summaryrefslogtreecommitdiff
path: root/scripts/lib/fontbuild/alignpoints.py
blob: ed502ed423c5c8528a09939e7d95c879f1afb575 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy as np
from numpy.linalg import lstsq
import math

def alignCorners(glyph, va, subsegments):
    out = va.copy()
    # for i,c in enumerate(subsegments):
    #     segmentCount = len(glyph.contours[i].segments) - 1
    #     n = len(c)
    #     for j,s in enumerate(c):
    #         if j < segmentCount:
    #             seg = glyph.contours[i].segments[j]
    #             if seg.type == "line":
    #                 subIndex = subsegmentIndex(i,j,subsegments)
    #                 out[subIndex] = alignPoints(va[subIndex])
    
    for i,c in enumerate(subsegments):
        segmentCount = len(glyph.contours[i].segments)
        n = len(c)
        for j,s in enumerate(c):
            if j < segmentCount - 1:
                segType = glyph.contours[i].segments[j].type
                segnextType = glyph.contours[i].segments[j+1].type
                next = j+1
            elif j == segmentCount -1 and s[1] > 3:
                segType = glyph.contours[i].segments[j].type
                segNextType = "line"
                next = j+1
            elif j == segmentCount:
                segType = "line"
                segnextType = glyph.contours[i].segments[1].type
                if glyph.name == "J":
                    print s[1]
                    print segnextType
                next = 1
            else:
                break
            if segType == "line" and segnextType == "line":
                subIndex = subsegmentIndex(i,j,subsegments)
                pts = va[subIndex]
                ptsnext = va[subsegmentIndex(i,next,subsegments)]
                # out[subIndex[-1]] = (out[subIndex[-1]] - 500) * 3 + 500 #findCorner(pts, ptsnext)
                # print subIndex[-1], subIndex, subsegmentIndex(i,next,subsegments)
                try:
                    out[subIndex[-1]] = findCorner(pts, ptsnext)
                except:
                    pass
                    # print glyph.name, "Can't find corner: parallel lines"
    return out


def subsegmentIndex(contourIndex, segmentIndex, subsegments):
    # This whole thing is so dumb. Need a better data model for subsegments
    
    contourOffset = 0
    for i,c in enumerate(subsegments):
        if i == contourIndex:
            break
        contourOffset += c[-1][0]
    n = subsegments[contourIndex][-1][0]
    # print contourIndex, contourOffset, n
    startIndex = subsegments[contourIndex][segmentIndex-1][0]
    segmentCount = subsegments[contourIndex][segmentIndex][1]
    endIndex = (startIndex + segmentCount + 1) % (n)
    
    indices = np.array([(startIndex + i) % (n) + contourOffset for i in range(segmentCount + 1)])
    return indices

def alignPoints(pts, start=None, end=None):
    if start == None or end == None:
        start, end = fitLine(pts)
    out = pts.copy()
    for i,p in enumerate(pts):
        out[i] = nearestPoint(start, end, p)
    return out

def findCorner(pp, nn):
    if len(pp) < 4 or len(nn) < 4:
        assert 0, "line too short to fit"
    pStart,pEnd = fitLine(pp)
    nStart,nEnd = fitLine(nn)
    prev = pEnd - pStart
    next = nEnd - nStart
    # print int(np.arctan2(prev[1],prev[0]) / math.pi * 180), 
    # print int(np.arctan2(next[1],next[0]) / math.pi * 180)
    # if lines are parallel, return simple average of end and start points
    if np.dot(prev / np.linalg.norm(prev), 
              next / np.linalg.norm(next)) > .999999:
        # print "parallel lines", np.arctan2(prev[1],prev[0]), np.arctan2(next[1],next[0])
        # print prev, next
        assert 0, "parallel lines"
    return lineIntersect(pStart, pEnd, nStart, nEnd)

def lineIntersect((x1,y1),(x2,y2),(x3,y3),(x4,y4)):
    x12 = x1 - x2
    x34 = x3 - x4
    y12 = y1 - y2
    y34 = y3 - y4
    
    det = x12 * y34 - y12 * x34
    if det == 0:
        print "parallel!"
        
    a = x1 * y2 - y1 * x2
    b = x3 * y4 - y3 * x4
    
    x = (a * x34 - b * x12) / det
    y = (a * y34 - b * y12) / det
    
    return (x,y)

def fitLineLSQ(pts):
    "returns a line fit with least squares. Fails for vertical lines"
    n = len(pts)
    a = np.ones((n,2))
    for i in range(n):
        a[i,0] = pts[i,0]
    line = lstsq(a,pts[:,1])[0]
    return line

def fitLine(pts):
    """returns a start vector and direction vector
    Assumes points segments that already form a somewhat smooth line
    """
    n = len(pts)
    if n < 1:
        return (0,0),(0,0)
    a = np.zeros((n-1,2))
    for i in range(n-1):
        v = pts[i] - pts[i+1]
        a[i] = v / np.linalg.norm(v)
    direction = np.mean(a[1:-1], axis=0)
    start = np.mean(pts[1:-1], axis=0)
    return start, start+direction
    
def nearestPoint(a,b,c):
    "nearest point to point c on line a_b"
    magnitude = np.linalg.norm(b-a)
    if magnitude == 0:
        raise Exception, "Line segment cannot be 0 length"
    return (b-a) * np.dot((c-a) / magnitude, (b-a) / magnitude) + a

# pts = np.array([[1,1],[2,2],[3,3],[4,4]])
# pts2 = np.array([[1,0],[2,0],[3,0],[4,0]])
# print alignPoints(pts2, start = pts[0], end = pts[0]+pts[0])
# # print findCorner(pts,pts2)