summaryrefslogtreecommitdiff
path: root/elki/src/main/java/de/lmu/ifi/dbs/elki/math/statistics/dependence/AbstractDependenceMeasure.java
blob: 2c177328631a75e72379d1166aa659bfed919d6e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
package de.lmu.ifi.dbs.elki.math.statistics.dependence;

/*
 This file is part of ELKI:
 Environment for Developing KDD-Applications Supported by Index-Structures

 Copyright (C) 2015
 Ludwig-Maximilians-Universität München
 Lehr- und Forschungseinheit für Datenbanksysteme
 ELKI Development Team

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

import java.util.Collection;
import java.util.Iterator;
import java.util.List;

import de.lmu.ifi.dbs.elki.math.MathUtil;
import de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike.ArrayLikeUtil;
import de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike.NumberArrayAdapter;
import de.lmu.ifi.dbs.elki.utilities.datastructures.arrays.IntegerArrayQuickSort;
import de.lmu.ifi.dbs.elki.utilities.datastructures.arrays.IntegerComparator;
import de.lmu.ifi.dbs.elki.utilities.exceptions.AbortException;

/**
 * Abstract base class for dependence measures.
 * 
 * @author Erich Schubert
 * @since 0.7.0
 */
public abstract class AbstractDependenceMeasure implements DependenceMeasure {
  // In your subclass, you will need to implement at least this method:
  // Sorry for the complex use of generics, but this way we can use it with any
  // type of array, including vectors in rows or columns etc.
  @Override
  abstract public <A, B> double dependence(NumberArrayAdapter<?, A> adapter1, A data1, NumberArrayAdapter<?, B> adapter2, B data2);

  @Override
  public double dependence(double[] data1, double[] data2) {
    return dependence(ArrayLikeUtil.DOUBLEARRAYADAPTER, data1, ArrayLikeUtil.DOUBLEARRAYADAPTER, data2);
  }

  @Override
  public <A> double dependence(NumberArrayAdapter<?, A> adapter, A data1, A data2) {
    return dependence(adapter, data1, adapter, data2);
  }

  @Override
  public <A> double[] dependence(NumberArrayAdapter<?, A> adapter, List<? extends A> data) {
    final int dims = data.size();
    double[] out = new double[(dims * (dims - 1)) >> 1];
    int o = 0;
    for(int y = 1; y < dims; y++) {
      A dy = data.get(y);
      for(int x = 0; x < y; x++) {
        out[o++] = dependence(adapter, data.get(x), adapter, dy);
      }
    }
    return out;
  }

  /**
   * Clamp values to a given minimum and maximum.
   * 
   * @param value True value
   * @param min Minimum
   * @param max Maximum
   * @return {@code value}, unless smaller than {@code min} or larger than
   *         {@code max}.
   */
  protected static double clamp(double value, double min, double max) {
    return value < min ? min : value > max ? max : value;
  }

  /**
   * Compute ranks of all objects, normalized to [0;1] (where 0 is the smallest
   * value, 1 is the largest).
   * 
   * @param adapter Data adapter
   * @param data Data array
   * @param len Length of data
   * @return Array of scores
   */
  public static <A> double[] computeNormalizedRanks(final NumberArrayAdapter<?, A> adapter, final A data, int len) {
    // Sort the objects:
    int[] s1 = sortedIndex(adapter, data, len);
    final double norm = .5 / (len - 1);
    double[] ret = new double[len];
    for(int i = 0; i < len;) {
      final int start = i++;
      final double val = adapter.getDouble(data, s1[start]);
      while(i < len && adapter.getDouble(data, s1[i]) <= val) {
        i++;
      }
      final double score = (start + i - 1) * norm;
      for(int j = start; j < i; j++) {
        ret[s1[j]] = score;
      }
    }
    return ret;
  }

  /**
   * Compute ranks of all objects, ranging from 1 to len.
   *
   * Ties are given the average rank.
   *
   * @param adapter Data adapter
   * @param data Data array
   * @param len Length of data
   * @return Array of scores
   */
  public static <A> double[] ranks(final NumberArrayAdapter<?, A> adapter, final A data, int len) {
    // Sort the objects:
    int[] s1 = sortedIndex(adapter, data, len);
    return ranks(adapter, data, s1);
  }

  /**
   * Compute ranks of all objects, ranging from 1 to len.
   *
   * Ties are given the average rank.
   *
   * @param adapter Data adapter
   * @param data Data array
   * @param idx Data index
   * @return Array of scores
   */
  public static <A> double[] ranks(final NumberArrayAdapter<?, A> adapter, final A data, int[] idx) {
    final int len = idx.length;
    double[] ret = new double[len];
    for(int i = 0; i < len;) {
      final int start = i++;
      final double val = adapter.getDouble(data, idx[start]);
      // Include ties:
      while(i < len && adapter.getDouble(data, idx[i]) <= val) {
        i++;
      }
      final double score = (start + i - 1) * .5 + 1;
      for(int j = start; j < i; j++) {
        ret[idx[j]] = score;
      }
    }
    return ret;
  }

  /**
   * Build a sorted index of objects.
   *
   * @param adapter Data adapter
   * @param data Data array
   * @param len Length of data
   * @return Sorted index
   */
  public static <A> int[] sortedIndex(final NumberArrayAdapter<?, A> adapter, final A data, int len) {
    int[] s1 = MathUtil.sequence(0, len);
    IntegerArrayQuickSort.sort(s1, new IntegerComparator() {
      @Override
      public int compare(int x, int y) {
        return Double.compare(adapter.getDouble(data, x), adapter.getDouble(data, y));
      }
    });
    return s1;
  }

  /**
   * Discretize a data set into equi-width bin numbers.
   * 
   * @param adapter Data adapter
   * @param data Data array
   * @param len Length of data
   * @param bins Number of bins
   * @return Array of bin numbers [0;bin[
   */
  public static <A> int[] discretize(NumberArrayAdapter<?, A> adapter, A data, final int len, final int bins) {
    double min = adapter.getDouble(data, 0), max = min;
    for(int i = 1; i < len; i++) {
      double v = adapter.getDouble(data, i);
      if(v < min) {
        min = v;
      }
      else if(v > max) {
        max = v;
      }
    }
    final double scale = (max > min) ? bins / (max - min) : 1;
    int[] discData = new int[len];
    for(int i = 0; i < len; i++) {
      int bin = (int) Math.floor((adapter.getDouble(data, i) - min) * scale);
      discData[i] = bin < 0 ? 0 : bin >= bins ? bins - 1 : bin;
    }
    return discData;
  }

  /**
   * Index into the serialized array.
   * 
   * @param x Column
   * @param y Row
   * @return Index in serialized array
   */
  protected static int index(int x, int y) {
    assert (x < y) : "Only lower triangle is allowed.";
    return ((y * (y - 1)) >> 1) + x;
  }

  /**
   * Validate the length of the two data sets (must be the same, and non-zero)
   * 
   * @param adapter1 First data adapter
   * @param data1 First data set
   * @param adapter2 Second data adapter
   * @param data2 Second data set
   * @param <A> First array type
   * @param <B> Second array type
   */
  public static <A, B> int size(NumberArrayAdapter<?, A> adapter1, A data1, NumberArrayAdapter<?, B> adapter2, B data2) {
    final int len = adapter1.size(data1);
    if(len != adapter2.size(data2)) {
      throw new AbortException("Array sizes do not match!");
    }
    if(len == 0) {
      throw new AbortException("Empty array!");
    }
    return len;
  }

  /**
   * Validate the length of the two data sets (must be the same, and non-zero)
   * 
   * @param adapter Data adapter
   * @param data Data sets
   * @param <A> First array type
   */
  public static <A> int size(NumberArrayAdapter<?, A> adapter, Collection<? extends A> data) {
    if(data.size() < 2) {
      throw new AbortException("Need at least two axes to compute dependence measures.");
    }
    Iterator<? extends A> iter = data.iterator();
    final int len = adapter.size(iter.next());
    while(iter.hasNext()) {
      if(len != adapter.size(iter.next())) {
        throw new AbortException("Array sizes do not match!");
      }
    }
    if(len == 0) {
      throw new AbortException("Empty array!");
    }
    return len;
  }
}