summaryrefslogtreecommitdiff
path: root/scripts/lib/fontbuild/italics.py
diff options
context:
space:
mode:
Diffstat (limited to 'scripts/lib/fontbuild/italics.py')
-rw-r--r--scripts/lib/fontbuild/italics.py267
1 files changed, 267 insertions, 0 deletions
diff --git a/scripts/lib/fontbuild/italics.py b/scripts/lib/fontbuild/italics.py
new file mode 100644
index 0000000..72178b4
--- /dev/null
+++ b/scripts/lib/fontbuild/italics.py
@@ -0,0 +1,267 @@
+from fontTools.misc.transform import Transform
+from robofab.world import CurrentFont
+from robofab.world import RFont
+from time import clock
+import numpy as np
+import math
+from alignpoints import alignCorners
+
+def italicizeGlyph(g, angle=10, stemWidth=185):
+ f = CurrentFont()
+ glyph = f[g.name]
+ slope = np.tanh([math.pi * angle / 180])
+
+ # determine how far on the x axis the glyph should slide
+ # to compensate for the slant. -600 is a magic number
+ # that assumes a 2048 unit em square
+ MEAN_YCENTER = -600
+ m = Transform(1, 0, slope, 1, 0, 0)
+ xoffset, junk = m.transformPoint((0, MEAN_YCENTER))
+ m = Transform(.97, 0, slope, 1, xoffset, 0)
+
+ if len(glyph) > 0:
+ g2 = italicize(f[g.name], angle, xoffset=xoffset, stemWidth=stemWidth)
+ f.insertGlyph(g2, g.name)
+
+ transformFLGlyphMembers(f[g.name], m)
+
+
+def italicize(glyph, angle=12, stemWidth=180, xoffset=-50):
+ CURVE_CORRECTION_WEIGHT = .03
+ CORNER_WEIGHT = 10
+ ga,subsegments = segmentGlyph(glyph,25)
+ va, e = glyphToMesh(ga)
+ n = len(va)
+ grad = mapEdges(lambda a,(p,n): normalize(p-a), va, e)
+ cornerWeights = mapEdges(lambda a,(p,n): normalize(p-a).dot(normalize(a-n)), grad, e)[:,0].reshape((-1,1))
+ smooth = np.ones((n,1)) * CURVE_CORRECTION_WEIGHT
+
+ controlPoints = findControlPointsInMesh(glyph, va, subsegments)
+ smooth[controlPoints > 0] = 1
+ smooth[cornerWeights < .6] = CORNER_WEIGHT
+ # smooth[cornerWeights >= .9999] = 1
+
+ out = va.copy()
+ hascurves = False
+ for c in glyph.contours:
+ for s in c.segments:
+ if s.type == "curve":
+ hascurves = True
+ break
+ if hascurves:
+ break
+ if stemWidth > 100:
+ outCorrected = skewMesh(recompose(skewMesh(out, angle * 1.6), grad, e, smooth=smooth), -angle * 1.6)
+ # out = copyMeshDetails(va, out, e, 6)
+ else:
+ outCorrected = out
+ normals = edgeNormals(out, e)
+ center = va + normals * stemWidth * .4
+ if stemWidth > 130:
+ center[:, 0] = va[:, 0] * .7 + center[:,0] * .3
+ centerSkew = skewMesh(center.dot(np.array([[.97,0],[0,1]])), angle * .9)
+ out = outCorrected + (centerSkew - center)
+ out[:,1] = outCorrected[:,1]
+
+ smooth = np.ones((n,1)) * .1
+ out = alignCorners(glyph, out, subsegments)
+ out = copyMeshDetails(skewMesh(va, angle), out, e, 7, smooth=smooth)
+ # grad = mapEdges(lambda a,(p,n): normalize(p-a), skewMesh(outCorrected, angle*.9), e)
+ # out = recompose(out, grad, e, smooth=smooth)
+
+ out = skewMesh(out, angle * .1)
+ out[:,0] += xoffset
+ # out[:,1] = outCorrected[:,1]
+ out[va[:,1] == 0, 1] = 0
+ gOut = meshToGlyph(out, ga)
+ # gOut.width *= .97
+ # gOut.width += 10
+ # return gOut
+ return fitGlyph(glyph, gOut, subsegments)
+
+def condenseGlyph(glyph, scale=.8, stemWidth=185):
+ ga, subsegments = segmentGlyph(glyph, 25)
+ va, e = glyphToMesh(ga)
+ n = len(va)
+
+ normals = edgeNormals(va,e)
+ cn = va.dot(np.array([[scale, 0],[0,1]]))
+ grad = mapEdges(lambda a,(p,n): normalize(p-a), cn, e)
+ # ograd = mapEdges(lambda a,(p,n): normalize(p-a), va, e)
+
+ cn[:,0] -= normals[:,0] * stemWidth * .5 * (1 - scale)
+ out = recompose(cn, grad, e, smooth=.5)
+ # out = recompose(out, grad, e, smooth=.1)
+ out = recompose(out, grad, e, smooth=.01)
+
+ # cornerWeights = mapEdges(lambda a,(p,n): normalize(p-a).dot(normalize(a-n)), grad, e)[:,0].reshape((-1,1))
+ # smooth = np.ones((n,1)) * .1
+ # smooth[cornerWeights < .6] = 10
+ #
+ # grad2 = quantizeGradient(grad).astype(float)
+ # grad2 = copyGradDetails(grad, grad2, e, scale=10)
+ # grad2 = mapEdges(lambda a,e: normalize(a), grad2, e)
+ # out = recompose(out, grad2, e, smooth=smooth)
+ out[:,0] += 15
+ out[:,1] = va[:,1]
+ # out = recompose(out, grad, e, smooth=.5)
+ gOut = meshToGlyph(out, ga)
+ gOut = fitGlyph(glyph, gOut, subsegments)
+ for i,seg in enumerate(gOut):
+ gOut[i].points[0].y = glyph[i].points[0].y
+ return gOut
+
+
+def transformFLGlyphMembers(g, m, transformAnchors = True):
+ # g.transform(m)
+ g.width = g.width * m[0]
+ p = m.transformPoint((0,0))
+ for c in g.components:
+ d = m.transformPoint(c.offset)
+ c.offset = (d[0] - p[0], d[1] - p[1])
+ if transformAnchors:
+ for a in g.anchors:
+ aa = m.transformPoint((a.x,a.y))
+ a.x = aa[0]
+ # a.x,a.y = (aa[0] - p[0], aa[1] - p[1])
+ # a.x = a.x - m[4]
+
+
+from curveFitPen import fitGlyph,segmentGlyph
+from numpy.linalg import norm
+from scipy.sparse.linalg import cg
+from scipy.ndimage.filters import gaussian_filter1d as gaussian
+from scipy.cluster.vq import vq, kmeans2, whiten
+
+def glyphToMesh(g):
+ points = []
+ edges = {}
+ offset = 0
+ for c in g.contours:
+ if len(c) < 2:
+ continue
+ for i,prev,next in rangePrevNext(len(c)):
+ points.append((c[i].points[0].x, c[i].points[0].y))
+ edges[i + offset] = np.array([prev + offset, next + offset], dtype=int)
+ offset += len(c)
+ return np.array(points), edges
+
+def meshToGlyph(points, g):
+ g1 = g.copy()
+ j = 0
+ for c in g1.contours:
+ if len(c) < 2:
+ continue
+ for i in range(len(c)):
+ c[i].points[0].x = points[j][0]
+ c[i].points[0].y = points[j][1]
+ j += 1
+ return g1
+
+def quantizeGradient(grad, book=None):
+ if book == None:
+ book = np.array([(1,0),(0,1),(0,-1),(-1,0)])
+ indexArray = vq(whiten(grad), book)[0]
+ out = book[indexArray]
+ for i,v in enumerate(out):
+ out[i] = normalize(v)
+ return out
+
+def findControlPointsInMesh(glyph, va, subsegments):
+ controlPointIndices = np.zeros((len(va),1))
+ index = 0
+ for i,c in enumerate(subsegments):
+ segmentCount = len(glyph.contours[i].segments) - 1
+ for j,s in enumerate(c):
+ if j < segmentCount:
+ if glyph.contours[i].segments[j].type == "line":
+ controlPointIndices[index] = 1
+ index += s[1]
+ return controlPointIndices
+
+
+
+def recompose(v, grad, e, smooth=1, P=None, distance=None):
+ n = len(v)
+ if distance == None:
+ distance = mapEdges(lambda a,(p,n): norm(p - a), v, e)
+ if (P == None):
+ P = mP(v,e)
+ P += np.identity(n) * smooth
+ f = v.copy()
+ for i,(prev,next) in e.iteritems():
+ f[i] = (grad[next] * distance[next] - grad[i] * distance[i])
+ out = v.copy()
+ f += v * smooth
+ for i in range(len(out[0,:])):
+ out[:,i] = cg(P, f[:,i])[0]
+ return out
+
+def mP(v,e):
+ n = len(v)
+ M = np.zeros((n,n))
+ for i, edges in e.iteritems():
+ w = -2 / float(len(edges))
+ for index in edges:
+ M[i,index] = w
+ M[i,i] = 2
+ return M
+
+def normalize(v):
+ n = np.linalg.norm(v)
+ if n == 0:
+ return v
+ return v/n
+
+def mapEdges(func,v,e,*args):
+ b = v.copy()
+ for i, edges in e.iteritems():
+ b[i] = func(v[i], [v[j] for j in edges], *args)
+ return b
+
+def getNormal(a,b,c):
+ "Assumes TT winding direction"
+ p = np.roll(normalize(b - a), 1)
+ n = -np.roll(normalize(c - a), 1)
+ p[1] *= -1
+ n[1] *= -1
+ # print p, n, normalize((p + n) * .5)
+ return normalize((p + n) * .5)
+
+def edgeNormals(v,e):
+ "Assumes a mesh where each vertex has exactly least two edges"
+ return mapEdges(lambda a,(p,n) : getNormal(a,p,n),v,e)
+
+def rangePrevNext(count):
+ c = np.arange(count,dtype=int)
+ r = np.vstack((c, np.roll(c, 1), np.roll(c, -1)))
+ return r.T
+
+def skewMesh(v,angle):
+ slope = np.tanh([math.pi * angle / 180])
+ return v.dot(np.array([[1,0],[slope,1]]))
+
+def labelConnected(e):
+ label = 0
+ labels = np.zeros((len(e),1))
+ for i,(prev,next) in e.iteritems():
+ labels[i] = label
+ if next <= i:
+ label += 1
+ return labels
+
+def copyGradDetails(a,b,e,scale=15):
+ n = len(a)
+ labels = labelConnected(e)
+ out = a.astype(float).copy()
+ for i in range(labels[-1]+1):
+ mask = (labels==i).flatten()
+ out[mask,:] = gaussian(b[mask,:], scale, mode="wrap", axis=0) + a[mask,:] - gaussian(a[mask,:], scale, mode="wrap", axis=0)
+ return out
+
+def copyMeshDetails(va,vb,e,scale=5,smooth=.01):
+ gradA = mapEdges(lambda a,(p,n): normalize(p-a), va, e)
+ gradB = mapEdges(lambda a,(p,n): normalize(p-a), vb, e)
+ grad = copyGradDetails(gradA, gradB, e, scale)
+ grad = mapEdges(lambda a,(p,n): normalize(a), grad, e)
+ return recompose(vb, grad, e, smooth=smooth) \ No newline at end of file