summaryrefslogtreecommitdiff
path: root/elki/src/main/java/de/lmu/ifi/dbs/elki/math/linearalgebra/Matrix.java
blob: 9f6ecde993b8c9894535b542efbec77811bf9003 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
package de.lmu.ifi.dbs.elki.math.linearalgebra;
/*
 This file is part of ELKI:
 Environment for Developing KDD-Applications Supported by Index-Structures

 Copyright (C) 2015
 Ludwig-Maximilians-Universität München
 Lehr- und Forschungseinheit für Datenbanksysteme
 ELKI Development Team

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

import java.io.BufferedReader;
import java.io.StreamTokenizer;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.logging.Logger;

import de.lmu.ifi.dbs.elki.logging.LoggingConfiguration;
import de.lmu.ifi.dbs.elki.math.MathUtil;
import de.lmu.ifi.dbs.elki.utilities.FormatUtil;
import de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike.DoubleArray;

/**
 * A two-dimensional matrix class, where the data is stored as two-dimensional
 * array.
 *
 * Implementation note: this class contains various optimizations that
 * theoretically the java hotspot compiler should optimize on its own. However,
 * they do show up a hotspots in the profiler (in cpu=times mode), so it does
 * make a difference at least when optimizing other parts of ELKI.
 *
 * @author Elke Achtert
 * @author Erich Schubert
 * @since 0.2
 *
 * @apiviz.uses Vector
 * @apiviz.landmark
 */
public class Matrix {
  /**
   * A small number to handle numbers near 0 as 0.
   */
  public static final double DELTA = 1E-3;

  /**
   * Small value to increment diagonally of a matrix in order to avoid
   * singularity before building the inverse.
   */
  public static final double SINGULARITY_CHEAT = 1E-9;

  /**
   * Error: matrix not rectangular.
   */
  public static final String ERR_NOTRECTANGULAR = "All rows must have the same length.";

  /**
   * Error: matrix indexes incorrect
   */
  public static final String ERR_REINDEX = "Submatrix indices incorrect.";

  /**
   * Error when matrix dimensions do not agree.
   */
  public static final String ERR_MATRIX_DIMENSIONS = "Matrix must consist of the same no of rows!";

  /**
   * Error when matrix inner dimensions do not agree.
   */
  private static final String ERR_MATRIX_INNERDIM = "Matrix inner dimensions must agree.";

  /**
   * Array for internal storage of elements.
   *
   * @serial internal array storage.
   */
  protected final double[][] elements;

  // row dimensionality == elements.length!

  /**
   * Column dimension.
   */
  final int columndimension;

  /**
   * Constructs an m-by-n matrix of zeros.
   *
   * @param m number of rows
   * @param n number of columns
   */
  public Matrix(final int m, final int n) {
    this.columndimension = n;
    elements = new double[m][n];
  }

  /**
   * Constructs an m-by-n constant matrix.
   *
   * @param m number of rows
   * @param n number of columns
   * @param s A scalar value defining the constant value in the matrix
   */
  public Matrix(final int m, final int n, final double s) {
    this.columndimension = n;
    elements = new double[m][n];
    for(int i = 0; i < m; i++) {
      for(int j = 0; j < n; j++) {
        elements[i][j] = s;
      }
    }
  }

  /**
   * Constructs a matrix from a 2-D array.
   *
   * @param elements an array of arrays of doubles defining the values of the
   *        matrix
   * @throws IllegalArgumentException if not all rows conform in the same length
   */
  public Matrix(final double[][] elements) {
    columndimension = elements[0].length;
    for(int i = 0; i < elements.length; i++) {
      if(elements[i].length != columndimension) {
        throw new IllegalArgumentException(ERR_NOTRECTANGULAR);
      }
    }
    this.elements = elements;
  }

  /**
   * Construct a matrix from a one-dimensional packed array
   *
   * @param values One-dimensional array of doubles, packed by columns (ala
   *        Fortran).
   * @param m Number of rows.
   * @throws IllegalArgumentException Array length must be a multiple of m.
   */
  public Matrix(final double values[], final int m) {
    columndimension = (m != 0 ? values.length / m : 0);
    if(m * columndimension != values.length) {
      throw new IllegalArgumentException("Array length must be a multiple of m.");
    }
    elements = new double[m][columndimension];
    for(int i = 0; i < m; i++) {
      for(int j = 0; j < columndimension; j++) {
        elements[i][j] = values[i + j * m];
      }
    }
  }

  /**
   * Constructor, cloning an existing matrix.
   *
   * @param mat Matrix to clone
   */
  public Matrix(Matrix mat) {
    this(mat.getArrayCopy());
  }

  /**
   * Construct a matrix from a copy of a 2-D array.
   *
   * @param A Two-dimensional array of doubles.
   * @return new matrix
   * @throws IllegalArgumentException All rows must have the same length
   */
  public static final Matrix constructWithCopy(final double[][] A) {
    final int m = A.length;
    final int n = A[0].length;
    final Matrix X = new Matrix(m, n);
    for(int i = 0; i < m; i++) {
      if(A[i].length != n) {
        throw new IllegalArgumentException(ERR_NOTRECTANGULAR);
      }
      System.arraycopy(A[i], 0, X.elements[i], 0, n);
    }
    return X;
  }

  /**
   * Returns the unit matrix of the specified dimension.
   *
   * @param dim the dimensionality of the unit matrix
   * @return the unit matrix of the specified dimension
   */
  public static final Matrix unitMatrix(final int dim) {
    final double[][] e = new double[dim][dim];
    for(int i = 0; i < dim; i++) {
      e[i][i] = 1;
    }
    return new Matrix(e);
  }

  /**
   * Returns the zero matrix of the specified dimension.
   *
   * @param dim the dimensionality of the unit matrix
   * @return the zero matrix of the specified dimension
   */
  public static final Matrix zeroMatrix(final int dim) {
    final double[][] z = new double[dim][dim];
    return new Matrix(z);
  }

  /**
   * Generate matrix with random elements
   *
   * @param m Number of rows.
   * @param n Number of columns.
   * @return An m-by-n matrix with uniformly distributed random elements.
   */
  public static final Matrix random(final int m, final int n) {
    final Matrix A = new Matrix(m, n);
    for(int i = 0; i < m; i++) {
      for(int j = 0; j < n; j++) {
        A.elements[i][j] = Math.random();
      }
    }
    return A;
  }

  /**
   * Generate identity matrix
   *
   * @param m Number of rows.
   * @param n Number of columns.
   * @return An m-by-n matrix with ones on the diagonal and zeros elsewhere.
   */
  public static final Matrix identity(final int m, final int n) {
    final Matrix A = new Matrix(m, n);
    for(int i = 0; i < Math.min(m, n); i++) {
      A.elements[i][i] = 1.0;
    }
    return A;
  }

  /**
   * Returns a quadratic Matrix consisting of zeros and of the given values on
   * the diagonal.
   *
   * @param diagonal the values on the diagonal
   * @return the resulting matrix
   */
  public static final Matrix diagonal(final double[] diagonal) {
    final Matrix result = new Matrix(diagonal.length, diagonal.length);
    for(int i = 0; i < diagonal.length; i++) {
      result.elements[i][i] = diagonal[i];
    }
    return result;
  }

  /**
   * Returns a quadratic Matrix consisting of zeros and of the given values on
   * the diagonal.
   *
   * @param diagonal the values on the diagonal
   * @return the resulting matrix
   */
  public static final Matrix diagonal(final Vector diagonal) {
    final Matrix result = new Matrix(diagonal.elements.length, diagonal.elements.length);
    for(int i = 0; i < diagonal.elements.length; i++) {
      result.elements[i][i] = diagonal.elements[i];
    }
    return result;
  }

  /**
   * Make a deep copy of a matrix.
   *
   * @return a new matrix containing the same values as this matrix
   */
  public final Matrix copy() {
    final Matrix X = new Matrix(elements.length, columndimension);
    for(int i = 0; i < elements.length; i++) {
      System.arraycopy(elements[i], 0, X.elements[i], 0, columndimension);
    }
    return X;
  }

  /**
   * Clone the Matrix object.
   */
  @Override
  public Matrix clone() {
    return this.copy();
  }

  /**
   * Access the internal two-dimensional array.
   *
   * @return Pointer to the two-dimensional array of matrix elements.
   */
  public final double[][] getArrayRef() {
    return elements;
  }

  /**
   * Copy the internal two-dimensional array.
   *
   * @return Two-dimensional array copy of matrix elements.
   */
  public final double[][] getArrayCopy() {
    final double[][] C = new double[elements.length][];
    for(int i = 0; i < elements.length; i++) {
      C[i] = elements[i].clone();
    }
    return C;
  }

  /**
   * Returns the dimensionality of the rows of this matrix.
   *
   * @return m, the number of rows.
   */
  public final int getRowDimensionality() {
    return elements.length;
  }

  /**
   * Returns the dimensionality of the columns of this matrix.
   *
   * @return n, the number of columns.
   */
  public final int getColumnDimensionality() {
    return columndimension;
  }

  /**
   * Get a single element.
   *
   * @param i Row index.
   * @param j Column index.
   * @return A(i,j)
   * @throws ArrayIndexOutOfBoundsException on bounds error
   */
  public final double get(final int i, final int j) {
    return elements[i][j];
  }

  /**
   * Set a single element.
   *
   * @param i Row index.
   * @param j Column index.
   * @param s A(i,j).
   * @return modified matrix
   * @throws ArrayIndexOutOfBoundsException on bounds error
   */
  public final Matrix set(final int i, final int j, final double s) {
    elements[i][j] = s;
    return this;
  }

  /**
   * Increments a single element.
   *
   * @param i the row index
   * @param j the column index
   * @param s the increment value: A(i,j) = A(i.j) + s.
   * @return modified matrix
   * @throws ArrayIndexOutOfBoundsException on bounds error
   */
  public final Matrix increment(final int i, final int j, final double s) {
    elements[i][j] += s;
    return this;
  }

  /**
   * Make a one-dimensional row packed copy of the internal array.
   *
   * @return Matrix elements packed in a one-dimensional array by rows.
   */
  public final double[] getRowPackedCopy() {
    double[] vals = new double[elements.length * columndimension];
    for(int i = 0; i < elements.length; i++) {
      System.arraycopy(elements[i], 0, vals, i * columndimension, columndimension);
    }
    return vals;
  }

  /**
   * Make a one-dimensional column packed copy of the internal array.
   *
   * @return Matrix elements packed in a one-dimensional array by columns.
   */
  public final double[] getColumnPackedCopy() {
    final double[] vals = new double[elements.length * columndimension];
    for(int i = 0; i < elements.length; i++) {
      for(int j = 0; j < columndimension; j++) {
        vals[i + j * elements.length] = elements[i][j];
      }
    }
    return vals;
  }

  /**
   * Get a submatrix.
   *
   * @param i0 Initial row index
   * @param i1 Final row index
   * @param j0 Initial column index
   * @param j1 Final column index
   * @return A(i0:i1,j0:j1)
   * @throws ArrayIndexOutOfBoundsException Submatrix indices
   */
  public final Matrix getMatrix(final int i0, final int i1, final int j0, final int j1) {
    final Matrix X = new Matrix(i1 - i0 + 1, j1 - j0 + 1);
    try {
      for(int i = i0; i <= i1; i++) {
        System.arraycopy(elements[i], j0, X.elements[i - i0], 0, j1 - j0 + 1);
      }
    }
    catch(ArrayIndexOutOfBoundsException e) {
      throw new ArrayIndexOutOfBoundsException(ERR_REINDEX);
    }
    return X;
  }

  /**
   * Get a submatrix.
   *
   * @param r Array of row indices.
   * @param c Array of column indices.
   * @return A(r(:),c(:))
   * @throws ArrayIndexOutOfBoundsException Submatrix indices
   */
  public final Matrix getMatrix(final int[] r, final int[] c) {
    final Matrix X = new Matrix(r.length, c.length);
    try {
      for(int i = 0; i < r.length; i++) {
        for(int j = 0; j < c.length; j++) {
          X.elements[i][j] = elements[r[i]][c[j]];
        }
      }
    }
    catch(ArrayIndexOutOfBoundsException e) {
      throw new ArrayIndexOutOfBoundsException(ERR_REINDEX);
    }
    return X;
  }

  /**
   * Get a submatrix.
   *
   * @param r Array of row indices.
   * @param j0 Initial column index
   * @param j1 Final column index
   * @return A(r(:),j0:j1)
   * @throws ArrayIndexOutOfBoundsException Submatrix indices
   */
  public final Matrix getMatrix(final int[] r, final int j0, final int j1) {
    final Matrix X = new Matrix(r.length, j1 - j0 + 1);
    try {
      for(int i = 0; i < r.length; i++) {
        System.arraycopy(elements[r[i]], j0, X.elements[i], 0, j1 - j0 + 1);
      }
    }
    catch(ArrayIndexOutOfBoundsException e) {
      throw new ArrayIndexOutOfBoundsException(ERR_REINDEX);
    }
    return X;
  }

  /**
   * Get a submatrix.
   *
   * @param i0 Initial row index
   * @param i1 Final row index
   * @param c Array of column indices.
   * @return A(i0:i1,c(:))
   * @throws ArrayIndexOutOfBoundsException Submatrix indices
   */
  public final Matrix getMatrix(final int i0, final int i1, final int[] c) {
    final Matrix X = new Matrix(i1 - i0 + 1, c.length);
    try {
      for(int i = i0; i <= i1; i++) {
        for(int j = 0; j < c.length; j++) {
          X.elements[i - i0][j] = elements[i][c[j]];
        }
      }
    }
    catch(ArrayIndexOutOfBoundsException e) {
      throw new ArrayIndexOutOfBoundsException(ERR_REINDEX);
    }
    return X;
  }

  /**
   * Set a submatrix.
   *
   * @param i0 Initial row index
   * @param i1 Final row index
   * @param j0 Initial column index
   * @param j1 Final column index
   * @param X A(i0:i1,j0:j1)
   * @throws ArrayIndexOutOfBoundsException Submatrix indices
   */
  public final void setMatrix(final int i0, final int i1, final int j0, final int j1, final Matrix X) {
    try {
      for(int i = i0; i <= i1; i++) {
        System.arraycopy(X.elements[i - i0], 0, elements[i], j0, j1 - j0 + 1);
      }
    }
    catch(ArrayIndexOutOfBoundsException e) {
      throw new ArrayIndexOutOfBoundsException(ERR_REINDEX);
    }
  }

  /**
   * Set a submatrix.
   *
   * @param r Array of row indices.
   * @param c Array of column indices.
   * @param X A(r(:),c(:))
   * @throws ArrayIndexOutOfBoundsException Submatrix indices
   */
  public final void setMatrix(final int[] r, final int[] c, final Matrix X) {
    try {
      for(int i = 0; i < r.length; i++) {
        for(int j = 0; j < c.length; j++) {
          elements[r[i]][c[j]] = X.elements[i][j];
        }
      }
    }
    catch(ArrayIndexOutOfBoundsException e) {
      throw new ArrayIndexOutOfBoundsException(ERR_REINDEX);
    }
  }

  /**
   * Set a submatrix.
   *
   * @param r Array of row indices.
   * @param j0 Initial column index
   * @param j1 Final column index
   * @param X A(r(:),j0:j1)
   * @throws ArrayIndexOutOfBoundsException Submatrix indices
   */
  public final void setMatrix(final int[] r, final int j0, final int j1, final Matrix X) {
    try {
      for(int i = 0; i < r.length; i++) {
        System.arraycopy(X.elements[i], 0, elements[r[i]], j0, j1 - j0 + 1);
      }
    }
    catch(ArrayIndexOutOfBoundsException e) {
      throw new ArrayIndexOutOfBoundsException(ERR_REINDEX);
    }
  }

  /**
   * Set a submatrix.
   *
   * @param i0 Initial row index
   * @param i1 Final row index
   * @param c Array of column indices.
   * @param X A(i0:i1,c(:))
   * @throws ArrayIndexOutOfBoundsException Submatrix indices
   */
  public final void setMatrix(final int i0, final int i1, final int[] c, final Matrix X) {
    try {
      for(int i = i0; i <= i1; i++) {
        for(int j = 0; j < c.length; j++) {
          elements[i][c[j]] = X.elements[i - i0][j];
        }
      }
    }
    catch(ArrayIndexOutOfBoundsException e) {
      throw new ArrayIndexOutOfBoundsException(ERR_REINDEX);
    }
  }

  /**
   * Returns the <code>i</code>th row of this matrix as vector.
   *
   * @param i the index of the row to be returned
   * @return the <code>i</code>th row of this matrix
   */
  public final Vector getRow(final int i) {
    double[] row = elements[i].clone();
    return new Vector(row);
  }

  /**
   * Sets the <code>j</code>th row of this matrix to the specified vector.
   *
   * @param j the index of the column to be set
   * @param row the value of the column to be set
   */
  public final void setRow(final int j, final Vector row) {
    if(row.elements.length != columndimension) {
      throw new IllegalArgumentException(ERR_MATRIX_DIMENSIONS);
    }
    System.arraycopy(row.elements, 0, elements[j], 0, columndimension);
  }

  /**
   * Returns the <code>j</code>th column of this matrix as vector.
   *
   * @param j the index of the column to be returned
   * @return the <code>j</code>th column of this matrix
   */
  public final Vector getCol(final int j) {
    final Vector v = new Vector(elements.length);
    for(int i = 0; i < elements.length; i++) {
      v.elements[i] = elements[i][j];
    }
    return v;
  }

  /**
   * Sets the <code>j</code>th column of this matrix to the specified column.
   *
   * @param j the index of the column to be set
   * @param column the value of the column to be set
   */
  public final void setCol(final int j, final Vector column) {
    if(column.elements.length != elements.length) {
      throw new IllegalArgumentException(ERR_MATRIX_DIMENSIONS);
    }
    for(int i = 0; i < elements.length; i++) {
      elements[i][j] = column.elements[i];
    }
  }

  /**
   * Matrix transpose.
   *
   * @return A<sup>T</sup>
   */
  public final Matrix transpose() {
    final Matrix X = new Matrix(columndimension, elements.length);
    for(int i = 0; i < elements.length; i++) {
      for(int j = 0; j < columndimension; j++) {
        X.elements[j][i] = elements[i][j];
      }
    }
    return X;
  }

  /**
   * C = A + B
   *
   * @param B another matrix
   * @return A + B in a new Matrix
   */
  public final Matrix plus(final Matrix B) {
    return copy().plusEquals(B);
  }

  /**
   * C = A + s
   *
   * @param s scalar value
   * @return A + s in a new Matrix
   */
  public final Matrix plus(final double s) {
    return copy().plusEquals(s);
  }

  /**
   * C = A + s
   *
   * @param s scalar value
   * @return A + s * E in a new Matrix
   */
  public final Matrix plusDiagonal(final double s) {
    return copy().plusDiagonalEquals(s);
  }

  /**
   * C = A + s * B
   *
   * @param B another matrix
   * @param s scalar
   * @return A + s * B in a new Matrix
   */
  public final Matrix plusTimes(final Matrix B, final double s) {
    return copy().plusTimesEquals(B, s);
  }

  /**
   * A = A + B
   *
   * @param B another matrix
   * @return A + B in this Matrix
   */
  public final Matrix plusEquals(final Matrix B) {
    checkMatrixDimensions(B);
    for(int i = 0; i < elements.length; i++) {
      for(int j = 0; j < columndimension; j++) {
        elements[i][j] += B.elements[i][j];
      }
    }
    return this;
  }

  /**
   * A = A + s
   *
   * @param s constant to add to every cell
   * @return A + s in this Matrix
   */
  public final Matrix plusEquals(final double s) {
    for(int i = 0; i < elements.length; i++) {
      for(int j = 0; j < columndimension; j++) {
        elements[i][j] += s;
      }
    }
    return this;
  }

  /**
   * A = A + s
   *
   * @param s constant to add to the diagonal
   * @return A + s in this Matrix
   */
  public final Matrix plusDiagonalEquals(final double s) {
    for(int i = 0; i < elements.length && i < columndimension; i++) {
      elements[i][i] += s;
    }
    return this;
  }

  /**
   * A = A + s * B
   *
   * @param B another matrix
   * @param s Scalar
   * @return A + s * B in this Matrix
   */
  public final Matrix plusTimesEquals(final Matrix B, final double s) {
    checkMatrixDimensions(B);
    for(int i = 0; i < elements.length; i++) {
      for(int j = 0; j < columndimension; j++) {
        elements[i][j] += s * B.elements[i][j];
      }
    }
    return this;
  }

  /**
   * C = A - B
   *
   * @param B another matrix
   * @return A - B in a new Matrix
   */
  public final Matrix minus(final Matrix B) {
    return copy().minusEquals(B);
  }

  /**
   * C = A - s * B
   *
   * @param B another matrix
   * @param s Scalar
   * @return A - s * B in a new Matrix
   */
  public final Matrix minusTimes(final Matrix B, final double s) {
    return copy().minusTimesEquals(B, s);
  }

  /**
   * A = A - B
   *
   * @param B another matrix
   * @return A - B in this Matrix
   */
  public final Matrix minusEquals(final Matrix B) {
    checkMatrixDimensions(B);
    for(int i = 0; i < elements.length; i++) {
      for(int j = 0; j < columndimension; j++) {
        elements[i][j] -= B.elements[i][j];
      }
    }
    return this;
  }

  /**
   * A = A - s * B
   *
   * @param B another matrix
   * @param s Scalar
   * @return A - s * B in this Matrix
   */
  public final Matrix minusTimesEquals(final Matrix B, final double s) {
    checkMatrixDimensions(B);
    for(int i = 0; i < elements.length; i++) {
      for(int j = 0; j < columndimension; j++) {
        elements[i][j] -= s * B.elements[i][j];
      }
    }
    return this;
  }

  /**
   * Multiply a matrix by a scalar, C = s*A
   *
   * @param s scalar
   * @return s*A
   */
  public final Matrix times(final double s) {
    return copy().timesEquals(s);
  }

  /**
   * Multiply a matrix by a scalar in place, A = s*A
   *
   * @param s scalar
   * @return replace A by s*A
   */
  public final Matrix timesEquals(final double s) {
    for(int i = 0; i < elements.length; i++) {
      for(int j = 0; j < columndimension; j++) {
        elements[i][j] *= s;
      }
    }
    return this;
  }

  /**
   * Linear algebraic matrix multiplication, A * B
   *
   * @param B another matrix
   * @return Matrix product, A * B
   * @throws IllegalArgumentException Matrix inner dimensions must agree.
   */
  public final Matrix times(final Matrix B) {
    // Optimized implementation, exploiting the storage layout
    if(B.elements.length != this.columndimension) {
      throw new IllegalArgumentException(ERR_MATRIX_INNERDIM);
    }
    final Matrix X = new Matrix(this.elements.length, B.columndimension);
    // Optimized ala Jama. jik order.
    final double[] Bcolj = new double[this.columndimension];
    for(int j = 0; j < X.columndimension; j++) {
      // Make a linear copy of column j from B
      for(int k = 0; k < this.columndimension; k++) {
        Bcolj[k] = B.elements[k][j];
      }
      // multiply it with each row from A
      for(int i = 0; i < this.elements.length; i++) {
        final double[] Arowi = this.elements[i];
        double s = 0;
        for(int k = 0; k < this.columndimension; k++) {
          s += Arowi[k] * Bcolj[k];
        }
        X.elements[i][j] = s;
      }
    }
    return X;
  }

  /**
   * Linear algebraic matrix multiplication, A * B
   *
   * @param B a vector
   * @return Matrix product, A * B
   * @throws IllegalArgumentException Matrix inner dimensions must agree.
   */
  public final Vector times(final Vector B) {
    if(B.elements.length != this.columndimension) {
      throw new IllegalArgumentException(ERR_MATRIX_INNERDIM);
    }
    final Vector X = new Vector(this.elements.length);
    // multiply it with each row from A
    for(int i = 0; i < this.elements.length; i++) {
      final double[] Arowi = this.elements[i];
      double s = 0;
      for(int k = 0; k < this.columndimension; k++) {
        s += Arowi[k] * B.elements[k];
      }
      X.elements[i] = s;
    }
    return X;
  }

  /**
   * Linear algebraic matrix multiplication, A<sup>T</sup> * B
   *
   * @param B another matrix
   * @return Matrix product, A<sup>T</sup> * B
   * @throws IllegalArgumentException Matrix inner dimensions must agree.
   */
  public final Vector transposeTimes(final Vector B) {
    if(B.elements.length != elements.length) {
      throw new IllegalArgumentException(ERR_MATRIX_INNERDIM);
    }
    final Vector X = new Vector(this.columndimension);
    // multiply it with each row from A
    for(int i = 0; i < this.columndimension; i++) {
      double s = 0;
      for(int k = 0; k < elements.length; k++) {
        s += elements[k][i] * B.elements[k];
      }
      X.elements[i] = s;
    }
    return X;
  }

  /**
   * Linear algebraic matrix multiplication, A<sup>T</sup> * B
   *
   * @param B another matrix
   * @return Matrix product, A<sup>T</sup> * B
   * @throws IllegalArgumentException Matrix inner dimensions must agree.
   */
  public final Matrix transposeTimes(final Matrix B) {
    if(B.elements.length != elements.length) {
      throw new IllegalArgumentException(ERR_MATRIX_INNERDIM);
    }
    final Matrix X = new Matrix(this.columndimension, B.columndimension);
    final double[] Bcolj = new double[elements.length];
    for(int j = 0; j < X.columndimension; j++) {
      // Make a linear copy of column j from B
      for(int k = 0; k < elements.length; k++) {
        Bcolj[k] = B.elements[k][j];
      }
      // multiply it with each row from A
      for(int i = 0; i < this.columndimension; i++) {
        double s = 0;
        for(int k = 0; k < elements.length; k++) {
          s += elements[k][i] * Bcolj[k];
        }
        X.elements[i][j] = s;
      }
    }
    return X;
  }

  /**
   * Linear algebraic matrix multiplication, A * B^T
   *
   * @param B another matrix
   * @return Matrix product, A * B^T
   * @throws IllegalArgumentException Matrix inner dimensions must agree.
   */
  public final Matrix timesTranspose(final Matrix B) {
    if(B.columndimension != this.columndimension) {
      throw new IllegalArgumentException(ERR_MATRIX_INNERDIM);
    }
    final Matrix X = new Matrix(this.elements.length, B.elements.length);
    for(int j = 0; j < X.elements.length; j++) {
      final double[] Browj = B.elements[j];
      // multiply it with each row from A
      for(int i = 0; i < this.elements.length; i++) {
        final double[] Arowi = this.elements[i];
        double s = 0;
        for(int k = 0; k < this.columndimension; k++) {
          s += Arowi[k] * Browj[k];
        }
        X.elements[i][j] = s;
      }
    }
    return X;
  }

  /**
   * Linear algebraic matrix multiplication, A^T * B^T. Computed as (B*A)^T
   *
   * @param B another matrix
   * @return Matrix product, A^T * B^T
   * @throws IllegalArgumentException Matrix inner dimensions must agree.
   */
  public final Matrix transposeTimesTranspose(Matrix B) {
    // Optimized implementation, exploiting the storage layout
    if(this.elements.length != B.columndimension) {
      throw new IllegalArgumentException("Matrix inner dimensions must agree: " + getRowDimensionality() + "," + getColumnDimensionality() + " * " + B.getRowDimensionality() + "," + B.getColumnDimensionality());
    }
    final Matrix X = new Matrix(this.columndimension, B.elements.length);
    // Optimized ala Jama. jik order.
    final double[] Acolj = new double[this.elements.length];
    for(int j = 0; j < X.elements.length; j++) {
      // Make a linear copy of column j from B
      for(int k = 0; k < this.elements.length; k++) {
        Acolj[k] = this.elements[k][j];
      }
      final double[] Xrow = X.elements[j];
      // multiply it with each row from A
      for(int i = 0; i < B.elements.length; i++) {
        final double[] Browi = B.elements[i];
        double s = 0;
        for(int k = 0; k < B.columndimension; k++) {
          s += Browi[k] * Acolj[k];
        }
        Xrow[i] = s;
      }
    }
    return X;
  }

  /**
   * Solve A*X = B
   *
   * @param B right hand side
   * @return solution if A is square, least squares solution otherwise
   */
  public final Matrix solve(final Matrix B) {
    return (elements.length == columndimension ? (new LUDecomposition(this)).solve(B) : (new QRDecomposition(this)).solve(B));
  }

  /**
   * Matrix inverse or pseudoinverse
   *
   * @return inverse(A) if A is square, pseudoinverse otherwise.
   */
  public final Matrix inverse() {
    return solve(identity(elements.length, elements.length));
  }

  /**
   * Matrix inverse for square matrixes.
   *
   * @return inverse(A), or inverse(A + epsilon E) if singular.
   */
  public final Matrix robustInverse() {
    LUDecomposition d = new LUDecomposition(this);
    if(!d.isNonsingular()) {
      d = new LUDecomposition(plusDiagonal(SINGULARITY_CHEAT).getArrayRef(), elements.length, columndimension);
    }
    return d.solve(identity(elements.length, elements.length));
  }

  /**
   * Matrix determinant
   *
   * @return determinant
   */
  public final double det() {
    return new LUDecomposition(this).det();
  }

  /**
   * Matrix rank
   *
   * @return effective numerical rank, obtained from SVD.
   */
  public final int rank() {
    return new SingularValueDecomposition(this).rank();
  }

  /**
   * Matrix condition (2 norm)
   *
   * @return ratio of largest to smallest singular value.
   */
  public final double cond() {
    return new SingularValueDecomposition(this).cond();
  }

  /**
   * Matrix trace.
   *
   * @return sum of the diagonal elements.
   */
  public final double trace() {
    double t = 0;
    for(int i = 0; i < Math.min(elements.length, columndimension); i++) {
      t += elements[i][i];
    }
    return t;
  }

  /**
   * One norm
   *
   * @return maximum column sum.
   */
  public final double norm1() {
    double f = 0;
    for(int j = 0; j < columndimension; j++) {
      double s = 0;
      for(int i = 0; i < elements.length; i++) {
        s += Math.abs(elements[i][j]);
      }
      f = Math.max(f, s);
    }
    return f;
  }

  /**
   * Two norm
   *
   * @return maximum singular value.
   */
  public final double norm2() {
    return (new SingularValueDecomposition(this).norm2());
  }

  /**
   * Infinity norm
   *
   * @return maximum row sum.
   */
  public final double normInf() {
    double f = 0;
    for(int i = 0; i < elements.length; i++) {
      double s = 0;
      for(int j = 0; j < columndimension; j++) {
        s += Math.abs(elements[i][j]);
      }
      f = Math.max(f, s);
    }
    return f;
  }

  /**
   * Frobenius norm
   *
   * @return sqrt of sum of squares of all elements.
   */
  public final double normF() {
    double f = 0;
    for(int i = 0; i < elements.length; i++) {
      for(int j = 0; j < columndimension; j++) {
        f = MathUtil.fastHypot(f, elements[i][j]);
      }
    }
    return f;
  }

  /**
   * Normalizes the columns of this matrix to length of 1.0.
   */
  public final void normalizeColumns() {
    for(int col = 0; col < columndimension; col++) {
      double norm = 0.0;
      for(int row = 0; row < elements.length; row++) {
        norm = norm + (elements[row][col] * elements[row][col]);
      }
      norm = Math.sqrt(norm);
      if(norm != 0) {
        for(int row = 0; row < elements.length; row++) {
          elements[row][col] /= norm;
        }
      }
      // TODO: else: throw an exception?
    }
  }

  /**
   * Returns true if the specified column matrix <code>a</code> is linearly
   * independent to the columns of this matrix. Linearly independence is given,
   * if the matrix resulting from appending <code>a</code> to this matrix has
   * full rank.
   *
   * @param columnMatrix the column matrix to be tested for linear independence
   * @return true if the specified column matrix is linearly independent to the
   *         columns of this matrix
   */
  public final boolean linearlyIndependent(final Matrix columnMatrix) {
    if(columnMatrix.columndimension != 1) {
      throw new IllegalArgumentException("a.getColumnDimension() != 1");
    }
    if(this.elements.length != columnMatrix.elements.length) {
      throw new IllegalArgumentException(ERR_MATRIX_DIMENSIONS);
    }
    if(this.columndimension + columnMatrix.columndimension > this.elements.length) {
      return false;
    }
    final StringBuilder msg = LoggingConfiguration.DEBUG ? new StringBuilder() : null;

    final double[][] a = new double[columndimension + 1][elements.length - 1];
    final double[] b = new double[columndimension + 1];

    for(int i = 0; i < a.length; i++) {
      for(int j = 0; j < a[i].length; j++) {
        if(i < columndimension) {
          a[i][j] = elements[j][i];
        }
        else {
          a[i][j] = columnMatrix.elements[j][0];
        }
      }
    }

    for(int i = 0; i < b.length; i++) {
      if(i < columndimension) {
        b[i] = elements[elements.length - 1][i];
      }
      else {
        b[i] = columnMatrix.elements[i][0];
      }
    }

    final LinearEquationSystem les = new LinearEquationSystem(a, b);
    les.solveByTotalPivotSearch();

    final double[][] coefficients = les.getCoefficents();
    final double[] rhs = les.getRHS();

    if(msg != null) {
      msg.append("\na' ").append(FormatUtil.format(this.getArrayRef()));
      msg.append("\nb' ").append(FormatUtil.format(columnMatrix.getColumnPackedCopy()));

      msg.append("\na ").append(FormatUtil.format(a));
      msg.append("\nb ").append(FormatUtil.format(b));
      msg.append("\nleq ").append(les.equationsToString(4));
    }

    for(int i = 0; i < coefficients.length; i++) {
      boolean allCoefficientsZero = true;
      for(int j = 0; j < coefficients[i].length; j++) {
        final double value = coefficients[i][j];
        if(Math.abs(value) > DELTA) {
          allCoefficientsZero = false;
          break;
        }
      }
      // allCoefficients=0 && rhs=0 -> linearly dependent
      if(allCoefficientsZero) {
        final double value = rhs[i];
        if(Math.abs(value) < DELTA) {
          if(msg != null) {
            msg.append("\nvalue ").append(value).append('[').append(i).append(']');
            msg.append("\nlinearly independent ").append(false);
            Logger.getLogger(this.getClass().getName()).fine(msg.toString());
          }
          return false;
        }
      }
    }

    if(msg != null) {
      msg.append("\nlinearly independent ").append(true);
      Logger.getLogger(this.getClass().getName()).fine(msg.toString());
    }
    return true;
  }

  /**
   * Returns true, if this matrix is symmetric, false otherwise.
   *
   * @return true, if this matrix is symmetric, false otherwise
   */
  public final boolean isSymmetric() {
    if(elements.length != columndimension) {
      return false;
    }
    for(int i = 0; i < elements.length; i++) {
      for(int j = i + 1; j < columndimension; j++) {
        if(elements[i][j] != elements[j][i]) {
          return false;
        }
      }
    }
    return true;
  }

  /**
   * Completes this d x c basis of a subspace of R^d to a d x d basis of R^d,
   * i.e. appends c-d columns to this basis.
   *
   * @return the appended columns
   */
  public final Matrix completeBasis() {
    Matrix basis = copy();
    Matrix result = null;
    for(int i = 0; i < elements.length; i++) {
      final Matrix e_i = new Matrix(elements.length, 1);
      e_i.elements[0][i] = 1.0;
      final boolean li = basis.linearlyIndependent(e_i);

      // TODO: efficiency - appendColumns is expensive.
      if(li) {
        if(result == null) {
          result = e_i.copy();
        }
        else {
          result = result.appendColumns(e_i);
        }
        basis = basis.appendColumns(e_i);
      }
    }
    return result;
  }

  /**
   * Completes this d x c basis of a subspace of R^d to a d x d basis of R^d,
   * i.e. appends c-d columns to this basis.
   *
   * @return the appended columns
   */
  public final Matrix completeToOrthonormalBasis() {
    Matrix basis = copy();
    Matrix result = null;
    for(int i = 0; i < elements.length; i++) {
      final Matrix e_i = new Matrix(elements.length, 1);
      e_i.elements[i][0] = 1.0;
      final boolean li = basis.linearlyIndependent(e_i);

      // TODO: efficiency - appendColumns is expensive.
      if(li) {
        if(result == null) {
          result = e_i.copy();
        }
        else {
          result = result.appendColumns(e_i);
        }
        basis = basis.appendColumns(e_i);
      }
    }
    basis = basis.orthonormalize();
    return basis.getMatrix(0, basis.elements.length - 1, columndimension, basis.columndimension - 1);
  }

  /**
   * Returns a matrix which consists of this matrix and the specified columns.
   *
   * @param columns the columns to be appended
   * @return the new matrix with the appended columns
   */
  public final Matrix appendColumns(final Matrix columns) {
    if(elements.length != columns.elements.length) {
      throw new IllegalArgumentException(ERR_MATRIX_DIMENSIONS);
    }

    final Matrix result = new Matrix(elements.length, columndimension + columns.columndimension);
    for(int i = 0; i < result.columndimension; i++) {
      // FIXME: optimize - excess copying!
      if(i < columndimension) {
        result.setCol(i, getCol(i));
      }
      else {
        result.setCol(i, columns.getCol(i - columndimension));
      }
    }
    return result;
  }

  /**
   * Returns an orthonormalization of this matrix.
   *
   * @return the orthonormalized matrix
   */
  public final Matrix orthonormalize() {
    Matrix v = copy();

    // FIXME: optimize - excess copying!
    for(int i = 1; i < columndimension; i++) {
      final Vector u_i = getCol(i);
      final Vector sum = new Vector(elements.length);
      for(int j = 0; j < i; j++) {
        final Vector v_j = v.getCol(j);
        double scalar = u_i.transposeTimes(v_j) / v_j.transposeTimes(v_j);
        sum.plusTimesEquals(v_j, scalar);
      }
      final Vector v_i = u_i.minus(sum);
      v.setCol(i, v_i);
    }

    v.normalizeColumns();
    return v;
  }

  /**
   * Adds a given value to the diagonal entries if the entry is smaller than the
   * constant.
   *
   * @param constant value to add to the diagonal entries
   * @return a new Matrix differing from this Matrix by the given value added to
   *         the diagonal entries
   */
  public final Matrix cheatToAvoidSingularity(final double constant) {
    final Matrix a = this.copy();
    for(int i = 0; i < a.columndimension && i < a.elements.length; i++) {
      // if(a.get(i, i) < constant)
      {
        a.elements[i][i] += constant;
      }
    }
    return a;
  }

  /**
   * Read a matrix from a stream. The format is the same the print method, so
   * printed matrices can be read back in (provided they were printed using US
   * Locale). Elements are separated by whitespace, all the elements for each
   * row appear on a single line, the last row is followed by a blank line.
   *
   * @param input the input stream.
   * @return New matrix
   * @throws java.io.IOException on input error
   */
  public static final Matrix read(final BufferedReader input) throws java.io.IOException {
    final StreamTokenizer tokenizer = new StreamTokenizer(input);

    // Although StreamTokenizer will parse numbers, it doesn't recognize
    // scientific notation (E or D); however, FormatUtil.parseDouble does.
    // The strategy here is to disable StreamTokenizer's number parsing.
    // We'll only get whitespace delimited words, EOL's and EOF's.
    // These words should all be numbers, for FormatUtil.parseDouble to parse.

    tokenizer.resetSyntax();
    tokenizer.wordChars(0, 255);
    tokenizer.whitespaceChars(0, ' ');
    tokenizer.eolIsSignificant(true);
    DoubleArray v = new DoubleArray();

    // Ignore initial empty lines
    while(tokenizer.nextToken() == StreamTokenizer.TT_EOL) {
      // ignore initial empty lines
    }
    if(tokenizer.ttype == StreamTokenizer.TT_EOF) {
      throw new java.io.IOException("Unexpected EOF on matrix read.");
    }
    do {
      v.add(FormatUtil.parseDouble(tokenizer.sval)); // Read & store 1st
      // row.
    }
    while(tokenizer.nextToken() == StreamTokenizer.TT_WORD);

    int n = v.size(); // Now we've got the number of columns!
    double row[] = v.toArray();
    ArrayList<double[]> rowV = new ArrayList<>();
    rowV.add(row); // Start storing rows instead of columns.
    while(tokenizer.nextToken() == StreamTokenizer.TT_WORD) {
      // While non-empty lines
      rowV.add(row = new double[n]);
      int j = 0;
      do {
        if(j >= n) {
          throw new java.io.IOException("Row " + v.size() + " is too long.");
        }
        row[j++] = FormatUtil.parseDouble(tokenizer.sval);
      }
      while(tokenizer.nextToken() == StreamTokenizer.TT_WORD);
      if(j < n) {
        throw new java.io.IOException("Row " + v.size() + " is too short.");
      }
    }
    int m = rowV.size(); // Now we've got the number of rows.
    double[][] A = new double[m][];
    for(int i = 0; i < m; i++) {
      A[i] = rowV.get(i);
    }
    return new Matrix(A);
  }

  /**
   * Check if size(A) == size(B)
   */
  protected void checkMatrixDimensions(Matrix B) {
    if(B.getRowDimensionality() != getRowDimensionality() || B.getColumnDimensionality() != getColumnDimensionality()) {
      throw new IllegalArgumentException("Matrix dimensions must agree.");
    }
  }

  @Override
  public int hashCode() {
    final int PRIME = 31;
    int result = 1;
    result = PRIME * result + Arrays.hashCode(this.elements);
    result = PRIME * result + this.elements.length;
    result = PRIME * result + this.columndimension;
    return result;
  }

  @Override
  public boolean equals(Object obj) {
    if(this == obj) {
      return true;
    }
    if(obj == null) {
      return false;
    }
    if(getClass() != obj.getClass()) {
      return false;
    }
    final Matrix other = (Matrix) obj;
    if(this.elements.length != other.elements.length) {
      return false;
    }
    if(this.columndimension != other.columndimension) {
      return false;
    }
    for(int i = 0; i < this.elements.length; i++) {
      for(int j = 0; j < this.columndimension; j++) {
        if(this.elements[i][j] != other.elements[i][j]) {
          return false;
        }
      }
    }
    return true;
  }

  /**
   * Compare two matrices with a delta parameter to take numerical errors into
   * account.
   *
   * @param obj other object to compare with
   * @param maxdelta maximum delta allowed
   * @return true if delta smaller than maximum
   */
  public boolean almostEquals(Object obj, double maxdelta) {
    if(this == obj) {
      return true;
    }
    if(obj == null) {
      return false;
    }
    if(getClass() != obj.getClass()) {
      return false;
    }
    final Matrix other = (Matrix) obj;
    if(this.elements.length != other.elements.length) {
      return false;
    }
    if(this.columndimension != other.columndimension) {
      return false;
    }
    for(int i = 0; i < this.elements.length; i++) {
      for(int j = 0; j < this.columndimension; j++) {
        if(Math.abs(this.elements[i][j] - other.elements[i][j]) > maxdelta) {
          return false;
        }
      }
    }
    return true;
  }

  /**
   * Compare two matrices with a delta parameter to take numerical errors into
   * account.
   *
   * @param obj other object to compare with
   * @return almost equals with delta {@link #DELTA}
   */
  public boolean almostEquals(Object obj) {
    return almostEquals(obj, DELTA);
  }

  /**
   * toString returns String-representation of Matrix.
   */
  @Override
  public String toString() {
    return FormatUtil.format(this);
  }
}