summaryrefslogtreecommitdiff
path: root/elki/src/main/java/de/lmu/ifi/dbs/elki/math/linearalgebra/randomprojections/AbstractRandomProjectionFamily.java
blob: 00597ac210fc0ec2ab22cdb77bf3ba41b71c8ada (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
package de.lmu.ifi.dbs.elki.math.linearalgebra.randomprojections;

import java.util.Arrays;

/*
 This file is part of ELKI:
 Environment for Developing KDD-Applications Supported by Index-Structures

 Copyright (C) 2015
 Ludwig-Maximilians-Universität München
 Lehr- und Forschungseinheit für Datenbanksysteme
 ELKI Development Team

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

import java.util.Random;

import de.lmu.ifi.dbs.elki.data.NumberVector;
import de.lmu.ifi.dbs.elki.data.SparseNumberVector;
import de.lmu.ifi.dbs.elki.math.MathUtil;
import de.lmu.ifi.dbs.elki.math.random.RandomFactory;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizer;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.OptionID;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.Parameterization;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.RandomParameter;

/**
 * Abstract base class for random projection families.
 *
 * @author Erich Schubert
 */
public abstract class AbstractRandomProjectionFamily implements RandomProjectionFamily {
  /**
   * Random generator.
   */
  protected Random random;

  /**
   * Constructor.
   */
  public AbstractRandomProjectionFamily(RandomFactory random) {
    super();
    this.random = random.getSingleThreadedRandom();
  }

  /**
   * Class to project using a matrix multiplication. This class is optimized for
   * dense vector multiplications. In other words, the row dimensionality is the
   * output dimensionality, the column dimensionality is the input
   * dimensionality.
   *
   * It is <b>not thread safe</b> because it uses an internal buffer to store a
   * local copy of the vector.
   *
   * @author Erich Schubert
   */
  public static class MatrixProjection implements Projection {
    /**
     * Projection matrix.
     */
    double[][] matrix;

    /**
     * Shared buffer to use during projections.
     */
    private double[] buf;

    /**
     * Constructor.
     *
     * @param matrix Projection matrix ([output dim][input dim]).
     */
    public MatrixProjection(double[][] matrix) {
      super();
      this.matrix = matrix;
      this.buf = new double[matrix.length];
    }

    @Override
    public double[] project(NumberVector in) {
      return project(in, new double[matrix.length]);
    }

    @Override
    public double[] project(NumberVector in, double[] ret) {
      if(in instanceof SparseNumberVector) {
        return projectSparse((SparseNumberVector) in, ret);
      }
      final int dim = MathUtil.min(buf.length, in.getDimensionality());
      assert (ret.length >= matrix.length) : "Output buffer too small!";
      // Copy vector into local buffer
      for(int i = 0; i < dim; i++) {
        buf[i] = in.doubleValue(i);
      }
      // Iterate over output dimensions:
      for(int o = 0; o < matrix.length; o++) {
        final double[] row = matrix[o];
        double v = 0.;
        for(int i = 0; i < dim; i++) {
          v += row[i] * buf[i]; // Rows and input are aligned.
        }
        ret[o] = v;
      }
      // Fill excess dimensions.
      for(int d = matrix.length; d < ret.length; d++) {
        ret[d] = 0;
      }
      return ret;
    }

    /**
     * Project, exploiting sparsity; but the transposed matrix layout would have
     * been better. For projections where you expect sparse input, consider the
     * opposite.
     *
     * @param in Input vector
     * @param ret Projection buffer
     * @return Projected data.
     */
    private double[] projectSparse(SparseNumberVector in, double[] ret) {
      Arrays.fill(ret, 0);
      for(int iter = in.iter(); in.iterValid(iter); iter = in.iterAdvance(iter)) {
        final int i = in.iterDim(iter);
        final double val = in.iterDoubleValue(iter);
        for(int o = 0; o < ret.length; o++) {
          ret[o] += val * matrix[o][i]; // Not aligned.
        }
      }
      return ret;
    }

    @Override
    public int getOutputDimensionality() {
      return matrix.length;
    }
  }

  /**
   * Parameterization interface (with the shared parameters)
   *
   * @author Erich Schubert
   *
   * @apiviz.exclude
   */
  public abstract static class Parameterizer extends AbstractParameterizer {
    /**
     * Parameter for the random generator.
     */
    public static final OptionID RANDOM_ID = new OptionID("randomproj.random", "Random generator seed.");

    /**
     * Random generator.
     */
    protected RandomFactory random;

    @Override
    protected void makeOptions(Parameterization config) {
      super.makeOptions(config);
      RandomParameter rndP = new RandomParameter(RANDOM_ID);
      if(config.grab(rndP)) {
        random = rndP.getValue();
      }
    }
  }
}