summaryrefslogtreecommitdiff
path: root/src/de/lmu/ifi/dbs/elki/database/query/knn/LinearScanKNNQuery.java
blob: 29fa993137b48c719463b0f776e1fa92910a50af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
package de.lmu.ifi.dbs.elki.database.query.knn;

/*
 This file is part of ELKI:
 Environment for Developing KDD-Applications Supported by Index-Structures

 Copyright (C) 2012
 Ludwig-Maximilians-Universität München
 Lehr- und Forschungseinheit für Datenbanksysteme
 ELKI Development Team

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

import java.util.ArrayList;
import java.util.List;

import de.lmu.ifi.dbs.elki.database.ids.ArrayDBIDs;
import de.lmu.ifi.dbs.elki.database.ids.DBIDIter;
import de.lmu.ifi.dbs.elki.database.ids.DBIDRef;
import de.lmu.ifi.dbs.elki.database.query.LinearScanQuery;
import de.lmu.ifi.dbs.elki.database.query.distance.DistanceQuery;
import de.lmu.ifi.dbs.elki.database.query.distance.PrimitiveDistanceQuery;
import de.lmu.ifi.dbs.elki.distance.distanceresultlist.KNNHeap;
import de.lmu.ifi.dbs.elki.distance.distanceresultlist.KNNResult;
import de.lmu.ifi.dbs.elki.distance.distanceresultlist.KNNUtil;
import de.lmu.ifi.dbs.elki.distance.distancevalue.Distance;

/**
 * Instance of this query for a particular database.
 * 
 * @author Erich Schubert
 * 
 * @apiviz.landmark
 * @apiviz.has DistanceQuery
 */
public class LinearScanKNNQuery<O, D extends Distance<D>> extends AbstractDistanceKNNQuery<O, D> implements LinearScanQuery {
  /**
   * Constructor.
   * 
   * @param distanceQuery Distance function to use
   */
  public LinearScanKNNQuery(DistanceQuery<O, D> distanceQuery) {
    super(distanceQuery);
  }

  /**
   * Linear batch knn for arbitrary distance functions.
   * 
   * @param ids DBIDs to process
   * @param heaps Heaps to store the results in
   */
  private void linearScanBatchKNN(ArrayDBIDs ids, List<KNNHeap<D>> heaps) {
    // The distance is computed on database IDs
    for(DBIDIter iter = relation.getDBIDs().iter(); iter.valid(); iter.advance()) {
      int index = 0;
      for(DBIDIter iter2 = ids.iter(); iter2.valid(); iter2.advance()) {
        KNNHeap<D> heap = heaps.get(index);
        heap.add(distanceQuery.distance(iter2, iter), iter);
        index++;
      }
    }
  }

  @Override
  public KNNResult<D> getKNNForDBID(DBIDRef id, int k) {
    KNNHeap<D> heap = KNNUtil.newHeap(distanceQuery.getDistanceFactory(), k);
    D max = distanceQuery.getDistanceFactory().infiniteDistance();
    if(PrimitiveDistanceQuery.class.isInstance(distanceQuery)) {
      O obj = relation.get(id);
      for(DBIDIter iter = relation.getDBIDs().iter(); iter.valid(); iter.advance()) {
        final D dist = distanceQuery.distance(obj, relation.get(iter));
        if(max.compareTo(dist) > 0) {
          heap.add(dist, iter);
          if(heap.size() >= k) {
            max = heap.getKNNDistance();
          }
        }
      }
    }
    else {
      for(DBIDIter iter = relation.getDBIDs().iter(); iter.valid(); iter.advance()) {
        final D dist = distanceQuery.distance(id, iter);
        if(max.compareTo(dist) > 0) {
          heap.add(dist, iter);
          if(heap.size() >= k) {
            max = heap.getKNNDistance();
          }
        }
      }
    }
    return heap.toKNNList();
  }

  @Override
  public List<KNNResult<D>> getKNNForBulkDBIDs(ArrayDBIDs ids, int k) {
    final int size = ids.size();
    final List<KNNHeap<D>> heaps = new ArrayList<KNNHeap<D>>(size);
    for(int i = 0; i < size; i++) {
      heaps.add(KNNUtil.newHeap(distanceQuery.getDistanceFactory(), k));
    }
    linearScanBatchKNN(ids, heaps);
    // Serialize heaps
    List<KNNResult<D>> result = new ArrayList<KNNResult<D>>(size);
    for(KNNHeap<D> heap : heaps) {
      result.add(heap.toKNNList());
    }
    return result;
  }

  @Override
  public KNNResult<D> getKNNForObject(O obj, int k) {
    KNNHeap<D> heap = KNNUtil.newHeap(distanceQuery.getDistanceFactory(), k);
    for(DBIDIter iter = relation.getDBIDs().iter(); iter.valid(); iter.advance()) {
      heap.add(distanceQuery.distance(obj, iter), iter);
    }
    return heap.toKNNList();
  }
}