summaryrefslogtreecommitdiff
path: root/src/de/lmu/ifi/dbs/elki/algorithm/clustering/subspace/PROCLUS.java
blob: 70b9be21bb1221642616fe8cc2ce59adc3924696 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
package de.lmu.ifi.dbs.elki.algorithm.clustering.subspace;
/*
This file is part of ELKI:
Environment for Developing KDD-Applications Supported by Index-Structures

Copyright (C) 2011
Ludwig-Maximilians-Universität München
Lehr- und Forschungseinheit für Datenbanksysteme
ELKI Development Team

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

import java.util.ArrayList;
import java.util.BitSet;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Random;
import java.util.Set;

import de.lmu.ifi.dbs.elki.algorithm.clustering.AbstractProjectedClustering;
import de.lmu.ifi.dbs.elki.data.Cluster;
import de.lmu.ifi.dbs.elki.data.Clustering;
import de.lmu.ifi.dbs.elki.data.NumberVector;
import de.lmu.ifi.dbs.elki.data.Subspace;
import de.lmu.ifi.dbs.elki.data.model.Model;
import de.lmu.ifi.dbs.elki.data.model.SubspaceModel;
import de.lmu.ifi.dbs.elki.data.type.TypeInformation;
import de.lmu.ifi.dbs.elki.data.type.TypeUtil;
import de.lmu.ifi.dbs.elki.database.Database;
import de.lmu.ifi.dbs.elki.database.ids.ArrayModifiableDBIDs;
import de.lmu.ifi.dbs.elki.database.ids.DBID;
import de.lmu.ifi.dbs.elki.database.ids.DBIDUtil;
import de.lmu.ifi.dbs.elki.database.ids.DBIDs;
import de.lmu.ifi.dbs.elki.database.ids.ModifiableDBIDs;
import de.lmu.ifi.dbs.elki.database.query.DistanceResultPair;
import de.lmu.ifi.dbs.elki.database.query.GenericDistanceResultPair;
import de.lmu.ifi.dbs.elki.database.query.distance.DistanceQuery;
import de.lmu.ifi.dbs.elki.database.query.range.RangeQuery;
import de.lmu.ifi.dbs.elki.database.relation.Relation;
import de.lmu.ifi.dbs.elki.distance.distancevalue.DoubleDistance;
import de.lmu.ifi.dbs.elki.logging.Logging;
import de.lmu.ifi.dbs.elki.logging.progress.IndefiniteProgress;
import de.lmu.ifi.dbs.elki.utilities.DatabaseUtil;
import de.lmu.ifi.dbs.elki.utilities.documentation.Description;
import de.lmu.ifi.dbs.elki.utilities.documentation.Reference;
import de.lmu.ifi.dbs.elki.utilities.documentation.Title;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.OptionID;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.constraints.GreaterConstraint;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.Parameterization;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.IntParameter;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.LongParameter;
import de.lmu.ifi.dbs.elki.utilities.pairs.CTriple;
import de.lmu.ifi.dbs.elki.utilities.pairs.Pair;

/**
 * <p/>
 * Provides the PROCLUS algorithm, an algorithm to find subspace clusters in
 * high dimensional spaces.
 * </p>
 * <p/>
 * Reference: <br>
 * C. C. Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu, J. S. Park: Fast
 * Algorithms for Projected Clustering. <br>
 * In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD '99).
 * </p>
 * 
 * @author Elke Achtert
 * 
 * @apiviz.has SubspaceModel
 * 
 * @param <V> the type of NumberVector handled by this Algorithm
 */
@Title("PROCLUS: PROjected CLUStering")
@Description("Algorithm to find subspace clusters in high dimensional spaces.")
@Reference(authors = "C. C. Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu, J. S. Park", title = "Fast Algorithms for Projected Clustering", booktitle = "Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD '99)", url = "http://dx.doi.org/10.1145/304181.304188")
// TODO: make the generics reflect the SubspaceModel
public class PROCLUS<V extends NumberVector<V, ?>> extends AbstractProjectedClustering<Clustering<Model>, V> {
  /**
   * The logger for this class.
   */
  private static final Logging logger = Logging.getLogger(PROCLUS.class);

  /**
   * Parameter to specify the multiplier for the initial number of medoids, must
   * be an integer greater than 0.
   * <p>
   * Default value: {@code 10}
   * </p>
   * <p>
   * Key: {@code -proclus.mi}
   * </p>
   */
  public static final OptionID M_I_ID = OptionID.getOrCreateOptionID("proclus.mi", "The multiplier for the initial number of medoids.");

  /**
   * Parameter to specify the random generator seed.
   */
  public static final OptionID SEED_ID = OptionID.getOrCreateOptionID("proclus.seed", "The random number generator seed.");

  /**
   * Holds the value of {@link #M_I_ID}.
   */
  private int m_i;

  /**
   * Holds the value of {@link #SEED_ID}.
   */
  private Long seed;

  /**
   * Java constructor.
   * 
   * @param k k Parameter
   * @param k_i k_i Parameter
   * @param l l Parameter
   * @param m_i m_i Parameter
   * @param seed Random generator seed
   */
  public PROCLUS(int k, int k_i, int l, int m_i, Long seed) {
    super(k, k_i, l);
    this.m_i = m_i;
    this.seed = seed;
  }

  /**
   * Performs the PROCLUS algorithm on the given database.
   */
  public Clustering<Model> run(Database database, Relation<V> relation) throws IllegalStateException {
    DistanceQuery<V, DoubleDistance> distFunc = this.getDistanceQuery(database);
    RangeQuery<V, DoubleDistance> rangeQuery = database.getRangeQuery(distFunc);
    final Random random = new Random();
    if(seed != null) {
      random.setSeed(seed);
    }

    if(DatabaseUtil.dimensionality(relation) < l) {
      throw new IllegalStateException("Dimensionality of data < parameter l! " + "(" + DatabaseUtil.dimensionality(relation) + " < " + l + ")");
    }

    // TODO: use a StepProgress!
    // initialization phase
    if(logger.isVerbose()) {
      logger.verbose("1. Initialization phase...");
    }
    int sampleSize = Math.min(relation.size(), k_i * k);
    DBIDs sampleSet = DBIDUtil.randomSample(relation.getDBIDs(), sampleSize, random.nextLong());

    int medoidSize = Math.min(relation.size(), m_i * k);
    DBIDs medoids = greedy(distFunc, sampleSet, medoidSize, random);

    if(logger.isDebugging()) {
      StringBuffer msg = new StringBuffer();
      msg.append("\n");
      msg.append("sampleSize ").append(sampleSize).append("\n");
      msg.append("sampleSet ").append(sampleSet).append("\n");
      msg.append("medoidSize ").append(medoidSize).append("\n");
      msg.append("m ").append(medoids).append("\n");
      logger.debugFine(msg.toString());
    }

    // iterative phase
    if(logger.isVerbose()) {
      logger.verbose("2. Iterative phase...");
    }
    double bestObjective = Double.POSITIVE_INFINITY;
    ModifiableDBIDs m_best = null;
    ModifiableDBIDs m_bad = null;
    ModifiableDBIDs m_current = initialSet(medoids, k, random);

    if(logger.isDebugging()) {
      StringBuffer msg = new StringBuffer();
      msg.append("\n");
      msg.append("m_c ").append(m_current).append("\n");
      logger.debugFine(msg.toString());
    }

    IndefiniteProgress cprogress = logger.isVerbose() ? new IndefiniteProgress("Current number of clusters:", logger) : null;

    Map<DBID, PROCLUSCluster> clusters = null;
    int loops = 0;
    while(loops < 10) {
      Map<DBID, Set<Integer>> dimensions = findDimensions(m_current, relation, distFunc, rangeQuery);
      clusters = assignPoints(dimensions, relation);
      double objectiveFunction = evaluateClusters(clusters, dimensions, relation);

      if(objectiveFunction < bestObjective) {
        // restart counting loops
        loops = 0;
        bestObjective = objectiveFunction;
        m_best = m_current;
        m_bad = computeBadMedoids(clusters, (int) (relation.size() * 0.1 / k));
      }

      m_current = computeM_current(medoids, m_best, m_bad, random);
      loops++;
      if(cprogress != null) {
        cprogress.setProcessed(clusters.size(), logger);
      }
    }

    if(cprogress != null) {
      cprogress.setCompleted(logger);
    }

    // refinement phase
    if(logger.isVerbose()) {
      logger.verbose("3. Refinement phase...");
    }

    List<Pair<V, Set<Integer>>> dimensions = findDimensions(new ArrayList<PROCLUSCluster>(clusters.values()), relation);
    List<PROCLUSCluster> finalClusters = finalAssignment(dimensions, relation);

    // build result
    int numClusters = 1;
    Clustering<Model> result = new Clustering<Model>("ProClus clustering", "proclus-clustering");
    for(PROCLUSCluster c : finalClusters) {
      Cluster<Model> cluster = new Cluster<Model>(c.objectIDs);
      cluster.setModel(new SubspaceModel<V>(new Subspace<V>(c.getDimensions()), c.centroid));
      cluster.setName("cluster_" + numClusters++);

      result.addCluster(cluster);
    }
    return result;
  }

  /**
   * Returns a piercing set of k medoids from the specified sample set.
   * 
   * @param distFunc the distance function
   * @param sampleSet the sample set
   * @param m the number of medoids to be returned
   * @param random random number generator
   * @return a piercing set of m medoids from the specified sample set
   */
  private ModifiableDBIDs greedy(DistanceQuery<V, DoubleDistance> distFunc, DBIDs sampleSet, int m, Random random) {
    ArrayModifiableDBIDs s = DBIDUtil.newArray(sampleSet);
    ModifiableDBIDs medoids = DBIDUtil.newHashSet();

    // m_1 is random point of S
    DBID m_i = s.remove(random.nextInt(s.size()));
    medoids.add(m_i);
    if(logger.isDebugging()) {
      logger.debugFiner("medoids " + medoids);
    }

    // compute distances between each point in S and m_i
    Map<DBID, DistanceResultPair<DoubleDistance>> distances = new HashMap<DBID, DistanceResultPair<DoubleDistance>>();
    for(DBID id : s) {
      DoubleDistance dist = distFunc.distance(id, m_i);
      distances.put(id, new GenericDistanceResultPair<DoubleDistance>(dist, id));
    }

    for(int i = 1; i < m; i++) {
      // choose medoid m_i to be far from prevois medoids
      List<DistanceResultPair<DoubleDistance>> d = new ArrayList<DistanceResultPair<DoubleDistance>>(distances.values());
      Collections.sort(d);

      m_i = d.get(d.size() - 1).getDBID();
      medoids.add(m_i);
      s.remove(m_i);
      distances.remove(m_i);

      // compute distances of each point to closest medoid
      for(DBID id : s) {
        DoubleDistance dist_new = distFunc.distance(id, m_i);
        DoubleDistance dist_old = distances.get(id).getDistance();

        DoubleDistance dist = dist_new.compareTo(dist_old) < 0 ? dist_new : dist_old;
        distances.put(id, new GenericDistanceResultPair<DoubleDistance>(dist, id));
      }

      if(logger.isDebugging()) {
        logger.debugFiner("medoids " + medoids);
      }
    }

    return medoids;
  }

  /**
   * Returns a set of k elements from the specified sample set.
   * 
   * @param sampleSet the sample set
   * @param k the number of samples to be returned
   * @param random random number generator
   * @return a set of k elements from the specified sample set
   */
  private ModifiableDBIDs initialSet(DBIDs sampleSet, int k, Random random) {
    ArrayModifiableDBIDs s = DBIDUtil.newArray(sampleSet);
    ModifiableDBIDs initialSet = DBIDUtil.newHashSet();
    while(initialSet.size() < k) {
      DBID next = s.remove(random.nextInt(s.size()));
      initialSet.add(next);
    }
    return initialSet;
  }

  /**
   * Computes the set of medoids in current iteration.
   * 
   * @param m the medoids
   * @param m_best the best set of medoids found so far
   * @param m_bad the bad medoids
   * @param random random number generator
   * @return m_current, the set of medoids in current iteration
   */
  private ModifiableDBIDs computeM_current(DBIDs m, DBIDs m_best, DBIDs m_bad, Random random) {
    ArrayModifiableDBIDs m_list = DBIDUtil.newArray(m);
    for(DBID m_i : m_best) {
      m_list.remove(m_i);
    }

    ModifiableDBIDs m_current = DBIDUtil.newHashSet();
    for(DBID m_i : m_best) {
      if(m_bad.contains(m_i)) {
        int currentSize = m_current.size();
        while(m_current.size() == currentSize) {
          DBID next = m_list.remove(random.nextInt(m_list.size()));
          m_current.add(next);
        }
      }
      else {
        m_current.add(m_i);
      }
    }

    return m_current;
  }

  /**
   * Computes the localities of the specified medoids: for each medoid m the
   * objects in the sphere centered at m with radius minDist are determined,
   * where minDist is the minimum distance between medoid m and any other medoid
   * m_i.
   * 
   * @param medoids the ids of the medoids
   * @param database the database holding the objects
   * @param distFunc the distance function
   * @return a mapping of the medoid's id to its locality
   */
  private Map<DBID, List<DistanceResultPair<DoubleDistance>>> getLocalities(DBIDs medoids, Relation<V> database, DistanceQuery<V, DoubleDistance> distFunc, RangeQuery<V, DoubleDistance> rangeQuery) {
    Map<DBID, List<DistanceResultPair<DoubleDistance>>> result = new HashMap<DBID, List<DistanceResultPair<DoubleDistance>>>();

    for(DBID m : medoids) {
      // determine minimum distance between current medoid m and any other
      // medoid m_i
      DoubleDistance minDist = null;
      for(DBID m_i : medoids) {
        if(m_i == m) {
          continue;
        }
        DoubleDistance currentDist = distFunc.distance(m, m_i);
        if(minDist == null || currentDist.compareTo(minDist) < 0) {
          minDist = currentDist;
        }
      }

      // determine points in sphere centered at m with radius minDist
      assert minDist != null;
      List<DistanceResultPair<DoubleDistance>> qr = rangeQuery.getRangeForDBID(m, minDist);
      result.put(m, qr);
    }

    return result;
  }

  /**
   * Determines the set of correlated dimensions for each medoid in the
   * specified medoid set.
   * 
   * @param medoids the set of medoids
   * @param database the database containing the objects
   * @param distFunc the distance function
   * @return the set of correlated dimensions for each medoid in the specified
   *         medoid set
   */
  private Map<DBID, Set<Integer>> findDimensions(DBIDs medoids, Relation<V> database, DistanceQuery<V, DoubleDistance> distFunc, RangeQuery<V, DoubleDistance> rangeQuery) {
    // get localities
    Map<DBID, List<DistanceResultPair<DoubleDistance>>> localities = getLocalities(medoids, database, distFunc, rangeQuery);

    // compute x_ij = avg distance from points in l_i to medoid m_i
    int dim = DatabaseUtil.dimensionality(database);
    Map<DBID, double[]> averageDistances = new HashMap<DBID, double[]>();

    for(DBID m_i : medoids) {
      V medoid_i = database.get(m_i);
      List<DistanceResultPair<DoubleDistance>> l_i = localities.get(m_i);
      double[] x_i = new double[dim];
      for(DistanceResultPair<DoubleDistance> qr : l_i) {
        V o = database.get(qr.getDBID());
        for(int d = 0; d < dim; d++) {
          x_i[d] += Math.abs(medoid_i.doubleValue(d + 1) - o.doubleValue(d + 1));
        }
      }
      for(int d = 0; d < dim; d++) {
        x_i[d] /= l_i.size();
      }
      averageDistances.put(m_i, x_i);
    }

    Map<DBID, Set<Integer>> dimensionMap = new HashMap<DBID, Set<Integer>>();
    List<CTriple<Double, DBID, Integer>> z_ijs = new ArrayList<CTriple<Double, DBID, Integer>>();
    for(DBID m_i : medoids) {
      Set<Integer> dims_i = new HashSet<Integer>();
      dimensionMap.put(m_i, dims_i);

      double[] x_i = averageDistances.get(m_i);
      // y_i
      double y_i = 0;
      for(int j = 0; j < dim; j++) {
        y_i += x_i[j];
      }
      y_i /= dim;

      // sigma_i
      double sigma_i = 0;
      for(int j = 0; j < dim; j++) {
        double diff = x_i[j] - y_i;
        sigma_i += diff * diff;
      }
      sigma_i /= (dim - 1);
      sigma_i = Math.sqrt(sigma_i);

      for(int j = 0; j < dim; j++) {
        z_ijs.add(new CTriple<Double, DBID, Integer>((x_i[j] - y_i) / sigma_i, m_i, j + 1));
      }
    }
    Collections.sort(z_ijs);

    int max = Math.max(k * l, 2);
    for(int m = 0; m < max; m++) {
      CTriple<Double, DBID, Integer> z_ij = z_ijs.get(m);
      Set<Integer> dims_i = dimensionMap.get(z_ij.getSecond());
      dims_i.add(z_ij.getThird());

      if(logger.isDebugging()) {
        StringBuffer msg = new StringBuffer();
        msg.append("\n");
        msg.append("z_ij ").append(z_ij).append("\n");
        msg.append("D_i ").append(dims_i).append("\n");
        logger.debugFiner(msg.toString());
      }
    }
    return dimensionMap;
  }

  /**
   * Refinement step that determines the set of correlated dimensions for each
   * cluster centroid.
   * 
   * @param clusters the list of clusters
   * @param database the database containing the objects
   * @return the set of correlated dimensions for each specified cluster
   *         centroid
   */
  private List<Pair<V, Set<Integer>>> findDimensions(List<PROCLUSCluster> clusters, Relation<V> database) {
    // compute x_ij = avg distance from points in c_i to c_i.centroid
    int dim = DatabaseUtil.dimensionality(database);
    Map<Integer, double[]> averageDistances = new HashMap<Integer, double[]>();

    for(int i = 0; i < clusters.size(); i++) {
      PROCLUSCluster c_i = clusters.get(i);
      double[] x_i = new double[dim];
      for(DBID id : c_i.objectIDs) {
        V o = database.get(id);
        for(int d = 0; d < dim; d++) {
          x_i[d] += Math.abs(c_i.centroid.doubleValue(d + 1) - o.doubleValue(d + 1));
        }
      }
      for(int d = 0; d < dim; d++) {
        x_i[d] /= c_i.objectIDs.size();
      }
      averageDistances.put(i, x_i);
    }

    List<CTriple<Double, Integer, Integer>> z_ijs = new ArrayList<CTriple<Double, Integer, Integer>>();
    for(int i = 0; i < clusters.size(); i++) {
      double[] x_i = averageDistances.get(i);
      // y_i
      double y_i = 0;
      for(int j = 0; j < dim; j++) {
        y_i += x_i[j];
      }
      y_i /= dim;

      // sigma_i
      double sigma_i = 0;
      for(int j = 0; j < dim; j++) {
        double diff = x_i[j] - y_i;
        sigma_i += diff * diff;
      }
      sigma_i /= (dim - 1);
      sigma_i = Math.sqrt(sigma_i);

      for(int j = 0; j < dim; j++) {
        z_ijs.add(new CTriple<Double, Integer, Integer>((x_i[j] - y_i) / sigma_i, i, j + 1));
      }
    }
    Collections.sort(z_ijs);

    // mapping cluster index -> dimensions
    Map<Integer, Set<Integer>> dimensionMap = new HashMap<Integer, Set<Integer>>();
    int max = Math.max(k * l, 2);
    for(int m = 0; m < max; m++) {
      CTriple<Double, Integer, Integer> z_ij = z_ijs.get(m);
      Set<Integer> dims_i = dimensionMap.get(z_ij.getSecond());
      if(dims_i == null) {
        dims_i = new HashSet<Integer>();
        dimensionMap.put(z_ij.getSecond(), dims_i);
      }
      dims_i.add(z_ij.getThird());

      if(logger.isDebugging()) {
        StringBuffer msg = new StringBuffer();
        msg.append("\n");
        msg.append("z_ij ").append(z_ij).append("\n");
        msg.append("D_i ").append(dims_i).append("\n");
        logger.debugFiner(msg.toString());
      }
    }

    // mapping cluster -> dimensions
    List<Pair<V, Set<Integer>>> result = new ArrayList<Pair<V, Set<Integer>>>();
    for(int i : dimensionMap.keySet()) {
      Set<Integer> dims_i = dimensionMap.get(i);
      PROCLUSCluster c_i = clusters.get(i);
      result.add(new Pair<V, Set<Integer>>(c_i.centroid, dims_i));
    }
    return result;
  }

  /**
   * Assigns the objects to the clusters.
   * 
   * @param dimensions set of correlated dimensions for each medoid of the
   *        cluster
   * @param database the database containing the objects
   * @return the assignments of the object to the clusters
   */
  private Map<DBID, PROCLUSCluster> assignPoints(Map<DBID, Set<Integer>> dimensions, Relation<V> database) {
    Map<DBID, ModifiableDBIDs> clusterIDs = new HashMap<DBID, ModifiableDBIDs>();
    for(DBID m_i : dimensions.keySet()) {
      clusterIDs.put(m_i, DBIDUtil.newHashSet());
    }

    for(Iterator<DBID> it = database.iterDBIDs(); it.hasNext();) {
      DBID p_id = it.next();
      V p = database.get(p_id);
      DistanceResultPair<DoubleDistance> minDist = null;
      for(DBID m_i : dimensions.keySet()) {
        V m = database.get(m_i);
        DistanceResultPair<DoubleDistance> currentDist = new GenericDistanceResultPair<DoubleDistance>(manhattanSegmentalDistance(p, m, dimensions.get(m_i)), m_i);
        if(minDist == null || currentDist.compareTo(minDist) < 0) {
          minDist = currentDist;
        }
      }
      // add p to cluster with mindist
      assert minDist != null;
      ModifiableDBIDs ids = clusterIDs.get(minDist.getDBID());
      ids.add(p_id);
    }

    Map<DBID, PROCLUSCluster> clusters = new HashMap<DBID, PROCLUSCluster>();
    for(DBID m_i : dimensions.keySet()) {
      ModifiableDBIDs objectIDs = clusterIDs.get(m_i);
      if(!objectIDs.isEmpty()) {
        Set<Integer> clusterDimensions = dimensions.get(m_i);
        V centroid = DatabaseUtil.centroid(database, objectIDs);
        clusters.put(m_i, new PROCLUSCluster(objectIDs, clusterDimensions, centroid));
      }
    }

    if(logger.isDebugging()) {
      StringBuffer msg = new StringBuffer();
      msg.append("\n");
      msg.append("clusters ").append(clusters).append("\n");
      logger.debugFine(msg.toString());
    }
    return clusters;
  }

  /**
   * Refinement step to assign the objects to the final clusters.
   * 
   * @param dimensions pair containing the centroid and the set of correlated
   *        dimensions for the centroid
   * @param database the database containing the objects
   * @return the assignments of the object to the clusters
   */
  private List<PROCLUSCluster> finalAssignment(List<Pair<V, Set<Integer>>> dimensions, Relation<V> database) {
    Map<Integer, ModifiableDBIDs> clusterIDs = new HashMap<Integer, ModifiableDBIDs>();
    for(int i = 0; i < dimensions.size(); i++) {
      clusterIDs.put(i, DBIDUtil.newHashSet());
    }

    for(Iterator<DBID> it = database.iterDBIDs(); it.hasNext();) {
      DBID p_id = it.next();
      V p = database.get(p_id);
      Pair<DoubleDistance, Integer> minDist = null;
      for(int i = 0; i < dimensions.size(); i++) {
        Pair<V, Set<Integer>> pair_i = dimensions.get(i);
        V c_i = pair_i.first;
        Set<Integer> dimensions_i = pair_i.second;
        DoubleDistance currentDist = manhattanSegmentalDistance(p, c_i, dimensions_i);
        if(minDist == null || currentDist.compareTo(minDist.first) < 0) {
          minDist = new Pair<DoubleDistance, Integer>(currentDist, i);
        }
      }
      // add p to cluster with mindist
      assert minDist != null;
      ModifiableDBIDs ids = clusterIDs.get(minDist.second);
      ids.add(p_id);
    }

    List<PROCLUSCluster> clusters = new ArrayList<PROCLUSCluster>();
    for(int i = 0; i < dimensions.size(); i++) {
      ModifiableDBIDs objectIDs = clusterIDs.get(i);
      if(!objectIDs.isEmpty()) {
        Set<Integer> clusterDimensions = dimensions.get(i).second;
        V centroid = DatabaseUtil.centroid(database, objectIDs);
        clusters.add(new PROCLUSCluster(objectIDs, clusterDimensions, centroid));
      }
    }

    if(logger.isDebugging()) {
      StringBuffer msg = new StringBuffer();
      msg.append("\n");
      msg.append("clusters ").append(clusters).append("\n");
      logger.debugFine(msg.toString());
    }
    return clusters;
  }

  /**
   * Returns the Manhattan segmental distance between o1 and o2 relative to the
   * specified dimensions.
   * 
   * @param o1 the first object
   * @param o2 the second object
   * @param dimensions the dimensions to be considered
   * @return the Manhattan segmental distance between o1 and o2 relative to the
   *         specified dimensions
   */
  private DoubleDistance manhattanSegmentalDistance(V o1, V o2, Set<Integer> dimensions) {
    double result = 0;
    for(Integer d : dimensions) {
      result += Math.abs(o1.doubleValue(d) - o2.doubleValue(d));
    }
    result /= dimensions.size();
    return new DoubleDistance(result);
  }

  /**
   * Evaluates the quality of the clusters.
   * 
   * @param clusters the clusters to be evaluated
   * @param dimensions the dimensions associated with each cluster
   * @param database the database holding the objects
   * @return a measure for the cluster quality
   */
  private double evaluateClusters(Map<DBID, PROCLUSCluster> clusters, Map<DBID, Set<Integer>> dimensions, Relation<V> database) {
    double result = 0;
    for(DBID m_i : clusters.keySet()) {
      PROCLUSCluster c_i = clusters.get(m_i);
      V centroid_i = c_i.centroid;

      Set<Integer> dims_i = dimensions.get(m_i);
      double w_i = 0;
      for(Integer j : dims_i) {
        w_i += avgDistance(centroid_i, c_i.objectIDs, database, j);
      }

      w_i /= dimensions.keySet().size();
      result += c_i.objectIDs.size() * w_i;
    }

    return result / database.size();
  }

  /**
   * Computes the average distance of the objects to the centroid along the
   * specified dimension.
   * 
   * @param centroid the centroid
   * @param objectIDs the set of objects ids
   * @param database the database holding the objects
   * @param dimension the dimension for which the average distance is computed
   * @return the average distance of the objects to the centroid along the
   *         specified dimension
   */
  private double avgDistance(V centroid, DBIDs objectIDs, Relation<V> database, int dimension) {
    double avg = 0;
    for(DBID objectID : objectIDs) {
      V o = database.get(objectID);
      avg += Math.abs(centroid.doubleValue(dimension) - o.doubleValue(dimension));
    }
    return avg / objectIDs.size();
  }

  /**
   * Computes the bad medoids, where the medoid of a cluster with less than the
   * specified threshold of objects is bad.
   * 
   * @param clusters the clusters
   * @param threshold the threshold
   * @return the bad medoids
   */
  private ModifiableDBIDs computeBadMedoids(Map<DBID, PROCLUSCluster> clusters, int threshold) {
    ModifiableDBIDs badMedoids = DBIDUtil.newHashSet();
    for(DBID m_i : clusters.keySet()) {
      PROCLUSCluster c_i = clusters.get(m_i);
      if(c_i.objectIDs.size() < threshold) {
        badMedoids.add(m_i);
      }
    }
    return badMedoids;
  }

  @Override
  public TypeInformation[] getInputTypeRestriction() {
    return TypeUtil.array(TypeUtil.NUMBER_VECTOR_FIELD);
  }

  @Override
  protected Logging getLogger() {
    return logger;
  }

  /**
   * Encapsulates the attributes of a cluster.
   * 
   * @apiviz.exclude
   */
  private class PROCLUSCluster {
    /**
     * The ids of the objects belonging to this cluster.
     */
    ModifiableDBIDs objectIDs;

    /**
     * The correlated dimensions of this cluster.
     */
    Set<Integer> dimensions;

    /**
     * The centroids of this cluster along each dimension.
     */
    V centroid;

    /**
     * Provides a new cluster with the specified parameters.
     * 
     * @param objectIDs the ids of the objects belonging to this cluster
     * @param dimensions the correlated dimensions of this cluster
     * @param centroid the centroid of this cluster
     */
    public PROCLUSCluster(ModifiableDBIDs objectIDs, Set<Integer> dimensions, V centroid) {
      this.objectIDs = objectIDs;
      this.dimensions = dimensions;
      this.centroid = centroid;
    }

    @Override
    public String toString() {
      StringBuffer result = new StringBuffer();
      result.append("Dimensions: [");
      boolean notFirst = false;
      for(Integer d : dimensions) {
        if(notFirst) {
          result.append(",");
        }
        else {
          notFirst = true;
        }
        result.append(d);
      }
      result.append("]");

      result.append("\nCentroid: ").append(centroid);
      return result.toString();
    }

    /**
     * Returns the correlated dimensions of this cluster as BitSet.
     * 
     * @return the correlated dimensions of this cluster as BitSet
     */
    public BitSet getDimensions() {
      BitSet result = new BitSet();
      for(int d : dimensions) {
        result.set(d - 1);
      }
      return result;
    }
  }

  /**
   * Parameterization class.
   * 
   * @author Erich Schubert
   * 
   * @apiviz.exclude
   */
  public static class Parameterizer<V extends NumberVector<V, ?>> extends AbstractProjectedClustering.Parameterizer {
    protected int m_i = -1;

    protected Long seed = null;

    @Override
    protected void makeOptions(Parameterization config) {
      super.makeOptions(config);

      configK(config);
      configKI(config);
      configL(config);

      IntParameter m_iP = new IntParameter(M_I_ID, 10);
      m_iP.addConstraint(new GreaterConstraint(0));
      if(config.grab(m_iP)) {
        m_i = m_iP.getValue();
      }

      LongParameter seedP = new LongParameter(SEED_ID, true);
      if(config.grab(seedP)) {
        seed = seedP.getValue();
      }
    }

    @Override
    protected PROCLUS<V> makeInstance() {
      return new PROCLUS<V>(k, k_i, l, m_i, seed);
    }
  }
}