(); iter.advance()) {
      DBID cid = DBIDUtil.deref(iter);
      KNNList cands = knnLists.get(cid);
      for (DoubleDBIDListIter iter2 = cands.iter(); iter2.valid(); iter2.advance()) {
        if (DBIDUtil.equal(id, iter2)) {
          result.add(iter2.doubleValue(), cid);
          break;
        }
      }
    }

    // FIXME: re-add statistics.
    // rkNNStatistics.addResults(result.size());
    // rkNNStatistics.addCandidates(candidates.size());
    result.sort();
    return result;
  }

  /**
   * Adapts the knn distances before insertion of the specified entry.
   *
   */
  @Override
  protected void preInsert(MkMaxEntry entry) {
    KNNHeap knns_o = DBIDUtil.newHeap(getKmax());
    preInsert(entry, getRootEntry(), knns_o);
  }

  /**
   * Adjusts the knn distance in the subtree of the specified root entry.
   */
  @Override
  protected void kNNdistanceAdjustment(MkMaxEntry entry, Map<DBID, KNNList> knnLists) {
    MkMaxTreeNode<O> node = getNode(entry);
    double knnDist_node = 0.;
    if (node.isLeaf()) {
      for (int i = 0; i < node.getNumEntries(); i++) {
        MkMaxEntry leafEntry = node.getEntry(i);
        leafEntry.setKnnDistance(knnLists.get(leafEntry.getRoutingObjectID()).getKNNDistance());
        knnDist_node = Math.max(knnDist_node, leafEntry.getKnnDistance());
      }
    } else {
      for (int i = 0; i < node.getNumEntries(); i++) {
        MkMaxEntry dirEntry = node.getEntry(i);
        kNNdistanceAdjustment(dirEntry, knnLists);
        knnDist_node = Math.max(knnDist_node, dirEntry.getKnnDistance());
      }
    }
    entry.setKnnDistance(knnDist_node);
  }

  /**
   * Performs a reverse k-nearest neighbor query in the specified subtree for
   * the given query object with k = {@link #getKmax()}. It recursively traverses
   * all paths from the specified node, which cannot be excluded from leading to
   * qualifying objects.
   *
   * @param q the id of the query object
   * @param node the node of the subtree on which the query is performed
   * @param node_entry the entry representing the node
   * @param result the list for the query result
   */
  private void doReverseKNNQuery(DBIDRef q, MkMaxTreeNode<O> node, MkMaxEntry node_entry, ModifiableDoubleDBIDList result) {
    // data node
    if (node.isLeaf()) {
      for (int i = 0; i < node.getNumEntries(); i++) {
        MkMaxEntry entry = node.getEntry(i);
        double distance = distance(entry.getRoutingObjectID(), q);
        if (distance <= entry.getKnnDistance()) {
          result.add(distance, entry.getRoutingObjectID());
        }
      }
    }

    // directory node
    else {
      for (int i = 0; i < node.getNumEntries(); i++) {
        MkMaxEntry entry = node.getEntry(i);
        double node_knnDist = node_entry != null ? node_entry.getKnnDistance() : Double.POSITIVE_INFINITY;

        double distance = distance(entry.getRoutingObjectID(), q);
        double minDist = (entry.getCoveringRadius() > distance) ? 0.0 : distance - entry.getCoveringRadius();

        if (minDist <= node_knnDist) {
          MkMaxTreeNode<O> childNode = getNode(entry);
          doReverseKNNQuery(q, childNode, entry, result);
        }
      }
    }
  }

  /**
   * Adapts the knn distances before insertion of entry q.
   *
   * @param q the entry to be inserted
   * @param nodeEntry the entry representing the root of the current subtree
   * @param knns_q the knns of q
   */
  private void preInsert(MkMaxEntry q, MkMaxEntry nodeEntry, KNNHeap knns_q) {
    if (LOG.isDebugging()) {
      LOG.debugFine("preInsert " + q + " - " + nodeEntry + "\n");
    }

    double knnDist_q = knns_q.getKNNDistance();
    MkMaxTreeNode<O> node = getNode(nodeEntry);
    double knnDist_node = 0.;

    // leaf node
    if (node.isLeaf()) {
      for (int i = 0; i < node.getNumEntries(); i++) {
        MkMaxEntry p = node.getEntry(i);
        double dist_pq = distance(p.getRoutingObjectID(), q.getRoutingObjectID());

        // p is nearer to q than the farthest kNN-candidate of q
        // ==> p becomes a knn-candidate
        if (dist_pq <= knnDist_q) {
          knns_q.insert(dist_pq, p.getRoutingObjectID());
          if (knns_q.size() >= getKmax()) {
            knnDist_q = knns_q.getKNNDistance();
            q.setKnnDistance(knnDist_q);
          }
        }
        // p is nearer to q than to its farthest knn-candidate
        // q becomes knn of p
        if (dist_pq <= p.getKnnDistance()) {
          KNNList knns_p = knnq.getKNNForDBID(p.getRoutingObjectID(), getKmax() - 1);

          if (knns_p.size() + 1 < getKmax()) {
            p.setKnnDistance(Double.NaN);
          } else {
            double knnDist_p = Math.max(dist_pq, knns_p.getKNNDistance());
            p.setKnnDistance(knnDist_p);
          }
        }
        knnDist_node = Math.max(knnDist_node, p.getKnnDistance());
      }
    }
    // directory node
    else {
      List<DoubleIntPair> entries = getSortedEntries(node, q.getRoutingObjectID());
      for (DoubleIntPair distEntry : entries) {
        MkMaxEntry dirEntry = node.getEntry(distEntry.second);
        double entry_knnDist = dirEntry.getKnnDistance();

        if (distEntry.second < entry_knnDist || distEntry.second < knnDist_q) {
          preInsert(q, dirEntry, knns_q);
          knnDist_q = knns_q.getKNNDistance();
        }
        knnDist_node = Math.max(knnDist_node, dirEntry.getKnnDistance());
      }
    }
    if (LOG.isDebugging()) {
      LOG.debugFine(nodeEntry + "set knn dist " + knnDist_node);
    }
    nodeEntry.setKnnDistance(knnDist_node);
  }

  @Override
  protected void initializeCapacities(MkMaxEntry exampleLeaf) {
    int distanceSize = ByteArrayUtil.SIZE_DOUBLE; // exampleLeaf.getParentDistance().externalizableSize();

    // overhead = index(4), numEntries(4), id(4), isLeaf(0.125)
    double overhead = 12.125;
    if (getPageSize() - overhead < 0) {
      throw new RuntimeException("Node size of " + getPageSize() + " Bytes is chosen too small!");
    }

    // dirCapacity = (file.getPageSize() - overhead) / (nodeID + objectID +
    // coveringRadius + parentDistance + knnDistance) + 1
    dirCapacity = (int) (getPageSize() - overhead) / (4 + 4 + 3 * distanceSize) + 1;

    if (dirCapacity <= 1) {
      throw new RuntimeException("Node size of " + getPageSize() + " Bytes is chosen too small!");
    }

    if (dirCapacity < 10) {
      LOG.warning("Page size is choosen too small! Maximum number of entries " + "in a directory node = " + (dirCapacity - 1));
    }

    // leafCapacity = (file.getPageSize() - overhead) / (objectID +
    // parentDistance +
    // knnDistance) + 1
    leafCapacity = (int) (getPageSize() - overhead) / (4 + 2 * distanceSize) + 1;

    if (leafCapacity <= 1) {
      throw new RuntimeException("Node size of " + getPageSize() + " Bytes is chosen too small!");
    }

    if (leafCapacity < 10) {
      LOG.warning("Page size is choosen too small! Maximum number of entries " + "in a leaf node = " + (leafCapacity - 1));
    }
  }

  /**
   * @return a new MkMaxTreeNode which is a leaf node
   */
  @Override
  protected MkMaxTreeNode<O> createNewLeafNode() {
    return new MkMaxTreeNode<>(leafCapacity, true);
  }

  /**
   * @return a new MkMaxTreeNode which is a directory node
   */
  @Override
  protected MkMaxTreeNode<O> createNewDirectoryNode() {
    return new MkMaxTreeNode<>(dirCapacity, false);
  }

  /**
   * @return a new MkMaxDirectoryEntry representing the specified node
   */
  @Override
  protected MkMaxEntry createNewDirectoryEntry(MkMaxTreeNode<O> node, DBID routingObjectID, double parentDistance) {
    return new MkMaxDirectoryEntry(routingObjectID, parentDistance, node.getPageID(), node.coveringRadiusFromEntries(routingObjectID, this), node.kNNDistance());
  }

  /**
   * @return a new MkMaxDirectoryEntry by calling
   *         <code>new MkMaxDirectoryEntry(null, null, 0, null)</code>
   */
  @Override
  protected MkMaxEntry createRootEntry() {
    return new MkMaxDirectoryEntry(null, 0., 0, 0., 0.);
  }

  @Override
  protected Logging getLogger() {
    return LOG;
  }
}