summaryrefslogtreecommitdiff
path: root/src/de/lmu/ifi/dbs/elki/math/linearalgebra/fitting/LevenbergMarquardtMethod.java
blob: 1f2aa913676915ca08799969daf1ebfc74c8caeb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
package de.lmu.ifi.dbs.elki.math.linearalgebra.fitting;

/*
 This file is part of ELKI:
 Environment for Developing KDD-Applications Supported by Index-Structures

 Copyright (C) 2013
 Ludwig-Maximilians-Universität München
 Lehr- und Forschungseinheit für Datenbanksysteme
 ELKI Development Team

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

import de.lmu.ifi.dbs.elki.math.linearalgebra.LinearEquationSystem;

/**
 * Function parameter fitting using Levenberg-Marquardt method.
 * 
 * The Levenberg-Marquardt Algorithm (LMA) is a combination of the Gauss-Newton
 * Algorithm (GNA) and the method of steepest descent. As such it usually gives
 * more stable results and better convergence.
 * 
 * Implemented loosely based on the book: <br />
 * Numerical Recipes In C: The Art Of Scientific Computing <br/>
 * ISBN 0-521-43108-5 <br/>
 * Press, W.H. and Teukolsky, S.A. and Vetterling, W.T. and Flannery, B.P. <br/>
 * Cambridge University Press, Cambridge, Mass, 1992
 * 
 * Due to their license, we cannot use their code, but we have to implement the
 * mathematics ourselves. We hope the loss in precision isn't too big.
 * 
 * TODO: Replace implementation by one based on <br/>
 * M.I.A. Lourakis levmar:<br />
 * Levenberg-Marquardt nonlinear least squares algorithms in C/C++
 * 
 * Which supposedly offers increased robustness.
 * 
 * @author Erich Schubert
 * 
 * @apiviz.has FittingFunction
 * @apiviz.uses FittingFunctionResult oneway - - «create»
 */
public class LevenbergMarquardtMethod {
  /**
   * Function to fit to
   */
  public FittingFunction func;

  /**
   * Data to fit the function to
   */
  private double[] x;

  private double[] y;

  private double[] s;

  /**
   * Number of parameters
   */
  private int numparams;

  /**
   * Parameters to use in fitting
   */
  private double[] params;

  /**
   * Chi-Squared information for parameters
   */
  private double chisq;

  /**
   * Number of parameters to fit
   */
  private int numfit;

  /**
   * Which parameters to fit
   */
  private boolean[] dofit;

  /**
   * Working space for covariance matrix
   */
  private double[][] covmat;

  /**
   * Working space for alphas
   */
  private double[][] alpha;

  /**
   * Lambda (refinement step size)
   */
  private double lambda;

  /**
   * More working buffers
   */
  private double[] paramstry;

  private double[] beta;

  private double[] deltaparams;

  /**
   * Maximum number of iterations in run()
   */
  public int maxruns = 1000;

  /**
   * Maximum number of small improvements (stopping condition)
   */
  public int maxsmall = 3;

  /**
   * "Small value" condition for stopping
   */
  public double small = 0.01;

  /**
   * Function fitting using Levenberg-Marquardt Method.
   * 
   * @param func Function to fit to
   * @param x Measurement points
   * @param y Actual function values
   * @param s Confidence / Variance in measurement data
   * @param params Initial parameters
   * @param dofit Flags on which parameters to optimize
   */
  public LevenbergMarquardtMethod(FittingFunction func, double params[], boolean dofit[], double[] x, double[] y, double[] s) {
    assert x.length == y.length;
    assert x.length == s.length;
    assert params.length == dofit.length;

    // function to optimize for
    this.func = func;

    // Store parameters
    this.x = x;
    this.y = y;
    this.s = s;
    this.params = params;
    this.dofit = dofit;

    // keep number of parameters ready
    this.numparams = this.params.length;

    // count how many parameters to fit
    numfit = 0;
    for(int i = 0; i < numparams; i++) {
      if(dofit[i]) {
        numfit++;
      }
    }

    assert (numfit > 0);

    // initialize working spaces
    covmat = new double[this.numfit][this.numfit];
    alpha = new double[this.numfit][this.numfit];

    // set lambda to initial value
    lambda = 0.001;

    // setup scratch spaces
    paramstry = params.clone();
    beta = new double[this.numfit];
    deltaparams = new double[numparams];

    chisq = simulateParameters(params);
  }

  /**
   * Compute new chisquared error
   * 
   * This function also modifies the alpha and beta matrixes!
   * 
   * @param curparams Parameters to use in computation.
   * @return new chi squared
   */
  private double simulateParameters(double[] curparams) {
    // Initialize alpha, beta
    for(int i = 0; i < numfit; i++) {
      for(int j = 0; j < numfit; j++) {
        alpha[i][j] = 0.0;
      }
    }
    for(int i = 0; i < numfit; i++) {
      beta[i] = 0.0;
    }

    double newchisq = 0.0;

    // Simulation loop over all data
    for(int di = 0; di < x.length; di++) {
      FittingFunctionResult res = func.eval(x[di], curparams);
      // compute inverse squared standard deviation of the point (confidence?)
      double sigma2inv = 1.0 / (s[di] * s[di]);
      double deltay = y[di] - res.y;
      // i2 and j2 are the indices that only count the params with dofit true!
      int i2 = 0;
      for(int i = 0; i < numfit; i++) {
        if(dofit[i]) {
          double wt = res.gradients[i] * sigma2inv;
          int j2 = 0;
          // fill only half of the matrix, use symmetry below to complete the
          // remainder.
          for(int j = 0; j <= i; j++) {
            if(dofit[j]) {
              alpha[i2][j2] += wt * res.gradients[j];
              j2++;
            }
          }
          beta[i2] = beta[i2] + deltay * wt;
          i2++;
        }
      }
      newchisq = newchisq + deltay * deltay * sigma2inv;
    }
    // fill symmetric side of matrix
    for(int i = 1; i < numfit; i++) {
      for(int j = i + 1; j < numfit; j++) {
        alpha[i][j] = alpha[j][i];
      }
    }

    return newchisq;
  }

  /**
   * Perform an iteration of the approximation loop.
   */
  public void iterate() {
    // build covmat out of fitting matrix by multiplying diagonal elements with
    // 1+lambda
    for(int i = 0; i < numfit; i++) {
      System.arraycopy(alpha[i], 0, covmat[i], 0, numfit);
      covmat[i][i] *= (1.0 + lambda);
    }
    // System.out.println("Chisq: " + chisq);
    // System.out.println("Lambda: " + lambda);
    // System.out.print("beta: ");
    // for (double d : beta)
    // System.out.print(d + " ");
    // System.out.println();
    // Solve the equation system (Gauss-Jordan)
    LinearEquationSystem ls = new LinearEquationSystem(covmat, beta);
    ls.solveByTotalPivotSearch();
    // update covmat with the inverse
    covmat = ls.getCoefficents();
    // and deltaparams with the solution vector
    deltaparams = ls.getRHS();
    // deltaparams = beta;
    // System.out.print("deltaparams: ");
    // for (double d : deltaparams)
    // System.out.print(d + " ");
    // System.out.println();
    int i2 = 0;
    for(int i = 0; i < numparams; i++) {
      if(dofit[i]) {
        paramstry[i] = params[i] + deltaparams[i2];
        i2++;
      }
    }
    double newchisq = simulateParameters(paramstry);
    // have the results improved?
    if(newchisq < chisq) {
      // TODO: Do we need a larger limit than MIN_NORMAL?
      if(lambda * 0.1 > Double.MIN_NORMAL) {
        lambda = lambda * 0.1;
      }
      chisq = newchisq;
      // keep modified covmat as new alpha matrix
      // and da as new beta
      for(int i = 0; i < numfit; i++) {
        System.arraycopy(covmat[i], 0, alpha[i], 0, numfit);
        beta[i] = deltaparams[i];
      }
      System.arraycopy(paramstry, 0, params, 0, numparams);
    }
    else {
      // TODO: Do we need a larger limit than MAX_VALUE?
      // Does it ever make sense to go as far up?
      // Anyway, this should prevent overflows.
      if(lambda * 10 < Double.MAX_VALUE) {
        lambda = lambda * 10;
      }
    }
  }

  /**
   * Get the final covariance matrix.
   * 
   * Parameters that were not to be optimized are filled with zeros.
   * 
   * @return covariance matrix for all parameters
   */
  public double[][] getCovmat() {
    // Since we worked only on params with dofit=true, we need to expand the
    // matrix to cover all
    // parameters.
    double[][] fullcov = new double[numparams][numparams];
    int i2 = 0;
    for(int i = 0; i < numparams; i++) {
      int j2 = 0;
      for(int j = 0; j < numparams; j++) {
        if(dofit[i] && dofit[j]) {
          fullcov[i][j] = covmat[i2][j2];
        }
        else {
          fullcov[i][j] = 0.0;
        }
        if(dofit[j]) {
          j2++;
        }
      }
      if(dofit[i]) {
        i2++;
      }
    }
    return fullcov;
  }

  /**
   * Get current parameters.
   * 
   * @return parameters
   */
  public double[] getParams() {
    return params;
  }

  /**
   * Get current ChiSquared (squared error sum)
   * 
   * @return error measure
   */
  public double getChiSq() {
    return chisq;
  }

  /**
   * Iterate until convergence, at most 100 times.
   */
  public void run() {
    int maxruns = this.maxruns;
    int maxsmall = this.maxsmall;
    while(maxruns > 0) {
      double oldchi = getChiSq();
      iterate();
      --maxruns;
      double newchi = getChiSq();
      // stop condition: only a small improvement in Chi.
      double deltachi = newchi - oldchi;
      if(deltachi < 0 && deltachi > -small) {
        --maxsmall;
        if(maxsmall < 0) {
          break;
        }
      }
    }
  }
}