summaryrefslogtreecommitdiff
path: root/elki/src/main/java/de/lmu/ifi/dbs/elki/utilities/datastructures/arrays/IntegerArrayQuickSort.java
blob: ece63ea6e177c8ae8dc6b158d77da3634ad249b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
package de.lmu.ifi.dbs.elki.utilities.datastructures.arrays;

/*
 This file is part of ELKI:
 Environment for Developing KDD-Applications Supported by Index-Structures

 Copyright (C) 2015
 Ludwig-Maximilians-Universität München
 Lehr- und Forschungseinheit für Datenbanksysteme
 ELKI Development Team

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

import de.lmu.ifi.dbs.elki.utilities.documentation.Reference;

/**
 * Class to sort an int array, using a modified quicksort.
 * 
 * The implementation is closely based on:
 * <p>
 * Dual-Pivot Quicksort<br />
 * Vladimir Yaroslavskiy
 * </p>
 *
 * and differs mostly in that we sort different kinds of arrays, and allow the
 * use of comparators - useful in particular when the array references external
 * objects.
 * 
 * @author Erich Schubert
 * 
 * @apiviz.uses IntegerComparator
 */
@Reference(authors = "Vladimir Yaroslavskiy", //
title = "Dual-Pivot Quicksort", booktitle = "http://iaroslavski.narod.ru/quicksort/", //
url = "http://iaroslavski.narod.ru/quicksort/")
public class IntegerArrayQuickSort {
  /**
   * Threshold for using insertion sort. Value taken from Javas QuickSort,
   * assuming that it will be similar for our data sets.
   */
  private static final int INSERTION_THRESHOLD = 47;

  /**
   * Sort the full array using the given comparator.
   * 
   * @param data Data to sort
   * @param comp Comparator
   */
  public static void sort(int[] data, IntegerComparator comp) {
    sort(data, 0, data.length, comp);
  }

  /**
   * Sort the array using the given comparator.
   * 
   * @param data Data to sort
   * @param start First index
   * @param end Last index (exclusive)
   * @param comp Comparator
   */
  public static void sort(int[] data, int start, int end, IntegerComparator comp) {
    quickSort(data, start, end, comp);
  }

  /**
   * Actual recursive sort function.
   * 
   * @param data Data to sort
   * @param start First index
   * @param end Last index (exclusive!)
   * @param comp Comparator
   */
  private static void quickSort(int[] data, final int start, final int end, IntegerComparator comp) {
    final int len = end - start;
    final int last = end - 1;
    if(len < INSERTION_THRESHOLD) {
      insertionSort(data, start, end, comp);
      return;
    }

    // Choose pivots by looking at five candidates.
    final int seventh = (len >> 3) + (len >> 6) + 1;
    final int m3 = (start + end) >> 1; // middle
    final int m2 = m3 - seventh;
    final int m1 = m2 - seventh;
    final int m4 = m3 + seventh;
    final int m5 = m4 + seventh;

    // Explicit (and optimal) sorting network for 5 elements
    // See Knuth for details.
    sort5(data, m1, m2, m3, m4, m5, comp);

    // Choose the 2 and 4th as pivots, as we want to get three parts
    // Copy to variables v1 and v3, replace them with the start and end
    // Note: do not modify v1 or v3 until we put them back!
    final int lpivot = data[m2];
    final int rpivot = data[m4];
    data[m2] = data[start];
    data[m4] = data[last];

    // A tie is when the two chosen pivots are the same
    final boolean tied = comp.compare(lpivot, rpivot) == 0;

    // Insertion points for pivot areas.
    int left = start + 1;
    int right = last - 1;

    // Note: we merged the ties and no ties cases.
    // This likely is marginally slower, but not at a macro level
    // And you never know with hotspot.
    for(int k = left; k <= right; k++) {
      final int tmp = data[k];
      final int c = comp.compare(tmp, lpivot);
      if(c == 0) {
        continue;
      }
      else if(c < 0) {
        // Traditional quicksort
        data[k] = data[left];
        data[left] = tmp;
        left++;
      }
      else if(tied || comp.compare(tmp, rpivot) > 0) {
        // Now look at the right. First skip correct entries there, too
        while(true) {
          final int tmp2 = data[right];
          if(comp.compare(tmp2, rpivot) > 0 && k < right) {
            right--;
          }
          else {
            break;
          }
        }
        // Now move tmp from k to the right.
        data[k] = data[right];
        data[right] = tmp;
        right--;
        // Test the element we just inserted: left or center?
        if(comp.compare(data[k], lpivot) < 0) {
          final int tmp2 = data[k];
          data[k] = data[left];
          data[left] = tmp2;
          left++;
        } // else: center. cannot be on right.
      }
    }
    // Put the pivot elements back in.
    // Remember: we must not modify v1 and v3 above.
    data[start] = data[left - 1];
    data[left - 1] = lpivot;
    data[last] = data[right + 1];
    data[right + 1] = rpivot;
    // v1 and v3 are now safe to modify again. Perform recursion:
    quickSort(data, start, left - 1, comp);
    // Handle the middle part - if necessary:
    if(!tied) {
      // TODO: the original publication had a special tie handling here.
      // It shouldn't affect correctness, but probably improves situations
      // with a lot of tied elements.
      quickSort(data, left, right + 1, comp);
    }
    quickSort(data, right + 2, end, comp);
  }

  /**
   * Insertion sort, for short arrays.
   *
   * @param data Data to sort
   * @param start First index
   * @param end Last index (exclusive!)
   * @param comp Comparator
   */
  private static void insertionSort(int[] data, final int start, final int end, IntegerComparator comp) {
    // Classic insertion sort.
    for(int i = start + 1; i < end; i++) {
      final int cur = data[i];
      int j = i - 1;
      while(j >= start) {
        final int pre = data[j];
        if(comp.compare(cur, pre) >= 0) {
          break;
        }
        data[j + 1] = pre;
        --j;
      }
      data[j + 1] = cur;
    }
  }

  /**
   * An explicit sort, for the five pivot candidates.
   *
   * Note that this <em>must</em> only be used with
   * {@code m1 < m2 < m3 < m4 < m5}.
   *
   * @param data Data
   * @param m1 Pivot candidate position
   * @param m2 Pivot candidate position
   * @param m3 Pivot candidate position
   * @param m4 Pivot candidate position
   * @param m5 Pivot candidate position
   * @param comp Comparator
   */
  private static void sort5(int[] data, int m1, int m2, int m3, int m4, int m5, IntegerComparator comp) {
    // Sort m1, m2
    if(comp.compare(data[m1], data[m2]) > 0) {
      final int tmp = data[m2];
      data[m2] = data[m1];
      data[m1] = tmp;
    }
    // Sort m3, m4
    if(comp.compare(data[m3], data[m4]) > 0) {
      final int tmp = data[m4];
      data[m4] = data[m3];
      data[m3] = tmp;
    }
    // Merge 1+2 and 3+4
    if(comp.compare(data[m2], data[m4]) > 0) {
      final int tmp = data[m4];
      data[m4] = data[m2];
      data[m2] = tmp;
    }
    if(comp.compare(data[m1], data[m3]) > 0) {
      final int tmp = data[m3];
      data[m3] = data[m1];
      data[m1] = tmp;
    }
    if(comp.compare(data[m2], data[m3]) > 0) {
      final int tmp = data[m3];
      data[m3] = data[m2];
      data[m2] = tmp;
    }
    // Insertion sort m5:
    final int tmp = data[m5];
    if(comp.compare(data[m4], tmp) > 0) {
      data[m5] = data[m4];
      data[m4] = tmp;
      if(comp.compare(data[m3], tmp) > 0) {
        data[m4] = data[m3];
        data[m3] = tmp;
        if(comp.compare(data[m2], tmp) > 0) {
          data[m3] = data[m2];
          data[m2] = tmp;
          if(comp.compare(data[m1], tmp) > 0) {
            data[m2] = data[m1];
            data[m1] = tmp;
          }
        }
      }
    }
  }
}