summaryrefslogtreecommitdiff
path: root/elki/src/main/java/de/lmu/ifi/dbs/elki/math/statistics/dependence/DistanceCorrelationDependenceMeasure.java
blob: 289c00452d6c5cdad50e22e8f15eb2322229b7ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
package de.lmu.ifi.dbs.elki.math.statistics.dependence;

/*
 This file is part of ELKI:
 Environment for Developing KDD-Applications Supported by Index-Structures

 Copyright (C) 2015
 Ludwig-Maximilians-Universität München
 Lehr- und Forschungseinheit für Datenbanksysteme
 ELKI Development Team

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

import java.util.List;

import de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike.NumberArrayAdapter;
import de.lmu.ifi.dbs.elki.utilities.documentation.Reference;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizer;

/**
 * Distance correlation.
 * 
 * The value returned is the square root of the dCor² value. This matches the R
 * implementation by the original authors.
 * 
 * Reference:
 * <p>
 * Székely, G. J., Rizzo, M. L., & Bakirov, N. K.<br />
 * Measuring and testing dependence by correlation of distances<br />
 * The Annals of Statistics, 35(6), 2769-2794
 * </p>
 * 
 * Implementation notice: we exploit symmetry, and thus use diagonal matrixes.
 * While initially the diagonal is zero, after double-centering the matrix these
 * values can become non-zero!
 * 
 * @author Marie Kiermeier
 * @author Erich Schubert
 */
@Reference(authors = "Székely, G. J., Rizzo, M. L., & Bakirov, N. K.", //
title = "Measuring and testing dependence by correlation of distances", //
booktitle = "The Annals of Statistics, 35(6), 2769-2794", //
url = "http://dx.doi.org/10.1214/009053607000000505")
public class DistanceCorrelationDependenceMeasure extends AbstractDependenceMeasure {
  /**
   * Static instance.
   */
  public static final DistanceCorrelationDependenceMeasure STATIC = new DistanceCorrelationDependenceMeasure();

  /**
   * Constructor - use {@link #STATIC} instance instead!
   */
  protected DistanceCorrelationDependenceMeasure() {
    super();
  }

  @Override
  public <A, B> double dependence(NumberArrayAdapter<?, A> adapter1, A data1, NumberArrayAdapter<?, B> adapter2, B data2) {
    final int len = size(adapter1, data1, adapter2, data2);
    double[] dMatrixA = computeDistances(adapter1, data1);
    double[] dMatrixB = computeDistances(adapter2, data2);

    // distance variance
    double dVarA = computeDCovar(dMatrixA, dMatrixA, len);
    if(!(dVarA > 0.)) {
      return 0.;
    }
    double dVarB = computeDCovar(dMatrixB, dMatrixB, len);
    if(!(dVarB > 0.)) {
      return 0.;
    }
    double dCovar = computeDCovar(dMatrixA, dMatrixB, len);
    // distance correlation
    return Math.sqrt(dCovar / Math.sqrt(dVarA * dVarB));
  }

  @Override
  public <A> double[] dependence(NumberArrayAdapter<?, A> adapter, List<? extends A> data) {
    final int dims = data.size();
    final int len = size(adapter, data);
    double[][] dMatrix = new double[dims][];
    for(int i = 0; i < dims; i++) {
      dMatrix[i] = computeDistances(adapter, data.get(i));
    }
    double[] dVar = new double[dims];
    for(int i = 0; i < dims; i++) {
      dVar[i] = computeDCovar(dMatrix[i], dMatrix[i], len);
    }
    double[] dCor = new double[(dims * (dims - 1)) >> 1];
    for(int y = 1, c = 0; y < dims; y++) {
      for(int x = 0; x < y; x++) {
        if(!(dVar[x] * dVar[y] > 0.)) {
          dCor[c++] = 0.;
          continue;
        }
        double dCovar = computeDCovar(dMatrix[x], dMatrix[y], len);
        dCor[c++] = Math.sqrt(dCovar / Math.sqrt(dVar[x] * dVar[y]));
      }
    }
    return dCor;
  }

  /**
   * Compute the double-centered delta matrix.
   * 
   * @param adapter Data adapter
   * @param data Input data
   * @return Double-centered delta matrix.
   */
  protected static <A> double[] computeDistances(NumberArrayAdapter<?, A> adapter, A data) {
    final int size = adapter.size(data);
    double[] dMatrix = new double[(size * (size + 1)) >> 1];
    for(int i = 0, c = 0; i < size; i++) {
      for(int j = 0; j < i; j++) {
        double dx = adapter.getDouble(data, i) - adapter.getDouble(data, j);
        dMatrix[c++] = (dx < 0) ? -dx : dx; // Absolute difference.
      }
      c++; // Diagonal entry: zero
    }
    doubleCenterMatrix(dMatrix, size);
    return dMatrix;
  }

  /**
   * Computes the distance variance matrix of one axis.
   * 
   * @param dMatrix distance matrix of the axis
   * @param size Dimensionality
   */
  public static void doubleCenterMatrix(double[] dMatrix, int size) {
    double[] rowMean = new double[size];
    // row sum
    for(int i = 0, c = 0; i < size; i++) {
      for(int j = 0; j < i; j++) {
        double v = dMatrix[c++];
        rowMean[i] += v;
        rowMean[j] += v;
      }
      assert (dMatrix[c] == 0.);
      c++; // Diagonal entry. Must be zero!
    }
    // Normalize averages:
    double matrixMean = 0.;
    for(int i = 0; i < size; i++) {
      matrixMean += rowMean[i];
      rowMean[i] /= size;
    }
    matrixMean /= size * size;

    for(int o = 0, c = 0; o < size; o++) {
      // Including row mean!
      for(int p = 0; p <= o; p++) {
        dMatrix[c++] -= rowMean[o] + rowMean[p] - matrixMean;
      }
    }
  }

  /**
   * Computes the distance covariance for two axis. Can also be used to compute
   * the distance variance of one axis (dVarMatrixA = dVarMatrixB).
   * 
   * @param dVarMatrixA distance variance matrix of the first axis
   * @param dVarMatrixB distance variance matrix of the second axis
   * @param n number of points
   * @return distance covariance
   */
  protected double computeDCovar(double[] dVarMatrixA, double[] dVarMatrixB, int n) {
    double result = 0.;
    for(int i = 0, c = 0; i < n; i++) {
      for(int j = 0; j < i; j++) {
        result += 2. * dVarMatrixA[c] * dVarMatrixB[c];
        c++;
      }
      // Diagonal entry.
      result += dVarMatrixA[c] * dVarMatrixB[c];
      c++;
    }
    return result / (n * n);
  }

  /**
   * Parameterization class
   * 
   * @author Marie Kiermeier
   *
   * @apiviz.exclude
   */
  public static class Parameterizer extends AbstractParameterizer {
    @Override
    protected DistanceCorrelationDependenceMeasure makeInstance() {
      return STATIC;
    }
  }
}