summaryrefslogtreecommitdiff
path: root/src/de/lmu/ifi/dbs/elki/index/tree/metrical/mtreevariants/mktrees/mkcop/MkCoPTreeNode.java
blob: dcaa7e059b2825ca0794af930e4f3c7adf20a14f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
package de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop;

/*
 This file is part of ELKI:
 Environment for Developing KDD-Applications Supported by Index-Structures

 Copyright (C) 2014
 Ludwig-Maximilians-Universität München
 Lehr- und Forschungseinheit für Datenbanksysteme
 ELKI Development Team

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

import de.lmu.ifi.dbs.elki.database.ids.DBID;
import de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.AbstractMTree;
import de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.AbstractMTreeNode;

/**
 * Represents a node in an MkCop-Tree.
 * 
 * @author Elke Achtert
 * 
 * @apiviz.has MkCoPEntry oneway - - contains
 * 
 * @param <O> object type
 */
class MkCoPTreeNode<O> extends AbstractMTreeNode<O, MkCoPTreeNode<O>, MkCoPEntry> {
  /**
   * Serial version UID
   */
  private static final long serialVersionUID = 1;

  /**
   * Empty constructor for Externalizable interface.
   */
  public MkCoPTreeNode() {
    // empty constructor
  }

  /**
   * Creates a MkCoPTreeNode object.
   * 
   * @param capacity the capacity (maximum number of entries plus 1 for
   *        overflow) of this node
   * @param isLeaf indicates whether this node is a leaf node
   */
  public MkCoPTreeNode(int capacity, boolean isLeaf) {
    super(capacity, isLeaf, MkCoPEntry.class);
  }

  /**
   * Determines and returns the conservative approximation for the knn distances
   * of this node as the maximum of the conservative approximations of all
   * entries.
   * 
   * @param k_max the maximum k parameter
   * @return the conservative approximation for the knn distances
   */
  protected ApproximationLine conservativeKnnDistanceApproximation(int k_max) {
    // determine k_0, y_1, y_kmax
    int k_0 = k_max;
    double y_1 = Double.NEGATIVE_INFINITY;
    double y_kmax = Double.NEGATIVE_INFINITY;

    for(int i = 0; i < getNumEntries(); i++) {
      MkCoPEntry entry = getEntry(i);
      ApproximationLine approx = entry.getConservativeKnnDistanceApproximation();
      k_0 = Math.min(approx.getK_0(), k_0);
    }

    for(int i = 0; i < getNumEntries(); i++) {
      MkCoPEntry entry = getEntry(i);
      ApproximationLine approx = entry.getConservativeKnnDistanceApproximation();
      double entry_y_1 = approx.getValueAt(k_0);
      double entry_y_kmax = approx.getValueAt(k_max);
      if(!Double.isInfinite(entry_y_1)) {
        y_1 = Math.max(entry_y_1, y_1);
      }

      if(!Double.isInfinite(entry_y_kmax)) {
        y_kmax = Math.max(entry_y_kmax, y_kmax);
      }
    }

    // determine m and t
    double m = (y_kmax - y_1) / (Math.log(k_max) - Math.log(k_0));
    double t = y_1 - m * Math.log(k_0);

    return new ApproximationLine(k_0, m, t);
  }

  /**
   * Determines and returns the progressive approximation for the knn distances
   * of this node as the maximum of the progressive approximations of all
   * entries.
   * 
   * @param k_max the maximum k parameter
   * @return the conservative approximation for the knn distances
   */
  protected ApproximationLine progressiveKnnDistanceApproximation(int k_max) {
    if(!isLeaf()) {
      throw new UnsupportedOperationException("Progressive KNN-distance approximation " + "is only vailable in leaf nodes!");
    }

    // determine k_0, y_1, y_kmax
    int k_0 = 0;
    double y_1 = Double.POSITIVE_INFINITY;
    double y_kmax = Double.POSITIVE_INFINITY;

    for(int i = 0; i < getNumEntries(); i++) {
      MkCoPLeafEntry entry = (MkCoPLeafEntry) getEntry(i);
      ApproximationLine approx = entry.getProgressiveKnnDistanceApproximation();
      k_0 = Math.max(approx.getK_0(), k_0);
    }

    for(int i = 0; i < getNumEntries(); i++) {
      MkCoPLeafEntry entry = (MkCoPLeafEntry) getEntry(i);
      ApproximationLine approx = entry.getProgressiveKnnDistanceApproximation();
      y_1 = Math.min(approx.getValueAt(k_0), y_1);
      y_kmax = Math.min(approx.getValueAt(k_max), y_kmax);
    }

    // determine m and t
    double m = (y_kmax - y_1) / (Math.log(k_max) - Math.log(k_0));
    double t = y_1 - m * Math.log(k_0);

    return new ApproximationLine(k_0, m, t);
  }

  @Override
  public void adjustEntry(MkCoPEntry entry, DBID routingObjectID, double parentDistance, AbstractMTree<O, MkCoPTreeNode<O>, MkCoPEntry, ?> mTree) {
    super.adjustEntry(entry, routingObjectID, parentDistance, mTree);
    // adjust conservative distance approximation
    // int k_max = ((MkCoPTree<O,D>) mTree).getK_max();
    // entry.setConservativeKnnDistanceApproximation(conservativeKnnDistanceApproximation(k_max));
  }

  @Override
  protected void integrityCheckParameters(MkCoPEntry parentEntry, MkCoPTreeNode<O> parent, int index, AbstractMTree<O, MkCoPTreeNode<O>, MkCoPEntry, ?> mTree) {
    super.integrityCheckParameters(parentEntry, parent, index, mTree);
    // test conservative approximation
    MkCoPEntry entry = parent.getEntry(index);
    int k_max = ((MkCoPTree<O>) mTree).getK_max();
    ApproximationLine approx = conservativeKnnDistanceApproximation(k_max);
    if(!entry.getConservativeKnnDistanceApproximation().equals(approx)) {
      String soll = approx.toString();
      String ist = entry.getConservativeKnnDistanceApproximation().toString();
      throw new RuntimeException("Wrong conservative approximation in node " + parent.getPageID() + " at index " + index + " (child " + entry + ")" + "\nsoll: " + soll + ",\n ist: " + ist);
    }
  }
}