summaryrefslogtreecommitdiff
path: root/src/tutorial/clustering/SameSizeKMeansAlgorithm.java
blob: ad57885e27b7566015f29a604ab105c08c798311 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
package tutorial.clustering;

/*
 This file is part of ELKI:
 Environment for Developing KDD-Applications Supported by Index-Structures

 Copyright (C) 2014
 Ludwig-Maximilians-Universität München
 Lehr- und Forschungseinheit für Datenbanksysteme
 ELKI Development Team

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.List;

import de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.AbstractKMeans;
import de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.initialization.KMeansInitialization;
import de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.initialization.KMeansPlusPlusInitialMeans;
import de.lmu.ifi.dbs.elki.data.Cluster;
import de.lmu.ifi.dbs.elki.data.Clustering;
import de.lmu.ifi.dbs.elki.data.NumberVector;
import de.lmu.ifi.dbs.elki.data.model.MeanModel;
import de.lmu.ifi.dbs.elki.database.Database;
import de.lmu.ifi.dbs.elki.database.datastore.DataStoreFactory;
import de.lmu.ifi.dbs.elki.database.datastore.DataStoreUtil;
import de.lmu.ifi.dbs.elki.database.datastore.WritableDataStore;
import de.lmu.ifi.dbs.elki.database.ids.ArrayModifiableDBIDs;
import de.lmu.ifi.dbs.elki.database.ids.DBIDArrayIter;
import de.lmu.ifi.dbs.elki.database.ids.DBIDIter;
import de.lmu.ifi.dbs.elki.database.ids.DBIDMIter;
import de.lmu.ifi.dbs.elki.database.ids.DBIDRef;
import de.lmu.ifi.dbs.elki.database.ids.DBIDUtil;
import de.lmu.ifi.dbs.elki.database.ids.DBIDs;
import de.lmu.ifi.dbs.elki.database.ids.ModifiableDBIDs;
import de.lmu.ifi.dbs.elki.database.relation.Relation;
import de.lmu.ifi.dbs.elki.distance.distancefunction.PrimitiveDistanceFunction;
import de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.EuclideanDistanceFunction;
import de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.SquaredEuclideanDistanceFunction;
import de.lmu.ifi.dbs.elki.logging.Logging;
import de.lmu.ifi.dbs.elki.math.linearalgebra.Vector;
import de.lmu.ifi.dbs.elki.utilities.datastructures.arrays.IntegerArrayQuickSort;
import de.lmu.ifi.dbs.elki.utilities.datastructures.arrays.IntegerComparator;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizer;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.constraints.CommonConstraints;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.Parameterization;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.IntParameter;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.ObjectParameter;

/**
 * K-means variation that produces equally sized clusters.
 * 
 * Note that this is a rather obvious variation, and one cannot expect very good
 * results from this algorithm. K-means already is quite primitive, and putting
 * in the size constraint will likely not make the results much better (in
 * particular, it will even less be able to make sense of outliers!)
 * 
 * There is no reference for this algorithm. If you want to cite it, please cite
 * the latest ELKI release as given on the ELKI web page:
 * http://elki.dbs.ifi.lmu.de/wiki/Releases
 * 
 * @author Erich Schubert
 * 
 * @param <V> Vector type
 */
public class SameSizeKMeansAlgorithm<V extends NumberVector> extends AbstractKMeans<V, MeanModel> {
  /**
   * Class logger
   */
  private static final Logging LOG = Logging.getLogger(SameSizeKMeansAlgorithm.class);

  /**
   * Constructor.
   * 
   * @param distanceFunction Distance function
   * @param k K parameter
   * @param maxiter Maximum number of iterations
   * @param initializer
   */
  public SameSizeKMeansAlgorithm(PrimitiveDistanceFunction<? super NumberVector> distanceFunction, int k, int maxiter, KMeansInitialization<? super V> initializer) {
    super(distanceFunction, k, maxiter, initializer);
  }

  /**
   * Run k-means with cluster size constraints.
   * 
   * @param database Database
   * @param relation relation to use
   * @return result
   */
  @Override
  public Clustering<MeanModel> run(Database database, Relation<V> relation) {
    // Database objects to process
    final DBIDs ids = relation.getDBIDs();
    // Choose initial means
    List<Vector> means = initializer.chooseInitialMeans(database, relation, k, getDistanceFunction(), Vector.FACTORY);
    // Setup cluster assignment store
    List<ModifiableDBIDs> clusters = new ArrayList<>();
    for(int i = 0; i < k; i++) {
      clusters.add(DBIDUtil.newHashSet(relation.size() / k + 2));
    }

    // Meta data storage
    final WritableDataStore<Meta> metas = initializeMeta(relation, means);
    // Perform the initial assignment
    ArrayModifiableDBIDs tids = initialAssignment(clusters, metas, ids);
    // Recompute the means after the initial assignment
    means = means(clusters, means, relation);
    // Refine the result via k-means like iterations
    means = refineResult(relation, means, clusters, metas, tids);

    // Wrap result
    Clustering<MeanModel> result = new Clustering<>("k-Means Samesize Clustering", "kmeans-samesize-clustering");
    for(int i = 0; i < clusters.size(); i++) {
      Vector mean = means.get(i).getColumnVector();
      result.addToplevelCluster(new Cluster<>(clusters.get(i), new MeanModel(mean)));
    }
    return result;
  }

  /**
   * Initialize the metadata storage.
   * 
   * @param relation Relation to process
   * @param means Mean vectors
   * @return Initialized storage
   */
  protected WritableDataStore<Meta> initializeMeta(Relation<V> relation, List<? extends NumberVector> means) {
    PrimitiveDistanceFunction<? super NumberVector> df = getDistanceFunction();
    // The actual storage
    final WritableDataStore<Meta> metas = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_TEMP, Meta.class);
    // Build the metadata, track the two nearest cluster centers.
    for(DBIDIter id = relation.iterDBIDs(); id.valid(); id.advance()) {
      Meta c = new Meta(k);
      V fv = relation.get(id);
      for(int i = 0; i < k; i++) {
        c.dists[i] = df.distance(fv, means.get(i));
        if(i > 0) {
          if(c.dists[i] < c.dists[c.primary]) {
            c.primary = i;
          }
          else if(c.dists[i] > c.dists[c.secondary]) {
            c.secondary = i;
          }
        }
      }
      metas.put(id, c);
    }
    return metas;
  }

  protected ArrayModifiableDBIDs initialAssignment(List<ModifiableDBIDs> clusters, final WritableDataStore<Meta> metas, DBIDs ids) {
    // Build a sorted list of objects, by descending distance delta
    ArrayModifiableDBIDs tids = DBIDUtil.newArray(ids);
    // Our desired cluster size:
    final int maxsize = (tids.size() + k - 1) / k; // rounded up
    // Comparator: sort by largest benefit of assigning to preferred cluster.
    final Comparator<DBIDRef> comp = new Comparator<DBIDRef>() {
      @Override
      public int compare(DBIDRef o1, DBIDRef o2) {
        Meta c1 = metas.get(o1), c2 = metas.get(o2);
        return -Double.compare(c1.priority(), c2.priority());
      }
    };
    // We will use this iterator below. It support seeking!
    DBIDArrayIter id = tids.iter();

    // Initialization phase:
    for(int start = 0; start < tids.size();) {
      tids.sort(start, tids.size(), comp);
      for(id.seek(start); id.valid();) {
        Meta c = metas.get(id);
        // Assigning to best cluster - which cannot be full yet!
        ModifiableDBIDs cluster = clusters.get(c.primary);
        cluster.add(id);
        start++;
        id.advance();
        // Now the cluster may have become completely filled:
        if(cluster.size() == maxsize) {
          final int full = c.primary;
          // Refresh the not yet assigned objects where necessary:
          for(; id.valid(); id.advance()) {
            Meta ca = metas.get(id);
            if(ca.primary == full) {
              // Update the best index:
              for(int i = 0; i < k; i++) {
                if(i == full || clusters.get(i).size() >= maxsize) {
                  continue;
                }
                if(ca.primary == full || ca.dists[i] < ca.dists[ca.primary]) {
                  ca.primary = i;
                }
              }
              metas.put(id, ca); // Changed.
            }
          }
          // The next iteration will perform the sorting!
          break; // not really necessary - iterator is at end anyway.
        }
      }
      // Note: we expect Candidate.a == cluster the object is assigned to!
    }
    return tids;
  }

  /**
   * Compute the distances of each object to all means. Update
   * {@link Meta#secondary} to point to the best cluster number except the
   * current cluster assignment
   * 
   * @param relation Data relation
   * @param means Means
   * @param metas Metadata storage
   * @param df Distance function
   */
  protected void updateDistances(Relation<V> relation, List<Vector> means, final WritableDataStore<Meta> metas, PrimitiveDistanceFunction<? super NumberVector> df) {
    for(DBIDIter id = relation.iterDBIDs(); id.valid(); id.advance()) {
      Meta c = metas.get(id);
      V fv = relation.get(id);
      // Update distances to means.
      c.secondary = -1;
      for(int i = 0; i < k; i++) {
        c.dists[i] = df.distance(fv, means.get(i));
        if(c.primary != i) {
          if(c.secondary < 0 || c.dists[i] < c.dists[c.secondary]) {
            c.secondary = i;
          }
        }
      }
      metas.put(id, c); // Changed.
    }
  }

  /**
   * Perform k-means style iterations to improve the clustering result.
   * 
   * @param relation Data relation
   * @param means Means list
   * @param clusters Cluster list
   * @param metas Metadata storage
   * @param tids DBIDs array
   * @return final means
   */
  protected List<Vector> refineResult(Relation<V> relation, List<Vector> means, List<ModifiableDBIDs> clusters, final WritableDataStore<Meta> metas, ArrayModifiableDBIDs tids) {
    // This is a safe cast - see constructor.
    PrimitiveDistanceFunction<? super NumberVector> df = getDistanceFunction();
    // Our desired cluster size:
    final int minsize = tids.size() / k; // rounded down
    final int maxsize = (tids.size() + k - 1) / k; // rounded up

    // Comparator: sort by largest gain by transfer
    final Comparator<DBIDRef> comp = new Comparator<DBIDRef>() {
      @Override
      public int compare(DBIDRef o1, DBIDRef o2) {
        Meta c1 = metas.get(o1), c2 = metas.get(o2);
        return Double.compare(c1.priority(), c2.priority());
      }
    };
    // List for sorting cluster preferences
    int[] preferences = new int[k];
    for(int i = 0; i < k; i++) {
      preferences[i] = i;
    }
    // Comparator for this list.
    final PreferenceComparator pcomp = new PreferenceComparator();

    // Initialize transfer lists:
    ArrayModifiableDBIDs[] transfers = new ArrayModifiableDBIDs[k];
    for(int i = 0; i < k; i++) {
      transfers[i] = DBIDUtil.newArray();
    }

    for(int iter = 0; maxiter <= 0 || iter < maxiter; iter++) {
      updateDistances(relation, means, metas, df);
      tids.sort(comp);
      int active = 0; // Track if anything has changed
      for(DBIDIter id = tids.iter(); id.valid(); id.advance()) {
        Meta c = metas.get(id);
        ModifiableDBIDs source = clusters.get(c.primary);
        IntegerArrayQuickSort.sort(preferences, pcomp.select(c));
        boolean transferred = false;
        for(int i : preferences) {
          if(i == c.primary) {
            continue; // Cannot transfer to the same cluster!
          }
          ModifiableDBIDs dest = clusters.get(i);
          // Can we pair this transfer?
          for(DBIDMIter other = transfers[i].iter(); other.valid(); other.advance()) {
            Meta c2 = metas.get(other);
            if(c.gain(i) + c2.gain(c.primary) > 0) {
              transfer(metas, c2, dest, source, other, c.primary);
              transfer(metas, c, source, dest, id, i);
              active += 2;
              transferred = true;
              other.remove(); // last, as this invalides the reference!
              break;
            }
          }
          // If cluster sizes allow, move a single object.
          if(c.gain(i) > 0 && (dest.size() < maxsize && source.size() > minsize)) {
            transfer(metas, c, source, dest, id, i);
            active += 1;
            transferred = true;
            break;
          }
        }
        // If the object would prefer a different cluster, put in outgoing
        // transfer list.
        if(!transferred && (c.dists[c.primary] > c.dists[c.secondary])) {
          transfers[c.primary].add(id);
        }
      }
      // TODO: try to get more transfers out of the transfer lists done by
      // considering more than one object?
      int pending = 0;
      // Clear transfer lists for next iteration.
      for(int i = 0; i < k; i++) {
        pending += transfers[i].size();
        transfers[i].clear();
      }
      if(LOG.isDebuggingFine()) {
        LOG.debugFine("Performed " + active + " transfers in iteration " + iter + " skipped " + pending);
      }
      if(active <= 0) {
        break;
      }
      // Recompute means after reassignment
      means = means(clusters, means, relation);
    }
    return means;
  }

  /**
   * Transfer a single element from one cluster to another.
   * 
   * @param metas Meta storage
   * @param meta Meta of current object
   * @param src Source cluster
   * @param dst Destination cluster
   * @param id Object ID
   * @param dstnum Destination cluster number
   */
  protected void transfer(final WritableDataStore<Meta> metas, Meta meta, ModifiableDBIDs src, ModifiableDBIDs dst, DBIDRef id, Integer dstnum) {
    src.remove(id);
    dst.add(id);
    meta.primary = dstnum;
    metas.put(id, meta); // Make sure the storage is up to date.
  }

  /**
   * Object metadata.
   * 
   * @author Erich Schubert
   * 
   * @apiviz.exclude
   */
  private class Meta {
    /**
     * Distance to the cluster centers.
     */
    double[] dists;

    /**
     * Indexes: primary assignment (current or best), secondary assignment
     * (second best or worst). The actual meanin changes from initialization to
     * iteration phase!
     */
    int primary, secondary;

    /**
     * Constructor.
     * 
     * @param k
     */
    protected Meta(int k) {
      dists = new double[k];
      Arrays.fill(dists, Double.POSITIVE_INFINITY);
      primary = 0;
      secondary = 0;
    }

    /**
     * Priority / badness: difference between best and worst. (Assuming that
     * "secondary" is the worst).
     * 
     * @return Priority
     */
    protected double priority() {
      return dists[secondary] - dists[primary];
    }

    /**
     * Gain from switching to cluster i.
     * 
     * @param i Target cluster
     * @return Gain
     */
    protected double gain(int i) {
      return dists[primary] - dists[i];
    }
  }

  /**
   * Sort a list of integers (= cluster numbers) by the distances.
   * 
   * @author Erich Schubert
   * 
   * @apiviz.exclude
   */
  public class PreferenceComparator implements IntegerComparator {
    /**
     * Meta to use for comparison.
     */
    Meta c = null;

    @Override
    public int compare(int o1, int o2) {
      return Double.compare(c.dists[o1], c.dists[o2]);
    }

    /**
     * Set the meta to sort by
     * 
     * @param c Meta to sort by
     * @return The comparator
     */
    public IntegerComparator select(Meta c) {
      this.c = c;
      return this;
    }
  }

  @Override
  protected Logging getLogger() {
    return LOG;
  }

  /**
   * Parameterization class.
   * 
   * @author Erich Schubert
   * 
   * @apiviz.exclude
   */
  public static class Parameterizer<V extends NumberVector> extends AbstractParameterizer {
    /**
     * k Parameter.
     */
    protected int k;

    /**
     * Number of iterations.
     */
    protected int maxiter = -1;

    /**
     * Initialization method.
     */
    protected KMeansInitialization<V> initializer;

    /**
     * Distance function
     */
    protected PrimitiveDistanceFunction<? super NumberVector> distanceFunction;

    @Override
    protected void makeOptions(Parameterization config) {
      super.makeOptions(config);
      ObjectParameter<PrimitiveDistanceFunction<? super NumberVector>> distanceFunctionP = makeParameterDistanceFunction(SquaredEuclideanDistanceFunction.class, PrimitiveDistanceFunction.class);
      if(config.grab(distanceFunctionP)) {
        distanceFunction = distanceFunctionP.instantiateClass(config);
        if(!(distanceFunction instanceof EuclideanDistanceFunction) && !(distanceFunction instanceof SquaredEuclideanDistanceFunction)) {
          LOG.warning("k-means optimizes the sum of squares - it should be used with squared euclidean distance and may stop converging otherwise!");
        }
      }

      IntParameter kP = new IntParameter(K_ID);
      kP.addConstraint(CommonConstraints.GREATER_THAN_ONE_INT);
      if(config.grab(kP)) {
        k = kP.getValue();
      }

      ObjectParameter<KMeansInitialization<V>> initialP = new ObjectParameter<>(INIT_ID, KMeansInitialization.class, KMeansPlusPlusInitialMeans.class);
      if(config.grab(initialP)) {
        initializer = initialP.instantiateClass(config);
      }

      IntParameter maxiterP = new IntParameter(MAXITER_ID, -1);
      maxiterP.addConstraint(CommonConstraints.GREATER_EQUAL_MINUSONE_INT);
      if(config.grab(maxiterP)) {
        maxiter = maxiterP.intValue();
      }
    }

    @Override
    protected SameSizeKMeansAlgorithm<V> makeInstance() {
      return new SameSizeKMeansAlgorithm<>(distanceFunction, k, maxiter, initializer);
    }
  }
}