summaryrefslogtreecommitdiff
path: root/src/de/lmu/ifi/dbs/elki/algorithm/outlier/spatial/CTLuMoranScatterplotOutlier.java
blob: 7b88ae662ad0f0c939aabedf59cf7cb7071cba04 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
package de.lmu.ifi.dbs.elki.algorithm.outlier.spatial;

/*
 This file is part of ELKI:
 Environment for Developing KDD-Applications Supported by Index-Structures

 Copyright (C) 2012
 Ludwig-Maximilians-Universität München
 Lehr- und Forschungseinheit für Datenbanksysteme
 ELKI Development Team

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

import de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.NeighborSetPredicate;
import de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.NeighborSetPredicate.Factory;
import de.lmu.ifi.dbs.elki.data.NumberVector;
import de.lmu.ifi.dbs.elki.data.type.TypeInformation;
import de.lmu.ifi.dbs.elki.data.type.TypeUtil;
import de.lmu.ifi.dbs.elki.data.type.VectorFieldTypeInformation;
import de.lmu.ifi.dbs.elki.database.datastore.DataStoreFactory;
import de.lmu.ifi.dbs.elki.database.datastore.DataStoreUtil;
import de.lmu.ifi.dbs.elki.database.datastore.WritableDoubleDataStore;
import de.lmu.ifi.dbs.elki.database.ids.DBID;
import de.lmu.ifi.dbs.elki.database.ids.DBIDIter;
import de.lmu.ifi.dbs.elki.database.relation.MaterializedRelation;
import de.lmu.ifi.dbs.elki.database.relation.Relation;
import de.lmu.ifi.dbs.elki.logging.Logging;
import de.lmu.ifi.dbs.elki.math.DoubleMinMax;
import de.lmu.ifi.dbs.elki.math.Mean;
import de.lmu.ifi.dbs.elki.math.MeanVariance;
import de.lmu.ifi.dbs.elki.result.outlier.BasicOutlierScoreMeta;
import de.lmu.ifi.dbs.elki.result.outlier.OutlierResult;
import de.lmu.ifi.dbs.elki.result.outlier.OutlierScoreMeta;
import de.lmu.ifi.dbs.elki.utilities.documentation.Description;
import de.lmu.ifi.dbs.elki.utilities.documentation.Reference;
import de.lmu.ifi.dbs.elki.utilities.documentation.Title;

/**
 * Moran scatterplot outliers, based on the standardized deviation from the
 * local and global means. In contrast to the definition given in the reference,
 * we use this as a ranking outlier detection by not applying the signedness test,
 * but by using the score (- localZ) * (Average localZ of Neighborhood) directly.
 * This allows us to differentiate a bit between stronger and weaker outliers.
 * 
 * <p>
 * Reference: <br>
 * S. Shekhar and C.-T. Lu and P. Zhang <br>
 * A Unified Approach to Detecting Spatial Outliers <br>
 * in GeoInformatica 7-2, 2003
 * 
 * <p>
 * Moran scatterplot is a plot of normalized attribute values against the
 * neighborhood average of normalized attribute values. Spatial Objects on the
 * upper left or lower right are Spatial Outliers.
 * 
 * @author Ahmed Hettab
 * 
 * @param <N> Neighborhood type
 */
@Title("Moran Scatterplot Outlier")
@Description("Spatial Outlier detection based on the standardized deviation from the local means.")
@Reference(authors = "S. Shekhar and C.-T. Lu and P. Zhang", title = "A Unified Approach to Detecting Spatial Outliers", booktitle = "GeoInformatica 7-2, 2003", url="http://dx.doi.org/10.1023/A:1023455925009")
public class CTLuMoranScatterplotOutlier<N> extends AbstractNeighborhoodOutlier<N> {
  /**
   * The logger for this class.
   */
  private static final Logging logger = Logging.getLogger(CTLuMoranScatterplotOutlier.class);

  /**
   * Constructor
   * 
   * @param npredf Neighborhood
   */
  public CTLuMoranScatterplotOutlier(Factory<N> npredf) {
    super(npredf);
  }

  /**
   * Main method
   * 
   * @param nrel Neighborhood relation
   * @param relation Data relation (1d!)
   * @return Outlier detection result
   */
  public OutlierResult run(Relation<N> nrel, Relation<? extends NumberVector<?, ?>> relation) {
    final NeighborSetPredicate npred = getNeighborSetPredicateFactory().instantiate(nrel);

    // Compute the global mean and variance
    MeanVariance globalmv = new MeanVariance();
    for(DBIDIter iditer = relation.iterDBIDs(); iditer.valid(); iditer.advance()) {
      DBID id  = iditer.getDBID();
      globalmv.put(relation.get(id).doubleValue(1));
    }

    DoubleMinMax minmax = new DoubleMinMax();
    WritableDoubleDataStore scores = DataStoreUtil.makeDoubleStorage(relation.getDBIDs(), DataStoreFactory.HINT_STATIC);

    // calculate normalized attribute values
    // calculate neighborhood average of normalized attribute values.
    for(DBIDIter iditer = relation.iterDBIDs(); iditer.valid(); iditer.advance()) {
      DBID id  = iditer.getDBID();
      // Compute global z score
      final double globalZ = (relation.get(id).doubleValue(1) - globalmv.getMean()) / globalmv.getNaiveStddev();
      // Compute local average z score
      Mean localm = new Mean();
      for(DBIDIter iter = npred.getNeighborDBIDs(id).iter(); iter.valid(); iter.advance()) {
        DBID n = iter.getDBID();
        if(id.equals(n)) {
          continue;
        }
        localm.put((relation.get(n).doubleValue(1) - globalmv.getMean()) / globalmv.getNaiveStddev());
      }
      // if neighors.size == 0
      final double localZ;
      if(localm.getCount() > 0) {
        localZ = localm.getMean();
      }
      else {
        // if s has no neighbors => Wzi = zi
        localZ = globalZ;
      }

      // compute score
      // Note: in the original moran scatterplot, any object with a score < 0 would be an outlier.
      final double score = Math.max(-globalZ * localZ, 0);
      minmax.put(score);
      scores.putDouble(id, score);
    }

    Relation<Double> scoreResult = new MaterializedRelation<Double>("MoranOutlier", "Moran Scatterplot Outlier", TypeUtil.DOUBLE, scores, relation.getDBIDs());
    OutlierScoreMeta scoreMeta = new BasicOutlierScoreMeta(minmax.getMin(), minmax.getMax(), Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY, 0);
    OutlierResult or = new OutlierResult(scoreMeta, scoreResult);
    or.addChildResult(npred);
    return or;
  }

  @Override
  public TypeInformation[] getInputTypeRestriction() {
    return TypeUtil.array(getNeighborSetPredicateFactory().getInputTypeRestriction(), VectorFieldTypeInformation.get(NumberVector.class, 1));
  }

  @Override
  protected Logging getLogger() {
    return logger;
  }

  /**
   * Parameterization class
   * 
   * @author Ahmed Hettab
   * 
   * @apiviz.exclude
   * 
   * @param <N> Neighborhood object type
   */
  public static class Parameterizer<N> extends AbstractNeighborhoodOutlier.Parameterizer<N> {
    @Override
    protected CTLuMoranScatterplotOutlier<N> makeInstance() {
      return new CTLuMoranScatterplotOutlier<N>(npredf);
    }
  }
}