summaryrefslogtreecommitdiff
path: root/extrasrc/fpaux.hh
blob: f035c3317934ebffebe0c5476137923030e3c98f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
/***************************************************************************\
|* Function Parser for C++ v4.5.2                                          *|
|*-------------------------------------------------------------------------*|
|* Copyright: Juha Nieminen, Joel Yliluoma                                 *|
|*                                                                         *|
|* This library is distributed under the terms of the                      *|
|* GNU Lesser General Public License version 3.                            *|
|* (See lgpl.txt and gpl.txt for the license text.)                        *|
\***************************************************************************/

// NOTE:
// This file contains only internal types for the function parser library.
// You don't need to include this file in your code. Include "fparser.hh"
// only.

#ifndef ONCE_FPARSER_AUX_H_
#define ONCE_FPARSER_AUX_H_

#include "fptypes.hh"

#include <cmath>

#ifdef FP_SUPPORT_MPFR_FLOAT_TYPE
#include "mpfr/MpfrFloat.hh"
#endif

#ifdef FP_SUPPORT_GMP_INT_TYPE
#include "mpfr/GmpInt.hh"
#endif

#ifdef FP_SUPPORT_COMPLEX_NUMBERS
#include <complex>
#endif

#ifdef ONCE_FPARSER_H_
namespace FUNCTIONPARSERTYPES
{
    template<typename>
    struct IsIntType
    {
        enum { result = false };
    };
    template<>
    struct IsIntType<long>
    {
        enum { result = true };
    };
#ifdef FP_SUPPORT_GMP_INT_TYPE
    template<>
    struct IsIntType<GmpInt>
    {
        enum { result = true };
    };
#endif

    template<typename>
    struct IsComplexType
    {
        enum { result = false };
    };
#ifdef FP_SUPPORT_COMPLEX_NUMBERS
    template<typename T>
    struct IsComplexType<std::complex<T> >
    {
        enum { result = true };
    };
#endif


//==========================================================================
// Constants
//==========================================================================
    template<typename Value_t>
    inline Value_t fp_const_pi() // CONSTANT_PI
    {
        return Value_t(3.1415926535897932384626433832795028841971693993751L);
    }

    template<typename Value_t>
    inline Value_t fp_const_e() // CONSTANT_E
    {
        return Value_t(2.7182818284590452353602874713526624977572L);
    }
    template<typename Value_t>
    inline Value_t fp_const_einv() // CONSTANT_EI
    {
        return Value_t(0.367879441171442321595523770161460867445811131L);
    }
    template<typename Value_t>
    inline Value_t fp_const_log2() // CONSTANT_L2, CONSTANT_L2EI
    {
        return Value_t(0.69314718055994530941723212145817656807550013436025525412L);
    }
    template<typename Value_t>
    inline Value_t fp_const_log10() // CONSTANT_L10, CONSTANT_L10EI
    {
        return Value_t(2.302585092994045684017991454684364207601101488628772976L);
    }
    template<typename Value_t>
    inline Value_t fp_const_log2inv() // CONSTANT_L2I, CONSTANT_L2E
    {
        return Value_t(1.442695040888963407359924681001892137426645954L);
    }
    template<typename Value_t>
    inline Value_t fp_const_log10inv() // CONSTANT_L10I, CONSTANT_L10E
    {
        return Value_t(0.434294481903251827651128918916605082294397L);
    }

    template<typename Value_t>
    inline const Value_t& fp_const_deg_to_rad() // CONSTANT_DR
    {
        static const Value_t factor = fp_const_pi<Value_t>() / Value_t(180); // to rad from deg
        return factor;
    }

    template<typename Value_t>
    inline const Value_t& fp_const_rad_to_deg() // CONSTANT_RD
    {
        static const Value_t factor = Value_t(180) / fp_const_pi<Value_t>(); // to deg from rad
        return factor;
    }

#ifdef FP_SUPPORT_MPFR_FLOAT_TYPE
    template<>
    inline MpfrFloat fp_const_pi<MpfrFloat>() { return MpfrFloat::const_pi(); }

    template<>
    inline MpfrFloat fp_const_e<MpfrFloat>() { return MpfrFloat::const_e(); }

    template<>
    inline MpfrFloat fp_const_einv<MpfrFloat>() { return MpfrFloat(1) / MpfrFloat::const_e(); }

    template<>
    inline MpfrFloat fp_const_log2<MpfrFloat>() { return MpfrFloat::const_log2(); }

    /*
    template<>
    inline MpfrFloat fp_const_log10<MpfrFloat>() { return fp_log(MpfrFloat(10)); }

    template<>
    inline MpfrFloat fp_const_log2inv<MpfrFloat>() { return MpfrFloat(1) / MpfrFloat::const_log2(); }

    template<>
    inline MpfrFloat fp_const_log10inv<MpfrFloat>() { return fp_log10(MpfrFloat::const_e()); }
    */
#endif


//==========================================================================
// Generic math functions
//==========================================================================
    template<typename Value_t>
    inline Value_t fp_abs(const Value_t& x) { return std::fabs(x); }

    template<typename Value_t>
    inline Value_t fp_acos(const Value_t& x) { return std::acos(x); }

    template<typename Value_t>
    inline Value_t fp_asin(const Value_t& x) { return std::asin(x); }

    template<typename Value_t>
    inline Value_t fp_atan(const Value_t& x) { return std::atan(x); }

    template<typename Value_t>
    inline Value_t fp_atan2(const Value_t& x, const Value_t& y)
    { return std::atan2(x, y); }

    template<typename Value_t>
    inline Value_t fp_ceil(const Value_t& x) { return std::ceil(x); }

    template<typename Value_t>
    inline Value_t fp_cos(const Value_t& x) { return std::cos(x); }

    template<typename Value_t>
    inline Value_t fp_cosh(const Value_t& x) { return std::cosh(x); }

    template<typename Value_t>
    inline Value_t fp_exp(const Value_t& x) { return std::exp(x); }

    template<typename Value_t>
    inline Value_t fp_floor(const Value_t& x) { return std::floor(x); }

    template<typename Value_t>
    inline Value_t fp_log(const Value_t& x) { return std::log(x); }

    template<typename Value_t>
    inline Value_t fp_mod(const Value_t& x, const Value_t& y)
    { return std::fmod(x, y); }

    template<typename Value_t>
    inline Value_t fp_sin(const Value_t& x) { return std::sin(x); }

    template<typename Value_t>
    inline Value_t fp_sinh(const Value_t& x) { return std::sinh(x); }

    template<typename Value_t>
    inline Value_t fp_sqrt(const Value_t& x) { return std::sqrt(x); }

    template<typename Value_t>
    inline Value_t fp_tan(const Value_t& x) { return std::tan(x); }

    template<typename Value_t>
    inline Value_t fp_tanh(const Value_t& x) { return std::tanh(x); }

#ifdef FP_SUPPORT_CPLUSPLUS11_MATH_FUNCS
    template<typename Value_t>
    inline Value_t fp_asinh(const Value_t& x) { return std::asinh(x); }

    template<typename Value_t>
    inline Value_t fp_acosh(const Value_t& x) { return std::acosh(x); }

    template<typename Value_t>
    inline Value_t fp_atanh(const Value_t& x) { return std::atanh(x); }
#else
    template<typename Value_t>
    inline Value_t fp_asinh(const Value_t& x)
    { return fp_log(x + fp_sqrt(x*x + Value_t(1))); }

    template<typename Value_t>
    inline Value_t fp_acosh(const Value_t& x)
    { return fp_log(x + fp_sqrt(x*x - Value_t(1))); }

    template<typename Value_t>
    inline Value_t fp_atanh(const Value_t& x)
    {
        return fp_log( (Value_t(1)+x) / (Value_t(1)-x)) * Value_t(0.5);
        // Note: x = +1 causes division by zero
        //       x = -1 causes log(0)
        // Thus, x must not be +-1
    }
#endif // FP_SUPPORT_ASINH

#ifdef FP_SUPPORT_CPLUSPLUS11_MATH_FUNCS
    template<typename Value_t>
    inline Value_t fp_hypot(const Value_t& x, const Value_t& y)
    { return std::hypot(x,y); }

    template<typename Value_t>
    inline std::complex<Value_t> fp_hypot
    (const std::complex<Value_t>& x, const std::complex<Value_t>& y)
    { return fp_sqrt(x*x + y*y); }
#else
    template<typename Value_t>
    inline Value_t fp_hypot(const Value_t& x, const Value_t& y)
    { return fp_sqrt(x*x + y*y); }
#endif

    template<typename Value_t>
    inline Value_t fp_pow_base(const Value_t& x, const Value_t& y)
    { return std::pow(x, y); }

#ifdef FP_SUPPORT_CPLUSPLUS11_MATH_FUNCS
    template<typename Value_t>
    inline Value_t fp_log2(const Value_t& x) { return std::log2(x); }

    template<typename Value_t>
    inline std::complex<Value_t> fp_log2(const std::complex<Value_t>& x)
    {
        return fp_log(x) * fp_const_log2inv<Value_t>();
    }
#else
    template<typename Value_t>
    inline Value_t fp_log2(const Value_t& x)
    {
        return fp_log(x) * fp_const_log2inv<Value_t>();
    }
#endif // FP_SUPPORT_LOG2

    template<typename Value_t>
    inline Value_t fp_log10(const Value_t& x)
    {
        return fp_log(x) * fp_const_log10inv<Value_t>();
    }

    template<typename Value_t>
    inline Value_t fp_trunc(const Value_t& x)
    {
        return x < Value_t() ? fp_ceil(x) : fp_floor(x);
    }

    template<typename Value_t>
    inline Value_t fp_int(const Value_t& x)
    {
        return x < Value_t() ?
            fp_ceil(x - Value_t(0.5)) : fp_floor(x + Value_t(0.5));
    }

    template<typename Value_t>
    inline void fp_sinCos(Value_t& sinvalue, Value_t& cosvalue,
                          const Value_t& param)
    {
        // Assuming that "cosvalue" and "param" do not
        // overlap, but "sinvalue" and "param" may.
        cosvalue = fp_cos(param);
        sinvalue = fp_sin(param);
    }

    template<typename Value_t>
    inline void fp_sinhCosh(Value_t& sinhvalue, Value_t& coshvalue,
                            const Value_t& param)
    {
        const Value_t ex(fp_exp(param)), emx(fp_exp(-param));
        sinhvalue = Value_t(0.5)*(ex-emx);
        coshvalue = Value_t(0.5)*(ex+emx);
    }

    template<typename Value_t>
    struct Epsilon
    {
        static Value_t value;
        static Value_t defaultValue() { return 0; }
    };

    template<> inline double Epsilon<double>::defaultValue() { return 1E-12; }
    template<> inline float Epsilon<float>::defaultValue() { return 1E-5F; }
    template<> inline long double Epsilon<long double>::defaultValue() { return 1E-14L; }

    template<> inline std::complex<double>
    Epsilon<std::complex<double> >::defaultValue() { return 1E-12; }

    template<> inline std::complex<float>
    Epsilon<std::complex<float> >::defaultValue() { return 1E-5F; }

    template<> inline std::complex<long double>
    Epsilon<std::complex<long double> >::defaultValue() { return 1E-14L; }

#ifdef FP_SUPPORT_MPFR_FLOAT_TYPE
    template<> inline MpfrFloat
    Epsilon<MpfrFloat>::defaultValue() { return MpfrFloat::someEpsilon(); }
#endif

    template<typename Value_t> Value_t Epsilon<Value_t>::value =
        Epsilon<Value_t>::defaultValue();


#ifdef _GNU_SOURCE
    inline void fp_sinCos(double& sin, double& cos, const double& a)
    {
        sincos(a, &sin, &cos);
    }
    inline void fp_sinCos(float& sin, float& cos, const float& a)
    {
        sincosf(a, &sin, &cos);
    }
    inline void fp_sinCos(long double& sin, long double& cos,
                          const long double& a)
    {
        sincosl(a, &sin, &cos);
    }
#endif


// -------------------------------------------------------------------------
// Long int
// -------------------------------------------------------------------------
    inline long fp_abs(const long& x) { return x < 0 ? -x : x; }
    inline long fp_acos(const long&) { return 0; }
    inline long fp_asin(const long&) { return 0; }
    inline long fp_atan(const long&) { return 0; }
    inline long fp_atan2(const long&, const long&) { return 0; }
    inline long fp_cbrt(const long&) { return 0; }
    inline long fp_ceil(const long& x) { return x; }
    inline long fp_cos(const long&) { return 0; }
    inline long fp_cosh(const long&) { return 0; }
    inline long fp_exp(const long&) { return 0; }
    inline long fp_exp2(const long&) { return 0; }
    inline long fp_floor(const long& x) { return x; }
    inline long fp_log(const long&) { return 0; }
    inline long fp_log2(const long&) { return 0; }
    inline long fp_log10(const long&) { return 0; }
    inline long fp_mod(const long& x, const long& y) { return x % y; }
    inline long fp_pow(const long&, const long&) { return 0; }
    inline long fp_sin(const long&) { return 0; }
    inline long fp_sinh(const long&) { return 0; }
    inline long fp_sqrt(const long&) { return 1; }
    inline long fp_tan(const long&) { return 0; }
    inline long fp_tanh(const long&) { return 0; }
    inline long fp_asinh(const long&) { return 0; }
    inline long fp_acosh(const long&) { return 0; }
    inline long fp_atanh(const long&) { return 0; }
    inline long fp_pow_base(const long&, const long&) { return 0; }
    inline void fp_sinCos(long&, long&, const long&) {}
    inline void fp_sinhCosh(long&, long&, const long&) {}

    //template<> inline long fp_epsilon<long>() { return 0; }


// -------------------------------------------------------------------------
// MpfrFloat
// -------------------------------------------------------------------------
#ifdef FP_SUPPORT_MPFR_FLOAT_TYPE
    inline MpfrFloat fp_abs(const MpfrFloat& x) { return MpfrFloat::abs(x); }
    inline MpfrFloat fp_acos(const MpfrFloat& x) { return MpfrFloat::acos(x); }
    inline MpfrFloat fp_acosh(const MpfrFloat& x) { return MpfrFloat::acosh(x); }
    inline MpfrFloat fp_asin(const MpfrFloat& x) { return MpfrFloat::asin(x); }
    inline MpfrFloat fp_asinh(const MpfrFloat& x) { return MpfrFloat::asinh(x); }
    inline MpfrFloat fp_atan(const MpfrFloat& x) { return MpfrFloat::atan(x); }
    inline MpfrFloat fp_atan2(const MpfrFloat& x, const MpfrFloat& y)
    { return MpfrFloat::atan2(x, y); }
    inline MpfrFloat fp_atanh(const MpfrFloat& x) { return MpfrFloat::atanh(x); }
    inline MpfrFloat fp_cbrt(const MpfrFloat& x) { return MpfrFloat::cbrt(x); }
    inline MpfrFloat fp_ceil(const MpfrFloat& x) { return MpfrFloat::ceil(x); }
    inline MpfrFloat fp_cos(const MpfrFloat& x) { return MpfrFloat::cos(x); }
    inline MpfrFloat fp_cosh(const MpfrFloat& x) { return MpfrFloat::cosh(x); }
    inline MpfrFloat fp_exp(const MpfrFloat& x) { return MpfrFloat::exp(x); }
    inline MpfrFloat fp_exp2(const MpfrFloat& x) { return MpfrFloat::exp2(x); }
    inline MpfrFloat fp_floor(const MpfrFloat& x) { return MpfrFloat::floor(x); }
    inline MpfrFloat fp_hypot(const MpfrFloat& x, const MpfrFloat& y)
    { return MpfrFloat::hypot(x, y); }
    inline MpfrFloat fp_int(const MpfrFloat& x) { return MpfrFloat::round(x); }
    inline MpfrFloat fp_log(const MpfrFloat& x) { return MpfrFloat::log(x); }
    inline MpfrFloat fp_log2(const MpfrFloat& x) { return MpfrFloat::log2(x); }
    inline MpfrFloat fp_log10(const MpfrFloat& x) { return MpfrFloat::log10(x); }
    inline MpfrFloat fp_mod(const MpfrFloat& x, const MpfrFloat& y) { return x % y; }
    inline MpfrFloat fp_sin(const MpfrFloat& x) { return MpfrFloat::sin(x); }
    inline MpfrFloat fp_sinh(const MpfrFloat& x) { return MpfrFloat::sinh(x); }
    inline MpfrFloat fp_sqrt(const MpfrFloat& x) { return MpfrFloat::sqrt(x); }
    inline MpfrFloat fp_tan(const MpfrFloat& x) { return MpfrFloat::tan(x); }
    inline MpfrFloat fp_tanh(const MpfrFloat& x) { return MpfrFloat::tanh(x); }
    inline MpfrFloat fp_trunc(const MpfrFloat& x) { return MpfrFloat::trunc(x); }

    inline MpfrFloat fp_pow(const MpfrFloat& x, const MpfrFloat& y) { return MpfrFloat::pow(x, y); }
    inline MpfrFloat fp_pow_base(const MpfrFloat& x, const MpfrFloat& y) { return MpfrFloat::pow(x, y); }


    inline void fp_sinCos(MpfrFloat& sin, MpfrFloat& cos, const MpfrFloat& a)
    {
        MpfrFloat::sincos(a, sin, cos);
    }

    inline void fp_sinhCosh(MpfrFloat& sinhvalue, MpfrFloat& coshvalue,
                            const MpfrFloat& param)
    {
        const MpfrFloat paramCopy = param;
        sinhvalue = fp_sinh(paramCopy);
        coshvalue = fp_cosh(paramCopy);
    }
#endif // FP_SUPPORT_MPFR_FLOAT_TYPE


// -------------------------------------------------------------------------
// GMP int
// -------------------------------------------------------------------------
#ifdef FP_SUPPORT_GMP_INT_TYPE
    inline GmpInt fp_abs(const GmpInt& x) { return GmpInt::abs(x); }
    inline GmpInt fp_acos(const GmpInt&) { return 0; }
    inline GmpInt fp_acosh(const GmpInt&) { return 0; }
    inline GmpInt fp_asin(const GmpInt&) { return 0; }
    inline GmpInt fp_asinh(const GmpInt&) { return 0; }
    inline GmpInt fp_atan(const GmpInt&) { return 0; }
    inline GmpInt fp_atan2(const GmpInt&, const GmpInt&) { return 0; }
    inline GmpInt fp_atanh(const GmpInt&) { return 0; }
    inline GmpInt fp_cbrt(const GmpInt&) { return 0; }
    inline GmpInt fp_ceil(const GmpInt& x) { return x; }
    inline GmpInt fp_cos(const GmpInt&) { return 0; }
    inline GmpInt fp_cosh(const GmpInt&) { return 0; }
    inline GmpInt fp_exp(const GmpInt&) { return 0; }
    inline GmpInt fp_exp2(const GmpInt&) { return 0; }
    inline GmpInt fp_floor(const GmpInt& x) { return x; }
    inline GmpInt fp_hypot(const GmpInt&, const GmpInt&) { return 0; }
    inline GmpInt fp_int(const GmpInt& x) { return x; }
    inline GmpInt fp_log(const GmpInt&) { return 0; }
    inline GmpInt fp_log2(const GmpInt&) { return 0; }
    inline GmpInt fp_log10(const GmpInt&) { return 0; }
    inline GmpInt fp_mod(const GmpInt& x, const GmpInt& y) { return x % y; }
    inline GmpInt fp_pow(const GmpInt&, const GmpInt&) { return 0; }
    inline GmpInt fp_sin(const GmpInt&) { return 0; }
    inline GmpInt fp_sinh(const GmpInt&) { return 0; }
    inline GmpInt fp_sqrt(const GmpInt&) { return 0; }
    inline GmpInt fp_tan(const GmpInt&) { return 0; }
    inline GmpInt fp_tanh(const GmpInt&) { return 0; }
    inline GmpInt fp_trunc(const GmpInt& x) { return x; }
    inline GmpInt fp_pow_base(const GmpInt&, const GmpInt&) { return 0; }
    inline void fp_sinCos(GmpInt&, GmpInt&, const GmpInt&) {}
    inline void fp_sinhCosh(GmpInt&, GmpInt&, const GmpInt&) {}
#endif // FP_SUPPORT_GMP_INT_TYPE


#ifdef FP_SUPPORT_CPLUSPLUS11_MATH_FUNCS
    template<typename Value_t>
    inline Value_t fp_cbrt(const Value_t& x) { return std::cbrt(x); }
#else
    template<typename Value_t>
    inline Value_t fp_cbrt(const Value_t& x)
    {
        return (x > Value_t() ?  fp_exp(fp_log( x) / Value_t(3)) :
                x < Value_t() ? -fp_exp(fp_log(-x) / Value_t(3)) :
                Value_t());
    }
#endif

// -------------------------------------------------------------------------
// Synthetic functions and fallbacks for when an optimized
// implementation or a library function is not available
// -------------------------------------------------------------------------
    template<typename Value_t> inline Value_t fp_arg(const Value_t& x);
    template<typename Value_t> inline Value_t fp_exp2(const Value_t& x);
    template<typename Value_t> inline Value_t fp_int(const Value_t& x);
    template<typename Value_t> inline Value_t fp_trunc(const Value_t& x);
    template<typename Value_t>
    inline void fp_sinCos(Value_t& , Value_t& , const Value_t& );
    template<typename Value_t>
    inline void fp_sinhCosh(Value_t& , Value_t& , const Value_t& );

#ifdef FP_SUPPORT_COMPLEX_NUMBERS
    /* NOTE: Complex multiplication of a and b can be done with:
        tmp = b.real * (a.real + a.imag)
        result.real = tmp - a.imag * (b.real + b.imag)
        result.imag = tmp + a.real * (b.imag - b.real)
        This has fewer multiplications than the standard
        algorithm. Take note, if you support mpfr complex one day.
    */

    template<typename T>
    struct FP_ProbablyHasFastLibcComplex
    { enum { result = false }; };
    /* The generic sqrt() etc. implementations in libstdc++
     * are very plain and non-optimized; however, it contains
     * callbacks to libc complex math functions where possible,
     * and I suspect that those may actually be well optimized.
     * So we use std:: functions when we suspect they may be fast,
     * and otherwise we use our own optimized implementations.
     */
#ifdef __GNUC__
    template<> struct FP_ProbablyHasFastLibcComplex<float>
    { enum { result = true }; };
    template<> struct FP_ProbablyHasFastLibcComplex<double>
    { enum { result = true }; };
    template<> struct FP_ProbablyHasFastLibcComplex<long double>
    { enum { result = true }; };
#endif

    template<typename T>
    inline const std::complex<T> fp_make_imag(const std::complex<T>& v)
    {
        return std::complex<T> ( T(), v.real() );
    }

    template<typename T>
    inline std::complex<T> fp_real(const std::complex<T>& x)
    {
        return x.real();
    }
    template<typename T>
    inline std::complex<T> fp_imag(const std::complex<T>& x)
    {
        return x.imag();
    }
    template<typename T>
    inline std::complex<T> fp_arg(const std::complex<T>& x)
    {
        return std::arg(x);
    }
    template<typename T>
    inline std::complex<T> fp_conj(const std::complex<T>& x)
    {
        return std::conj(x);
    }
    template<typename T, bool>
    inline std::complex<T> fp_polar(const T& x, const T& y)
    {
        T si, co; fp_sinCos(si, co, y);
        return std::complex<T> (x*co, x*si);
    }
    template<typename T>
    inline std::complex<T> fp_polar(const std::complex<T>& x, const std::complex<T>& y)
    {
        // x * cos(y) + i * x * sin(y) -- arguments are supposed to be REAL numbers
        return fp_polar<T,true> (x.real(), y.real());
        //return std::polar(x.real(), y.real());
        //return x * (fp_cos(y) + (std::complex<T>(0,1) * fp_sin(y));
    }

    // These provide fallbacks in case there's no library function
    template<typename T>
    inline std::complex<T> fp_floor(const std::complex<T>& x)
    {
        return std::complex<T> (fp_floor(x.real()), fp_floor(x.imag()));
    }
    template<typename T>
    inline std::complex<T> fp_trunc(const std::complex<T>& x)
    {
        return std::complex<T> (fp_trunc(x.real()), fp_trunc(x.imag()));
    }
    template<typename T>
    inline std::complex<T> fp_int(const std::complex<T>& x)
    {
        return std::complex<T> (fp_int(x.real()), fp_int(x.imag()));
    }
    template<typename T>
    inline std::complex<T> fp_ceil(const std::complex<T>& x)
    {
        return std::complex<T> (fp_ceil(x.real()), fp_ceil(x.imag()));
    }
    template<typename T>
    inline std::complex<T> fp_abs(const std::complex<T>& x)
    {
        return std::abs(x);
        //T extent = fp_max(fp_abs(x.real()), fp_abs(x.imag()));
        //if(extent == T()) return x;
        //return extent * fp_hypot(x.real() / extent, x.imag() / extent);
    }
    template<typename T>
    inline std::complex<T> fp_exp(const std::complex<T>& x)
    {
        if(FP_ProbablyHasFastLibcComplex<T>::result)
            return std::exp(x);
        return fp_polar<T,true>(fp_exp(x.real()), x.imag());
    }
    template<typename T>
    inline std::complex<T> fp_log(const std::complex<T>& x)
    {
        if(FP_ProbablyHasFastLibcComplex<T>::result)
            return std::log(x);
        // log(abs(x))        + i*arg(x)
        // log(Xr^2+Xi^2)*0.5 + i*arg(x)
        if(x.imag()==T())
            return std::complex<T>( fp_log(fp_abs(x.real())),
                                    fp_arg(x.real()) ); // Note: Uses real-value fp_arg() here!
        return std::complex<T>(
            fp_log(std::norm(x)) * T(0.5),
            fp_arg(x).real() );
    }
    template<typename T>
    inline std::complex<T> fp_sqrt(const std::complex<T>& x)
    {
        if(FP_ProbablyHasFastLibcComplex<T>::result)
            return std::sqrt(x);
        return fp_polar<T,true> (fp_sqrt(fp_abs(x).real()),
                                 T(0.5)*fp_arg(x).real());
    }
    template<typename T>
    inline std::complex<T> fp_acos(const std::complex<T>& x)
    {
        // -i * log(x + i * sqrt(1 - x^2))
        const std::complex<T> i (T(), T(1));
        return -i *  fp_log(x + i * fp_sqrt(T(1) - x*x));
        // Note: Real version of acos() cannot handle |x| > 1,
        //       because it would cause sqrt(negative value).
    }
    template<typename T>
    inline std::complex<T> fp_asin(const std::complex<T>& x)
    {
        // -i * log(i*x + sqrt(1 - x^2))
        const std::complex<T> i (T(), T(1));
        return -i * fp_log(i*x + fp_sqrt(T(1) - x*x));
        // Note: Real version of asin() cannot handle |x| > 1,
        //       because it would cause sqrt(negative value).
    }
    template<typename T>
    inline std::complex<T> fp_atan(const std::complex<T>& x)
    {
        // 0.5i * (log(1-i*x) - log(1+i*x))
        // -0.5i * log( (1+i*x) / (1-i*x) )
        const std::complex<T> i (T(), T(1));
        return (T(-0.5)*i) * fp_log( (T(1)+i*x) / (T(1)-i*x) );
        // Note: x = -1i causes division by zero
        //       x = +1i causes log(0)
        // Thus, x must not be +-1i
    }
    template<typename T>
    inline std::complex<T> fp_cos(const std::complex<T>& x)
    {
        return std::cos(x);
        // // (exp(i*x) + exp(-i*x)) / (2)
        // //const std::complex<T> i (T(), T(1));
        // //return (fp_exp(i*x) + fp_exp(-i*x)) * T(0.5);
        // // Also: cos(Xr)*cosh(Xi) - i*sin(Xr)*sinh(Xi)
        // return std::complex<T> (
        //     fp_cos(x.real())*fp_cosh(x.imag()),
        //     -fp_sin(x.real())*fp_sinh(x.imag()));
    }
    template<typename T>
    inline std::complex<T> fp_sin(const std::complex<T>& x)
    {
        return std::sin(x);
        // // (exp(i*x) - exp(-i*x)) / (2i)
        // //const std::complex<T> i (T(), T(1));
        // //return (fp_exp(i*x) - fp_exp(-i*x)) * (T(-0.5)*i);
        // // Also: sin(Xr)*cosh(Xi) + cos(Xr)*sinh(Xi)
        // return std::complex<T> (
        //     fp_sin(x.real())*fp_cosh(x.imag()),
        //     fp_cos(x.real())*fp_sinh(x.imag()));
    }
    template<typename T>
    inline void fp_sinCos(
        std::complex<T>& sinvalue,
        std::complex<T>& cosvalue,
        const std::complex<T>& x)
    {
        //const std::complex<T> i (T(), T(1)), expix(fp_exp(i*x)), expmix(fp_exp((-i)*x));
        //cosvalue = (expix + expmix) * T(0.5);
        //sinvalue = (expix - expmix) * (i*T(-0.5));
        // The above expands to the following:
        T srx, crx; fp_sinCos(srx, crx, x.real());
        T six, cix; fp_sinhCosh(six, cix, x.imag());
        sinvalue = std::complex<T>(srx*cix,  crx*six);
        cosvalue = std::complex<T>(crx*cix, -srx*six);
    }
    template<typename T>
    inline void fp_sinhCosh(
        std::complex<T>& sinhvalue,
        std::complex<T>& coshvalue,
        const std::complex<T>& x)
    {
        T srx, crx; fp_sinhCosh(srx, crx, x.real());
        T six, cix; fp_sinCos(six, cix, x.imag());
        sinhvalue = std::complex<T>(srx*cix, crx*six);
        coshvalue = std::complex<T>(crx*cix, srx*six);
    }
    template<typename T>
    inline std::complex<T> fp_tan(const std::complex<T>& x)
    {
        return std::tan(x);
        //std::complex<T> si, co;
        //fp_sinCos(si, co, x);
        //return si/co;
        // // (i-i*exp(2i*x)) / (exp(2i*x)+1)
        // const std::complex<T> i (T(), T(1)), exp2ix=fp_exp((2*i)*x);
        // return (i-i*exp2ix) / (exp2ix+T(1));
        // // Also: sin(x)/cos(y)
        // // return fp_sin(x)/fp_cos(x);
    }
    template<typename T>
    inline std::complex<T> fp_cosh(const std::complex<T>& x)
    {
        return std::cosh(x);
        // // (exp(x) + exp(-x)) * 0.5
        // // Also: cosh(Xr)*cos(Xi) + i*sinh(Xr)*sin(Xi)
        // return std::complex<T> (
        //     fp_cosh(x.real())*fp_cos(x.imag()),
        //     fp_sinh(x.real())*fp_sin(x.imag()));
    }
    template<typename T>
    inline std::complex<T> fp_sinh(const std::complex<T>& x)
    {
        return std::sinh(x);
        // // (exp(x) - exp(-x)) * 0.5
        // // Also: sinh(Xr)*cos(Xi) + i*cosh(Xr)*sin(Xi)
        // return std::complex<T> (
        //     fp_sinh(x.real())*fp_cos(x.imag()),
        //     fp_cosh(x.real())*fp_sin(x.imag()));
    }
    template<typename T>
    inline std::complex<T> fp_tanh(const std::complex<T>& x)
    {
        return std::tanh(x);
        //std::complex<T> si, co;
        //fp_sinhCosh(si, co, x);
        //return si/co;
        // // (exp(2*x)-1) / (exp(2*x)+1)
        // // Also: sinh(x)/tanh(x)
        // const std::complex<T> exp2x=fp_exp(x+x);
        // return (exp2x-T(1)) / (exp2x+T(1));
    }

#ifdef FP_SUPPORT_CPLUSPLUS11_MATH_FUNCS
    template<typename T>
    inline std::complex<T> fp_acosh(const std::complex<T>& x)
    { return fp_log(x + fp_sqrt(x*x - std::complex<T>(1))); }
    template<typename T>
    inline std::complex<T> fp_asinh(const std::complex<T>& x)
    { return fp_log(x + fp_sqrt(x*x + std::complex<T>(1))); }
    template<typename T>
    inline std::complex<T> fp_atanh(const std::complex<T>& x)
    { return fp_log( (std::complex<T>(1)+x) / (std::complex<T>(1)-x))
           * std::complex<T>(0.5); }
#endif
    template<typename T>
    inline std::complex<T> fp_pow(const std::complex<T>& x, const std::complex<T>& y)
    {
        // return std::pow(x,y);

        // With complex numbers, pow(x,y) can be solved with
        // the general formula: exp(y*log(x)). It handles
        // all special cases gracefully.
        // It expands to the following:
        // A)
        //     t1 = log(x)
        //     t2 = y * t1
        //     res = exp(t2)
        // B)
        //     t1.r = log(x.r * x.r + x.i * x.i) * 0.5  \ fp_log()
        //     t1.i = atan2(x.i, x.r)                   /
        //     t2.r = y.r*t1.r - y.i*t1.i          \ multiplication
        //     t2.i = y.r*t1.i + y.i*t1.r          /
        //     rho   = exp(t2.r)        \ fp_exp()
        //     theta = t2.i             /
        //     res.r = rho * cos(theta)   \ fp_polar(), called from
        //     res.i = rho * sin(theta)   / fp_exp(). Uses sincos().
        // Aside from the common "norm" calculation in atan2()
        // and in the log parameter, both of which are part of fp_log(),
        // there does not seem to be any incentive to break this
        // function down further; it would not help optimizing it.
        // However, we do handle the following special cases:
        //
        // When x is real (positive or negative):
        //     t1.r = log(abs(x.r))
        //     t1.i = x.r<0 ? -pi : 0
        // When y is real:
        //     t2.r = y.r * t1.r
        //     t2.i = y.r * t1.i
        const std::complex<T> t =
            (x.imag() != T())
            ? fp_log(x)
            : std::complex<T> (fp_log(fp_abs(x.real())),
                               fp_arg(x.real())); // Note: Uses real-value fp_arg() here!
        return y.imag() != T()
            ? fp_exp(y * t)
            : fp_polar<T,true> (fp_exp(y.real()*t.real()), y.real()*t.imag());
    }
    template<typename T>
    inline std::complex<T> fp_cbrt(const std::complex<T>& x)
    {
        // For real numbers, prefer giving a real solution
        // rather than a complex solution.
        // For example, cbrt(-3) has the following three solutions:
        //  A) 0.7211247966535 + 1.2490247864016i
        //  B) 0.7211247966535 - 1.2490247864016i
        //  C) -1.442249593307
        // exp(log(x)/3) gives A, but we prefer to give C.
        if(x.imag() == T()) return fp_cbrt(x.real());
        const std::complex<T> t(fp_log(x));
        return fp_polar<T,true> (fp_exp(t.real() / T(3)), t.imag() / T(3));
    }

    template<typename T>
    inline std::complex<T> fp_exp2(const std::complex<T>& x)
    {
        // pow(2, x)
        // polar(2^Xr, Xi*log(2))
        return fp_polar<T,true> (fp_exp2(x.real()), x.imag()*fp_const_log2<T>());
    }
    template<typename T>
    inline std::complex<T> fp_mod(const std::complex<T>& x, const std::complex<T>& y)
    {
        // Modulo function is probably not defined for complex numbers.
        // But we do our best to calculate it the same way as it is done
        // with real numbers, so that at least it is in some way "consistent".
        if(y.imag() == 0) return fp_mod(x.real(), y.real()); // optimization
        std::complex<T> n = fp_trunc(x / y);
        return x - n * y;
    }

    /* libstdc++ already defines a streaming operator for complex values,
     * but we redefine our own that it is compatible with the input
     * accepted by fparser. I.e. instead of (5,3) we now get (5+3i),
     * and instead of (-4,0) we now get -4.
     */
    template<typename T>
    inline std::ostream& operator<<(std::ostream& os, const std::complex<T>& value)
    {
        if(value.imag() == T()) return os << value.real();
        if(value.real() == T()) return os << value.imag() << 'i';
        if(value.imag() < T())
            return os << '(' << value.real() << "-" << -value.imag() << "i)";
        else
            return os << '(' << value.real() << "+" << value.imag() << "i)";
    }

    /* Less-than or greater-than operators are not technically defined
     * for Complex types. However, in fparser and its tool set, these
     * operators are widely required to be present.
     * Our implementation here is based on converting the complex number
     * into a scalar and the doing a scalar comparison on the value.
     * The means by which the number is changed into a scalar is based
     * on the following principles:
     * - Does not introduce unjustified amounts of extra inaccuracy
     * - Is transparent to purely real values
     *     (this disqualifies something like x.real() + x.imag())
     * - Does not ignore the imaginary value completely
     *     (this may be relevant especially in testbed)
     * - Is not so complicated that it would slow down a great deal
     *
     * Basically our formula here is the same as std::abs(),
     * except that it keeps the sign of the original real number,
     * and it does not do a sqrt() calculation that is not really
     * needed because we are only interested in the relative magnitudes.
     *
     * Equality and nonequality operators must not need to be overloaded.
     * They are already implemented in standard, and we must
     * not introduce flawed equality assumptions.
     */
    template<typename T>
    inline T fp_complexScalarize(const std::complex<T>& x)
    {
        T res(std::norm(x));
        if(x.real() < T()) res = -res;
        return res;
    }
    template<typename T>
    inline T fp_realComplexScalarize(const T& x)
    {
        T res(x*x);
        if(x < T()) res = -res;
        return res;
    }
    //    { return x.real() * (T(1.0) + fp_abs(x.imag())); }
    #define d(op) \
    template<typename T> \
    inline bool operator op (const std::complex<T>& x, T y) \
        { return fp_complexScalarize(x) op fp_realComplexScalarize(y); } \
    template<typename T> \
    inline bool operator op (const std::complex<T>& x, const std::complex<T>& y) \
        { return fp_complexScalarize(x) op \
                 fp_complexScalarize(y); } \
    template<typename T> \
    inline bool operator op (T x, const std::complex<T>& y) \
        { return fp_realComplexScalarize(x) op fp_complexScalarize(y); }
    d( < ) d( <= ) d( > ) d( >= )
    #undef d
#endif

    template<typename Value_t>
    inline Value_t fp_real(const Value_t& x) { return x; }
    template<typename Value_t>
    inline Value_t fp_imag(const Value_t& ) { return Value_t(); }
    template<typename Value_t>
    inline Value_t fp_arg(const Value_t& x)
        { return x < Value_t() ? -fp_const_pi<Value_t>() : Value_t(); }
    template<typename Value_t>
    inline Value_t fp_conj(const Value_t& x) { return x; }
    template<typename Value_t>
    inline Value_t fp_polar(const Value_t& x, const Value_t& y)
        { return x * fp_cos(y); } // This is of course a meaningless function.

    template<typename Value_t>
    inline std::complex<Value_t> fp_atan2(const std::complex<Value_t>& y,
                                          const std::complex<Value_t>& x)
    {
        if(y == Value_t()) return fp_arg(x);
        if(x == Value_t()) return fp_const_pi<Value_t>() * Value_t(-0.5);
        // 2*atan(y / (sqrt(x^2+y^2) + x)    )
        // 2*atan(    (sqrt(x^2+y^2) - x) / y)
        std::complex<Value_t> res( fp_atan(y / (fp_hypot(x,y) + x)) );
        return res+res;
    }

// -------------------------------------------------------------------------
// Comparison
// -------------------------------------------------------------------------
    template<typename Value_t>
    inline bool fp_equal(const Value_t& x, const Value_t& y)
    { return IsIntType<Value_t>::result
            ? (x == y)
            : (fp_abs(x - y) <= Epsilon<Value_t>::value); }

    template<typename Value_t>
    inline bool fp_nequal(const Value_t& x, const Value_t& y)
    { return IsIntType<Value_t>::result
            ? (x != y)
            : (fp_abs(x - y) > Epsilon<Value_t>::value); }

    template<typename Value_t>
    inline bool fp_less(const Value_t& x, const Value_t& y)
    { return IsIntType<Value_t>::result
            ? (x < y)
            : (x < y - Epsilon<Value_t>::value); }

    template<typename Value_t>
    inline bool fp_lessOrEq(const Value_t& x, const Value_t& y)
    { return IsIntType<Value_t>::result
            ? (x <= y)
            : (x <= y + Epsilon<Value_t>::value); }


    template<typename Value_t>
    inline bool fp_greater(const Value_t& x, const Value_t& y)
    { return fp_less(y, x); }

    template<typename Value_t>
    inline bool fp_greaterOrEq(const Value_t& x, const Value_t& y)
    { return fp_lessOrEq(y, x); }

    template<typename Value_t>
    inline bool fp_truth(const Value_t& d)
    {
        return IsIntType<Value_t>::result
                ? d != Value_t()
                : fp_abs(d) >= Value_t(0.5);
    }

    template<typename Value_t>
    inline bool fp_absTruth(const Value_t& abs_d)
    {
        return IsIntType<Value_t>::result
                ? abs_d > Value_t()
                : abs_d >= Value_t(0.5);
    }

    template<typename Value_t>
    inline const Value_t& fp_min(const Value_t& d1, const Value_t& d2)
        { return d1<d2 ? d1 : d2; }

    template<typename Value_t>
    inline const Value_t& fp_max(const Value_t& d1, const Value_t& d2)
        { return d1>d2 ? d1 : d2; }

    template<typename Value_t>
    inline const Value_t fp_not(const Value_t& b)
        { return Value_t(!fp_truth(b)); }

    template<typename Value_t>
    inline const Value_t fp_notNot(const Value_t& b)
        { return Value_t(fp_truth(b)); }

    template<typename Value_t>
    inline const Value_t fp_absNot(const Value_t& b)
        { return Value_t(!fp_absTruth(b)); }

    template<typename Value_t>
    inline const Value_t fp_absNotNot(const Value_t& b)
        { return Value_t(fp_absTruth(b)); }

    template<typename Value_t>
    inline const Value_t fp_and(const Value_t& a, const Value_t& b)
        { return Value_t(fp_truth(a) && fp_truth(b)); }

    template<typename Value_t>
    inline const Value_t fp_or(const Value_t& a, const Value_t& b)
        { return Value_t(fp_truth(a) || fp_truth(b)); }

    template<typename Value_t>
    inline const Value_t fp_absAnd(const Value_t& a, const Value_t& b)
        { return Value_t(fp_absTruth(a) && fp_absTruth(b)); }

    template<typename Value_t>
    inline const Value_t fp_absOr(const Value_t& a, const Value_t& b)
        { return Value_t(fp_absTruth(a) || fp_absTruth(b)); }

    template<typename Value_t>
    inline const Value_t fp_make_imag(const Value_t& ) // Imaginary 1. In real mode, always zero.
    {
        return Value_t();
    }

    /////////////
    /* Opcode analysis functions are used by fp_opcode_add.inc */
    /* Moved here from fparser.cc because fp_opcode_add.inc
     * is also now included by fpoptimizer.cc
     */
    bool IsLogicalOpcode(unsigned op);
    bool IsComparisonOpcode(unsigned op);
    unsigned OppositeComparisonOpcode(unsigned op);
    bool IsNeverNegativeValueOpcode(unsigned op);
    bool IsAlwaysIntegerOpcode(unsigned op);
    bool IsUnaryOpcode(unsigned op);
    bool IsBinaryOpcode(unsigned op);
    bool IsVarOpcode(unsigned op);
    bool IsCommutativeOrParamSwappableBinaryOpcode(unsigned op);
    unsigned GetParamSwappedBinaryOpcode(unsigned op);

    template<bool ComplexType>
    bool HasInvalidRangesOpcode(unsigned op);

    template<typename Value_t>
    inline Value_t DegreesToRadians(const Value_t& degrees)
    {
        return degrees * fp_const_deg_to_rad<Value_t>();
    }

    template<typename Value_t>
    inline Value_t RadiansToDegrees(const Value_t& radians)
    {
        return radians * fp_const_rad_to_deg<Value_t>();
    }

    template<typename Value_t>
    inline long makeLongInteger(const Value_t& value)
    {
        return (long) fp_int(value);
    }

#ifdef FP_SUPPORT_COMPLEX_NUMBERS
    template<typename T>
    inline long makeLongInteger(const std::complex<T>& value)
    {
        return (long) fp_int( std::abs(value) );
    }
#endif

    // Is value an integer that fits in "long" datatype?
    template<typename Value_t>
    inline bool isLongInteger(const Value_t& value)
    {
        return value == Value_t( makeLongInteger(value) );
    }

    template<typename Value_t>
    inline bool isOddInteger(const Value_t& value)
    {
        const Value_t halfValue = (value + Value_t(1)) * Value_t(0.5);
        return fp_equal(halfValue, fp_floor(halfValue));
    }

    template<typename Value_t>
    inline bool isEvenInteger(const Value_t& value)
    {
        const Value_t halfValue = value * Value_t(0.5);
        return fp_equal(halfValue, fp_floor(halfValue));
    }

    template<typename Value_t>
    inline bool isInteger(const Value_t& value)
    {
        return fp_equal(value, fp_floor(value));
    }

#ifdef FP_SUPPORT_LONG_INT_TYPE
    template<>
    inline bool isEvenInteger(const long& value)
    {
        return value%2 == 0;
    }

    template<>
    inline bool isInteger(const long&) { return true; }

    template<>
    inline bool isLongInteger(const long&) { return true; }

    template<>
    inline long makeLongInteger(const long& value)
    {
        return value;
    }
#endif

#ifdef FP_SUPPORT_MPFR_FLOAT_TYPE
    template<>
    inline bool isInteger(const MpfrFloat& value) { return value.isInteger(); }

    template<>
    inline bool isEvenInteger(const MpfrFloat& value)
    {
        return isInteger(value) && value%2 == 0;
    }

    template<>
    inline long makeLongInteger(const MpfrFloat& value)
    {
        return (long) value.toInt();
    }
#endif

#ifdef FP_SUPPORT_GMP_INT_TYPE
    template<>
    inline bool isEvenInteger(const GmpInt& value)
    {
        return value%2 == 0;
    }

    template<>
    inline bool isInteger(const GmpInt&) { return true; }

    template<>
    inline long makeLongInteger(const GmpInt& value)
    {
        return (long) value.toInt();
    }
#endif

#ifdef FP_SUPPORT_LONG_INT_TYPE
    template<>
    inline bool isOddInteger(const long& value)
    {
        return value%2 != 0;
    }
#endif

#ifdef FP_SUPPORT_MPFR_FLOAT_TYPE
    template<>
    inline bool isOddInteger(const MpfrFloat& value)
    {
        return value.isInteger() && value%2 != 0;
    }
#endif

#ifdef FP_SUPPORT_GMP_INT_TYPE
    template<>
    inline bool isOddInteger(const GmpInt& value)
    {
        return value%2 != 0;
    }
#endif


// -------------------------------------------------------------------------
// fp_pow
// -------------------------------------------------------------------------
    // Commented versions in fparser.cc
    template<typename Value_t>
    inline Value_t fp_pow_with_exp_log(const Value_t& x, const Value_t& y)
    {
        return fp_exp(fp_log(x) * y);
    }

    template<typename Value_t>
    inline Value_t fp_powi(Value_t x, unsigned long y)
    {
        Value_t result(1);
        while(y != 0)
        {
            if(y & 1) { result *= x; y -= 1; }
            else      { x *= x;      y /= 2; }
        }
        return result;
    }

    template<typename Value_t>
    Value_t fp_pow(const Value_t& x, const Value_t& y)
    {
        if(x == Value_t(1)) return Value_t(1);
        if(isLongInteger(y))
        {
            if(y >= Value_t(0))
                return fp_powi(x, makeLongInteger(y));
            else
                return Value_t(1) / fp_powi(x, -makeLongInteger(y));
        }
        if(y >= Value_t(0))
        {
            if(x > Value_t(0)) return fp_pow_with_exp_log(x, y);
            if(x == Value_t(0)) return Value_t(0);
            if(!isInteger(y*Value_t(16)))
                return -fp_pow_with_exp_log(-x, y);
        }
        else
        {
            if(x > Value_t(0)) return fp_pow_with_exp_log(Value_t(1) / x, -y);
            if(x < Value_t(0))
            {
                if(!isInteger(y*Value_t(-16)))
                    return -fp_pow_with_exp_log(Value_t(-1) / x, -y);
            }
        }
        return fp_pow_base(x, y);
    }

    template<typename Value_t>
    inline Value_t fp_exp2(const Value_t& x)
    {
        return fp_pow(Value_t(2), x);
    }
} // namespace FUNCTIONPARSERTYPES

#endif // ONCE_FPARSER_H_
#endif // ONCE_FPARSER_AUX_H_