summaryrefslogtreecommitdiff
path: root/fpoptimizer/constantfolding.cc
blob: e3f24df3965bc3438b02e7e7d57d674c07b6d960 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
#include <algorithm>

#include "fpconfig.hh"
#include "fparser.hh"
#include "extrasrc/fptypes.hh"

#ifdef FP_SUPPORT_OPTIMIZER

#include "codetree.hh"
#include "optimize.hh"
#include "consts.hh"

#include <assert.h>

#include "rangeestimation.hh"
#include "constantfolding.hh"


#include "logic_boolgroups.hh"
/* ^For ConstantFolding_AndLogic()
 *      ConstantFolding_OrLogic()
 *      ConstantFolding_MulLogicItems()
 *      ConstantFolding_AddLogicItems()
 */

#include "logic_collections.hh"
/* ^For ConstantFolding_MulGrouping()
 *      ConstantFolding_AddGrouping()
 */

#include "logic_ifoperations.hh"
/* ^For ConstantFolding_IfOperations()
 */

#include "logic_powoperations.hh"
/* ^For ConstantFolding_PowOperations()
 */

#include "logic_comparisons.hh"
/* ^For ConstantFolding_Comparison()
 */

#define FP_MUL_COMBINE_EXPONENTS

namespace
{
    using namespace FUNCTIONPARSERTYPES;
    using namespace FPoptimizer_CodeTree;

    /*************************************/
    /* ADOPTING SAME-TYPE CHILDREN       */
    /*************************************/

    template<typename Value_t>
    static void AdoptChildrenWithSameOpcode(CodeTree<Value_t>& tree)
    {
        /* If the list contains another list of the same kind, assimilate it */
      #ifdef DEBUG_SUBSTITUTIONS
        bool assimilated = false;
      #endif
        for(size_t a=tree.GetParamCount(); a-- > 0; )
            if(tree.GetParam(a).GetOpcode() == tree.GetOpcode())
            {
              #ifdef DEBUG_SUBSTITUTIONS
                if(!assimilated)
                {
                    std::cout << "Before assimilation: "; DumpTree(tree);
                    std::cout << "\n";
                    assimilated = true;
                }
              #endif
                // Assimilate its children and remove it
                tree.AddParamsMove(tree.GetParam(a).GetUniqueRef().GetParams(), a);
            }
      #ifdef DEBUG_SUBSTITUTIONS
        if(assimilated)
        {
            std::cout << "After assimilation:   "; DumpTree(tree);
            std::cout << "\n";
        }
      #endif
    }
}

namespace FPoptimizer_CodeTree
{
    template<typename Value_t>
    void ConstantFolding(CodeTree<Value_t>& tree)
    {
        tree.Sort(); // Otherwise "0 <= acos(x)" does not get properly optimized
    #ifdef DEBUG_SUBSTITUTIONS
        void* stackptr=0;
        std::cout << "[" << (&stackptr) << "]Runs ConstantFolding for: ";
        DumpTree(tree);
        std::cout << "\n";
        DumpHashes(tree); std::cout << std::flush;
    #endif
        if(false)
        {
    redo:;
            tree.Sort();
        #ifdef DEBUG_SUBSTITUTIONS
            std::cout << "[" << (&stackptr) << "]Re-runs ConstantFolding: ";
            DumpTree(tree);
            std::cout << "\n";
            DumpHashes(tree);
        #endif
        }

        // Insert here any hardcoded constant-folding optimizations
        // that you want to be done whenever a new subtree is generated.
        /* Not recursive. */

        if(tree.GetOpcode() != cImmed)
        {
            range<Value_t> p = CalculateResultBoundaries(tree);
            if(p.min.known && p.max.known && p.min.val == p.max.val)
            {
                // Replace us with this immed
                tree.ReplaceWithImmed(p.min.val);
                goto do_return;
            }
        }

        if(false)
        {
            ReplaceTreeWithOne:  tree.ReplaceWithImmed(Value_t(1)); goto do_return;
            ReplaceTreeWithZero: tree.ReplaceWithImmed(Value_t(0)); goto do_return;
            ReplaceTreeWithParam0:
              #ifdef DEBUG_SUBSTITUTIONS
                std::cout << "Before replace: ";
                std::cout << std::hex
                          << '[' << tree.GetHash().hash1
                          << ',' << tree.GetHash().hash2
                          << ']' << std::dec;
                DumpTree(tree);
                std::cout << "\n";
              #endif
                tree.Become(tree.GetParam(0));
              #ifdef DEBUG_SUBSTITUTIONS
                std::cout << "After replace: ";
                std::cout << std::hex
                          << '[' << tree.GetHash().hash1
                          << ',' << tree.GetHash().hash2
                          << ']' << std::dec;
                DumpTree(tree);
                std::cout << "\n";
              #endif
                goto redo;
        }

        /* Constant folding */
        switch(tree.GetOpcode())
        {
            case cImmed:
                break; // nothing to do
            case VarBegin:
                break; // nothing to do

            case cAnd:
            case cAbsAnd:
            {
                AdoptChildrenWithSameOpcode(tree);
                bool has_nonlogical_values = false;
                for(size_t a=tree.GetParamCount(); a-- > 0; )
                {
                    if(!IsLogicalValue(tree.GetParam(a))) has_nonlogical_values = true;
                    switch(GetLogicalValue(tree.GetParam(a), tree.GetOpcode()==cAbsAnd))
                    {
                        case IsNever: goto ReplaceTreeWithZero;
                        case IsAlways: tree.DelParam(a); break; // x & y & 1 = x & y;  x & 1 = !!x
                        case Unknown: default: ;
                    }
                }
                switch(tree.GetParamCount())
                {
                    case 0: goto ReplaceTreeWithOne;
                    case 1: tree.SetOpcode(tree.GetOpcode()==cAnd ? cNotNot : cAbsNotNot); goto redo; // Replace self with the single operand
                    default:
                        if(tree.GetOpcode()==cAnd || !has_nonlogical_values)
                            if(ConstantFolding_AndLogic(tree)) goto redo;
                }
                break;
            }
            case cOr:
            case cAbsOr:
            {
                AdoptChildrenWithSameOpcode(tree);
                bool has_nonlogical_values = false;
                for(size_t a=tree.GetParamCount(); a-- > 0; )
                {
                    if(!IsLogicalValue(tree.GetParam(a))) has_nonlogical_values = true;
                    switch(GetLogicalValue(tree.GetParam(a), tree.GetOpcode()==cAbsOr))
                    {
                        case IsAlways: goto ReplaceTreeWithOne;
                        case IsNever: tree.DelParam(a); break;
                        case Unknown: default: ;
                    }
                }
                switch(tree.GetParamCount())
                {
                    case 0: goto ReplaceTreeWithZero;
                    case 1: tree.SetOpcode(tree.GetOpcode()==cOr ? cNotNot : cAbsNotNot); goto redo; // Replace self with the single operand
                    default:
                        if(tree.GetOpcode()==cOr || !has_nonlogical_values)
                            if(ConstantFolding_OrLogic(tree)) goto redo;
                }
                break;
            }
            case cNot:
            case cAbsNot:
            {
                unsigned opposite = 0;
                switch(tree.GetParam(0).GetOpcode())
                {
                    case cEqual:       opposite = cNEqual; break;
                    case cNEqual:      opposite = cEqual; break;
                    case cLess:        opposite = cGreaterOrEq; break;
                    case cGreater:     opposite = cLessOrEq; break;
                    case cLessOrEq:    opposite = cGreater; break;
                    case cGreaterOrEq: opposite = cLess; break;
                    case cNotNot:      opposite = cNot; break;
                    case cNot:         opposite = cNotNot; break;
                    case cAbsNot:      opposite = cAbsNotNot; break;
                    case cAbsNotNot:   opposite = cAbsNot; break;
                    default: break;
                }
                if(opposite)
                {
                    tree.SetOpcode(OPCODE(opposite));
                    tree.SetParamsMove(tree.GetParam(0).GetUniqueRef().GetParams());
                    goto redo;
                }

                // If the sub-expression evaluates to approx. zero, yield one.
                // If the sub-expression evaluates to approx. nonzero, yield zero.
                switch(GetLogicalValue(tree.GetParam(0), tree.GetOpcode()==cAbsNot))
                {
                    case IsAlways: goto ReplaceTreeWithZero;
                    case IsNever: goto ReplaceTreeWithOne;
                    case Unknown: default: ;
                }
                if(tree.GetOpcode() == cNot && GetPositivityInfo(tree.GetParam(0)) == IsAlways)
                    tree.SetOpcode(cAbsNot);

                if(tree.GetParam(0).GetOpcode() == cIf
                || tree.GetParam(0).GetOpcode() == cAbsIf)
                {
                    CodeTree<Value_t> iftree = tree.GetParam(0);
                    const CodeTree<Value_t>& ifp1 = iftree.GetParam(1);
                    const CodeTree<Value_t>& ifp2 = iftree.GetParam(2);
                    if(ifp1.GetOpcode() == cNot
                    || ifp1.GetOpcode() == cAbsNot)
                    {
                        // cNot [(cIf [x (cNot[y]) z])] -> cIf [x (cNotNot[y]) (cNot[z])]
                        tree.SetParam(0, iftree.GetParam(0)); // condition
                        CodeTree<Value_t> p1;
                        p1.SetOpcode(ifp1.GetOpcode()==cNot ? cNotNot : cAbsNotNot);
                        p1.AddParam(ifp1.GetParam(0));
                        p1.Rehash();
                        tree.AddParamMove(p1);
                        CodeTree<Value_t> p2;
                        p2.SetOpcode(tree.GetOpcode());
                        p2.AddParam(ifp2);
                        p2.Rehash();
                        tree.AddParamMove(p2);
                        tree.SetOpcode(iftree.GetOpcode());
                        goto redo;
                    }
                    if(ifp2.GetOpcode() == cNot
                    || ifp2.GetOpcode() == cAbsNot)
                    {
                        // cNot [(cIf [x y (cNot[z])])] -> cIf [x (cNot[y]) (cNotNot[z])]
                        tree.SetParam(0, iftree.GetParam(0)); // condition
                        CodeTree<Value_t> p1;
                        p1.SetOpcode(tree.GetOpcode());
                        p1.AddParam(ifp1);
                        p1.Rehash();
                        tree.AddParamMove(p1);
                        CodeTree<Value_t> p2;
                        p2.SetOpcode(ifp2.GetOpcode()==cNot ? cNotNot : cAbsNotNot);
                        p2.AddParam(ifp2.GetParam(0));
                        p2.Rehash();
                        tree.AddParamMove(p2);
                        tree.SetOpcode(iftree.GetOpcode());
                        goto redo;
                    }
                }
                break;
            }
            case cNotNot:
            case cAbsNotNot:
            {
                // The function of cNotNot is to protect a logical value from
                // changing. If the parameter is already a logical value,
                // then the cNotNot opcode is redundant.
                if(IsLogicalValue(tree.GetParam(0)))
                    goto ReplaceTreeWithParam0;

                // If the sub-expression evaluates to approx. zero, yield zero.
                // If the sub-expression evaluates to approx. nonzero, yield one.
                switch(GetLogicalValue(tree.GetParam(0), tree.GetOpcode()==cAbsNotNot))
                {
                    case IsNever: goto ReplaceTreeWithZero;
                    case IsAlways: goto ReplaceTreeWithOne;
                    case Unknown: default: ;
                }
                if(tree.GetOpcode() == cNotNot && GetPositivityInfo(tree.GetParam(0)) == IsAlways)
                    tree.SetOpcode(cAbsNotNot);

                if(tree.GetParam(0).GetOpcode() == cIf
                || tree.GetParam(0).GetOpcode() == cAbsIf)
                {
                    CodeTree<Value_t> iftree = tree.GetParam(0);
                    const CodeTree<Value_t>& ifp1 = iftree.GetParam(1);
                    const CodeTree<Value_t>& ifp2 = iftree.GetParam(2);
                    if(ifp1.GetOpcode() == cNot
                    || ifp1.GetOpcode() == cAbsNot)
                    {
                        // cNotNot [(cIf [x (cNot[y]) z])] -> cIf [x (cNot[y]) (cNotNot[z])]
                        tree.SetParam(0, iftree.GetParam(0)); // condition
                        tree.AddParam(ifp1);
                        CodeTree<Value_t> p2;
                        p2.SetOpcode(tree.GetOpcode());
                        p2.AddParam(ifp2);
                        p2.Rehash();
                        tree.AddParamMove(p2);
                        tree.SetOpcode(iftree.GetOpcode());
                        goto redo;
                    }
                    if(ifp2.GetOpcode() == cNot
                    || ifp2.GetOpcode() == cAbsNot)
                    {
                        // cNotNot [(cIf [x y (cNot[z])])] -> cIf [x (cNotNot[y]) (cNot[z])]
                        tree.SetParam(0, iftree.GetParam(0)); // condition
                        CodeTree<Value_t> p1;
                        p1.SetOpcode(tree.GetOpcode());
                        p1.AddParam(ifp1);
                        p1.Rehash();
                        tree.AddParamMove(p1);
                        tree.AddParam(ifp2);
                        tree.SetOpcode(iftree.GetOpcode());
                        goto redo;
                    }
                }
                break;
            }
            case cIf:
            case cAbsIf:
            {
                if(ConstantFolding_IfOperations(tree))
                    goto redo;
                break;
            }
            case cMul:
            {
            NowWeAreMulGroup: ;
                AdoptChildrenWithSameOpcode(tree);
                // If one sub-expression evalutes to exact zero, yield zero.
                Value_t immed_product = Value_t(1);
                size_t n_immeds = 0; bool needs_resynth=false;
                for(size_t a=0; a<tree.GetParamCount(); ++a)
                {
                    if(!tree.GetParam(a).IsImmed()) continue;
                    // ^ Only check constant values
                    Value_t immed = tree.GetParam(a).GetImmed();
                    if(immed == Value_t(0) ) goto ReplaceTreeWithZero;
                    immed_product *= immed; ++n_immeds;
                }
                // Merge immeds.
                if(n_immeds > 1 || (n_immeds == 1 && fp_equal(immed_product, Value_t(1))))
                    needs_resynth = true;
                if(needs_resynth)
                {
                    // delete immeds and add new ones
                #ifdef DEBUG_SUBSTITUTIONS
                    std::cout << "cMul: Will add new immed " << immed_product << "\n";
                #endif
                    for(size_t a=tree.GetParamCount(); a-->0; )
                        if(tree.GetParam(a).IsImmed())
                        {
                        #ifdef DEBUG_SUBSTITUTIONS
                            std::cout << " - For that, deleting immed " << tree.GetParam(a).GetImmed();
                            std::cout << "\n";
                        #endif
                            tree.DelParam(a);
                        }
                    if(!fp_equal(immed_product, Value_t(1)))
                        tree.AddParam( CodeTreeImmed<Value_t> (immed_product) );
                }
                switch(tree.GetParamCount())
                {
                    case 0: goto ReplaceTreeWithOne;
                    case 1: goto ReplaceTreeWithParam0; // Replace self with the single operand
                    default:
                        if(ConstantFolding_MulGrouping(tree)) goto redo;
                        if(ConstantFolding_MulLogicItems(tree)) goto redo;
                }
                break;
            }
            case cAdd:
            {
                AdoptChildrenWithSameOpcode(tree);
                Value_t immed_sum = 0.0;
                size_t n_immeds = 0; bool needs_resynth=false;
                for(size_t a=0; a<tree.GetParamCount(); ++a)
                {
                    if(!tree.GetParam(a).IsImmed()) continue;
                    // ^ Only check constant values
                    Value_t immed = tree.GetParam(a).GetImmed();
                    immed_sum += immed; ++n_immeds;
                }
                // Merge immeds.
                if(n_immeds > 1 || (n_immeds == 1 && immed_sum == Value_t(0)))
                    needs_resynth = true;
                if(needs_resynth)
                {
                    // delete immeds and add new ones
                #ifdef DEBUG_SUBSTITUTIONS
                    std::cout << "cAdd: Will add new immed " << immed_sum << "\n";
                    std::cout << "In: "; DumpTree(tree);
                    std::cout << "\n";
                #endif
                    for(size_t a=tree.GetParamCount(); a-->0; )
                        if(tree.GetParam(a).IsImmed())
                        {
                        #ifdef DEBUG_SUBSTITUTIONS
                            std::cout << " - For that, deleting immed " << tree.GetParam(a).GetImmed();
                            std::cout << "\n";
                        #endif
                            tree.DelParam(a);
                        }
                    if(!(immed_sum == Value_t(0.0)))
                        tree.AddParam( CodeTreeImmed<Value_t> (immed_sum) );
                }
                switch(tree.GetParamCount())
                {
                    case 0: goto ReplaceTreeWithZero;
                    case 1: goto ReplaceTreeWithParam0; // Replace self with the single operand
                    default:
                        if(ConstantFolding_AddGrouping(tree)) goto redo;
                        if(ConstantFolding_AddLogicItems(tree)) goto redo;
                }
                break;
            }
            case cMin:
            {
                AdoptChildrenWithSameOpcode(tree);
                /* Goal: If there is any pair of two operands, where
                 * their ranges form a disconnected set, i.e. as below:
                 *     xxxxx
                 *            yyyyyy
                 * Then remove the larger one.
                 *
                 * Algorithm: 1. figure out the smallest maximum of all operands.
                 *            2. eliminate all operands where their minimum is
                 *               larger than the selected maximum.
                 */
                size_t preserve=0;
                range<Value_t> smallest_maximum;
                for(size_t a=0; a<tree.GetParamCount(); ++a)
                {
                    while(a+1 < tree.GetParamCount() && tree.GetParam(a).IsIdenticalTo(tree.GetParam(a+1)))
                        tree.DelParam(a+1);
                    range<Value_t> p = CalculateResultBoundaries( tree.GetParam(a) );
                    if(p.max.known && (!smallest_maximum.max.known || (p.max.val) < smallest_maximum.max.val))
                    {
                        smallest_maximum.max.val = p.max.val;
                        smallest_maximum.max.known = true;
                        preserve=a;
                }   }
                if(smallest_maximum.max.known)
                    for(size_t a=tree.GetParamCount(); a-- > 0; )
                    {
                        range<Value_t> p = CalculateResultBoundaries( tree.GetParam(a) );
                        if(p.min.known && a != preserve && p.min.val >= smallest_maximum.max.val)
                            tree.DelParam(a);
                    }
                //fprintf(stderr, "Remains: %u\n", (unsigned)tree.GetParamCount());
                if(tree.GetParamCount() == 1)
                {
                    // Replace self with the single operand
                    goto ReplaceTreeWithParam0;
                }
                break;
            }
            case cMax:
            {
                AdoptChildrenWithSameOpcode(tree);
                /* Goal: If there is any pair of two operands, where
                 * their ranges form a disconnected set, i.e. as below:
                 *     xxxxx
                 *            yyyyyy
                 * Then remove the smaller one.
                 *
                 * Algorithm: 1. figure out the biggest minimum of all operands.
                 *            2. eliminate all operands where their maximum is
                 *               smaller than the selected minimum.
                 */
                size_t preserve=0;
                range<Value_t> biggest_minimum;
                for(size_t a=0; a<tree.GetParamCount(); ++a)
                {
                    while(a+1 < tree.GetParamCount() && tree.GetParam(a).IsIdenticalTo(tree.GetParam(a+1)))
                        tree.DelParam(a+1);
                    range<Value_t> p = CalculateResultBoundaries( tree.GetParam(a) );
                    if(p.min.known && (!biggest_minimum.min.known || p.min.val > biggest_minimum.min.val))
                    {
                        biggest_minimum.min.val = p.min.val;
                        biggest_minimum.min.known = true;
                        preserve=a;
                }   }
                if(biggest_minimum.min.known)
                {
                    //fprintf(stderr, "Removing all where max < %g\n", biggest_minimum.min.val);
                    for(size_t a=tree.GetParamCount(); a-- > 0; )
                    {
                        range<Value_t> p = CalculateResultBoundaries( tree.GetParam(a) );
                        if(p.max.known && a != preserve && (p.max.val) < biggest_minimum.min.val)
                        {
                            //fprintf(stderr, "Removing %g\n", p.max.val);
                            tree.DelParam(a);
                        }
                    }
                }
                //fprintf(stderr, "Remains: %u\n", (unsigned)tree.GetParamCount());
                if(tree.GetParamCount() == 1)
                {
                    // Replace self with the single operand
                    goto ReplaceTreeWithParam0;
                }
                break;
            }

            case cEqual:
            case cNEqual:
            case cLess:
            case cGreater:
            case cLessOrEq:
            case cGreaterOrEq:
                if(ConstantFolding_Comparison(tree)) goto redo;
                break;

            case cAbs:
            {
                /* If we know the operand is always positive, cAbs is redundant.
                 * If we know the operand is always negative, use actual negation.
                 */
                range<Value_t> p0 = CalculateResultBoundaries( tree.GetParam(0) );
                if(p0.min.known && p0.min.val >= Value_t(0.0))
                    goto ReplaceTreeWithParam0;
                if(p0.max.known && p0.max.val <= fp_const_negativezero<Value_t>())
                {
                    /* abs(negative) = negative*-1 */
                    tree.SetOpcode(cMul);
                    tree.AddParam( CodeTreeImmed(Value_t(1)) );
                    /* The caller of ConstantFolding() will do Sort() and Rehash() next.
                     * Thus, no need to do it here. */
                    /* We were changed into a cMul group. Do cMul folding. */
                    goto NowWeAreMulGroup;
                }
                /* If the operand is a cMul group, find elements
                 * that are always positive and always negative,
                 * and move them out, e.g. abs(p*n*x*y) = p*(-n)*abs(x*y)
                 */
                if(tree.GetParam(0).GetOpcode() == cMul)
                {
                    const CodeTree<Value_t>& p = tree.GetParam(0);
                    std::vector<CodeTree<Value_t> > pos_set;
                    std::vector<CodeTree<Value_t> > neg_set;
                    for(size_t a=0; a<p.GetParamCount(); ++a)
                    {
                        p0 = CalculateResultBoundaries( p.GetParam(a) );
                        if(p0.min.known && p0.min.val >= Value_t(0.0))
                            { pos_set.push_back(p.GetParam(a)); }
                        if(p0.max.known && p0.max.val <= fp_const_negativezero<Value_t>())
                            { neg_set.push_back(p.GetParam(a)); }
                    }
                #ifdef DEBUG_SUBSTITUTIONS
                    std::cout << "Abs: mul group has " << pos_set.size()
                              << " pos, " << neg_set.size() << "neg\n";
                #endif
                    if(!pos_set.empty() || !neg_set.empty())
                    {
                #ifdef DEBUG_SUBSTITUTIONS
                        std::cout << "AbsReplace-Before: ";
                        DumpTree(tree);
                        std::cout << "\n" << std::flush;
                        DumpHashes(tree, std::cout);
                #endif
                        CodeTree<Value_t> pclone;
                        pclone.SetOpcode(cMul);
                        for(size_t a=0; a<p.GetParamCount(); ++a)
                        {
                            p0 = CalculateResultBoundaries( p.GetParam(a) );
                            if((p0.min.known && p0.min.val >= Value_t(0.0))
                            || (p0.max.known && p0.max.val <= fp_const_negativezero<Value_t>()))
                                {/*pclone.DelParam(a);*/}
                            else
                                pclone.AddParam( p.GetParam(a) );
                            /* Here, p*n*x*y -> x*y.
                             * p is saved in pos_set[]
                             * n is saved in neg_set[]
                             */
                        }
                        pclone.Rehash();
                        CodeTree<Value_t> abs_mul;
                        abs_mul.SetOpcode(cAbs);
                        abs_mul.AddParamMove(pclone);
                        abs_mul.Rehash();
                        CodeTree<Value_t> mulgroup;
                        mulgroup.SetOpcode(cMul);
                        mulgroup.AddParamMove(abs_mul); // cAbs[whatever remains in p]
                        mulgroup.AddParamsMove(pos_set);
                        /* Now:
                         * mulgroup  = p * Abs(x*y)
                         */
                        if(!neg_set.empty())
                        {
                            if(neg_set.size() % 2)
                                mulgroup.AddParam( CodeTreeImmed(Value_t(-1)) );
                            mulgroup.AddParamsMove(neg_set);
                            /* Now:
                             * mulgroup = p * n * -1 * Abs(x*y)
                             */
                        }
                        tree.Become(mulgroup);
                #ifdef DEBUG_SUBSTITUTIONS
                        std::cout << "AbsReplace-After: ";
                        DumpTree(tree, std::cout);
                        std::cout << "\n" << std::flush;
                        DumpHashes(tree, std::cout);
                #endif
                        /* We were changed into a cMul group. Do cMul folding. */
                        goto NowWeAreMulGroup;
                    }
                }
                break;
            }

            #define HANDLE_UNARY_CONST_FUNC(funcname) \
                if(tree.GetParam(0).IsImmed()) \
                    { tree.ReplaceWithImmed( funcname(tree.GetParam(0).GetImmed()) ); \
                      goto do_return; }

            case cLog:
                HANDLE_UNARY_CONST_FUNC(fp_log);
                if(tree.GetParam(0).GetOpcode() == cPow)
                {
                    CodeTree<Value_t> pow = tree.GetParam(0);
                    if(GetPositivityInfo(pow.GetParam(0)) == IsAlways)  // log(posi ^ y) = y*log(posi)
                    {
                        pow.CopyOnWrite();
                        pow.SetOpcode(cLog);
                        tree.SetOpcode(cMul);
                        tree.AddParamMove(pow.GetParam(1));
                        pow.DelParam(1);
                        pow.Rehash();
                        tree.SetParamMove(0, pow);
                        goto NowWeAreMulGroup;
                    }
                    if(GetEvennessInfo(pow.GetParam(1)) == IsAlways) // log(x ^ even) = even*log(abs(x))
                    {
                        pow.CopyOnWrite();
                        CodeTree<Value_t> abs;
                        abs.SetOpcode(cAbs);
                        abs.AddParamMove(pow.GetParam(0));
                        abs.Rehash();
                        pow.SetOpcode(cLog);
                        tree.SetOpcode(cMul);
                        pow.SetParamMove(0, abs);
                        tree.AddParamMove(pow.GetParam(1));
                        pow.DelParam(1);
                        pow.Rehash();
                        tree.SetParamMove(0, pow);
                        goto NowWeAreMulGroup;
                    }
                }
                else if(tree.GetParam(0).GetOpcode() == cAbs)
                {
                    // log(abs(x^y)) = y*log(abs(x))
                    CodeTree<Value_t> pow = tree.GetParam(0).GetParam(0);
                    if(pow.GetOpcode() == cPow)
                    {
                        pow.CopyOnWrite();
                        CodeTree<Value_t> abs;
                        abs.SetOpcode(cAbs);
                        abs.AddParamMove(pow.GetParam(0));
                        abs.Rehash();
                        pow.SetOpcode(cLog);
                        tree.SetOpcode(cMul);
                        pow.SetParamMove(0, abs);
                        tree.AddParamMove(pow.GetParam(1));
                        pow.DelParam(1);
                        pow.Rehash();
                        tree.SetParamMove(0, pow);
                        goto NowWeAreMulGroup;
                    }
                }
                break;
            case cAcosh: HANDLE_UNARY_CONST_FUNC(fp_acosh); break;
            case cAsinh: HANDLE_UNARY_CONST_FUNC(fp_asinh); break;
            case cAtanh: HANDLE_UNARY_CONST_FUNC(fp_atanh); break;
            case cAcos: HANDLE_UNARY_CONST_FUNC(fp_acos); break;
            case cAsin: HANDLE_UNARY_CONST_FUNC(fp_asin); break;
            case cAtan: HANDLE_UNARY_CONST_FUNC(fp_atan); break;
            case cCosh: HANDLE_UNARY_CONST_FUNC(fp_cosh); break;
            case cSinh: HANDLE_UNARY_CONST_FUNC(fp_sinh); break;
            case cTanh: HANDLE_UNARY_CONST_FUNC(fp_tanh); break;
            case cSin: HANDLE_UNARY_CONST_FUNC(fp_sin); break;
            case cCos: HANDLE_UNARY_CONST_FUNC(fp_cos); break;
            case cTan: HANDLE_UNARY_CONST_FUNC(fp_tan); break;
            case cCeil:
                if(GetIntegerInfo(tree.GetParam(0)) == IsAlways) goto ReplaceTreeWithParam0;
                HANDLE_UNARY_CONST_FUNC(fp_ceil); break;
            case cTrunc:
                if(GetIntegerInfo(tree.GetParam(0)) == IsAlways) goto ReplaceTreeWithParam0;
                HANDLE_UNARY_CONST_FUNC(fp_trunc); break;
            case cFloor:
                if(GetIntegerInfo(tree.GetParam(0)) == IsAlways) goto ReplaceTreeWithParam0;
                HANDLE_UNARY_CONST_FUNC(fp_floor); break;
            case cInt:
                if(GetIntegerInfo(tree.GetParam(0)) == IsAlways) goto ReplaceTreeWithParam0;
                HANDLE_UNARY_CONST_FUNC(fp_int); break;
            case cCbrt: HANDLE_UNARY_CONST_FUNC(fp_cbrt); break; // converted into cPow x 0.33333
            case cSqrt: HANDLE_UNARY_CONST_FUNC(fp_sqrt); break; // converted into cPow x 0.5
            case cExp: HANDLE_UNARY_CONST_FUNC(fp_exp); break; // convered into cPow CONSTANT_E x
            case cLog2: HANDLE_UNARY_CONST_FUNC(fp_log2); break;
            case cLog10: HANDLE_UNARY_CONST_FUNC(fp_log10); break;

            case cLog2by:
                if(tree.GetParam(0).IsImmed()
                && tree.GetParam(1).IsImmed())
                    { tree.ReplaceWithImmed( fp_log2(tree.GetParam(0).GetImmed()) * tree.GetParam(1).GetImmed() );
                      goto do_return; }
                break;

            case cArg: HANDLE_UNARY_CONST_FUNC(fp_arg); break;
            case cConj: HANDLE_UNARY_CONST_FUNC(fp_conj); break;
            case cImag: HANDLE_UNARY_CONST_FUNC(fp_imag); break;
            case cReal: HANDLE_UNARY_CONST_FUNC(fp_real); break;
            case cPolar:
                if(tree.GetParam(0).IsImmed()
                && tree.GetParam(1).IsImmed())
                    { tree.ReplaceWithImmed( fp_polar(tree.GetParam(0).GetImmed(), tree.GetParam(1).GetImmed() ) );
                      goto do_return; }
                break;

            case cMod: /* Can more be done than this? */
                if(tree.GetParam(0).IsImmed()
                && tree.GetParam(1).IsImmed())
                    { tree.ReplaceWithImmed( fp_mod(tree.GetParam(0).GetImmed(), tree.GetParam(1).GetImmed()) );
                      goto do_return; }
                break;

            case cAtan2:
            {
                /* Range based optimizations for (y,x):
                 * If y is +0 and x <= -0, +pi is returned
                 * If y is -0 and x <= -0, -pi is returned (assumed never happening)
                 * If y is +0 and x >= +0, +0 is returned
                 * If y is -0 and x >= +0, -0 is returned  (assumed never happening)
                 * If x is +-0 and y < 0, -pi/2 is returned
                 * If x is +-0 and y > 0, +pi/2 is returned
                 * Otherwise, perform constant folding when available
                 * If we know x <> 0, convert into atan(y / x)
                 *   TODO: Figure out whether the above step is wise
                 *         It allows e.g. atan2(6*x, 3*y) -> atan(2*x/y)
                 *         when we know y != 0
                 */
                range<Value_t> p0 = CalculateResultBoundaries( tree.GetParam(0) );
                range<Value_t> p1 = CalculateResultBoundaries( tree.GetParam(1) );
                if(tree.GetParam(0).IsImmed()
                && fp_equal(tree.GetParam(0).GetImmed(), Value_t(0)))   // y == 0
                {
                    if(p1.max.known && (p1.max.val) < Value_t(0))    // y == 0 && x < 0
                        { tree.ReplaceWithImmed( fp_const_pi<Value_t>() ); goto do_return; }
                    if(p1.min.known && p1.min.val >= Value_t(0.0))  // y == 0 && x >= 0.0
                        { tree.ReplaceWithImmed( Value_t(0) ); goto do_return; }
                }
                if(tree.GetParam(1).IsImmed()
                && fp_equal(tree.GetParam(1).GetImmed(), Value_t(0)))   // x == 0
                {
                    if(p0.max.known && (p0.max.val) < Value_t(0))   // y < 0 && x == 0
                        { tree.ReplaceWithImmed( -fp_const_pihalf<Value_t>() ); goto do_return; }
                    if(p0.min.known && p0.min.val > Value_t(0))     // y > 0 && x == 0
                        { tree.ReplaceWithImmed(  fp_const_pihalf<Value_t>() ); goto do_return; }
                }
                if(tree.GetParam(0).IsImmed()
                && tree.GetParam(1).IsImmed())
                    { tree.ReplaceWithImmed( fp_atan2(tree.GetParam(0).GetImmed(),
                                             tree.GetParam(1).GetImmed()) );
                      goto do_return; }
                if((p1.min.known && p1.min.val > Value_t(0))            // p1 != 0.0
                || (p1.max.known && (p1.max.val) < fp_const_negativezero<Value_t>())) // become atan(p0 / p1)
                {
                    CodeTree<Value_t> pow_tree;
                    pow_tree.SetOpcode(cPow);
                    pow_tree.AddParamMove(tree.GetParam(1));
                    pow_tree.AddParam(CodeTreeImmed(Value_t(-1)));
                    pow_tree.Rehash();
                    CodeTree<Value_t> div_tree;
                    div_tree.SetOpcode(cMul);
                    div_tree.AddParamMove(tree.GetParam(0));
                    div_tree.AddParamMove(pow_tree);
                    div_tree.Rehash();
                    tree.SetOpcode(cAtan);
                    tree.SetParamMove(0, div_tree);
                    tree.DelParam(1);
                }
                break;
            }

            case cPow:
            {
                if(ConstantFolding_PowOperations(tree)) goto redo;
                break;
            }

            /* The following opcodes are processed by GenerateFrom()
             * within fpoptimizer_bytecode_to_codetree.cc and thus
             * they will never occur in the calling context for the
             * most of the parsing context. They may however occur
             * at the late phase, so we deal with them.
             */
            case cDiv: // converted into cPow y -1
                if(tree.GetParam(0).IsImmed()
                && tree.GetParam(1).IsImmed()
                && tree.GetParam(1).GetImmed() != Value_t(0.0))
                    { tree.ReplaceWithImmed( tree.GetParam(0).GetImmed() / tree.GetParam(1).GetImmed() );
                      goto do_return; }
                break;
            case cInv: // converted into cPow y -1
                if(tree.GetParam(0).IsImmed()
                && tree.GetParam(0).GetImmed() != Value_t(0.0))
                    { tree.ReplaceWithImmed( Value_t(1) / tree.GetParam(0).GetImmed() );
                      goto do_return; }
                // Note: Could use (mulgroup)^immed optimization from cPow
                break;
            case cSub: // converted into cMul y -1
                if(tree.GetParam(0).IsImmed()
                && tree.GetParam(1).IsImmed())
                    { tree.ReplaceWithImmed( tree.GetParam(0).GetImmed() - tree.GetParam(1).GetImmed() );
                      goto do_return; }
                break;
            case cNeg: // converted into cMul x -1
                if(tree.GetParam(0).IsImmed())
                    { tree.ReplaceWithImmed( -tree.GetParam(0).GetImmed() );
                      goto do_return; }
                break;
            case cRad: // converted into cMul x CONSTANT_RD
                if(tree.GetParam(0).IsImmed())
                    { tree.ReplaceWithImmed( RadiansToDegrees( tree.GetParam(0).GetImmed() ) );
                      goto do_return; }
                break;
            case cDeg: // converted into cMul x CONSTANT_DR
                if(tree.GetParam(0).IsImmed())
                    { tree.ReplaceWithImmed( DegreesToRadians( tree.GetParam(0).GetImmed() ) );
                      goto do_return; }
                break;
            case cSqr: // converted into cMul x x
                if(tree.GetParam(0).IsImmed())
                    { tree.ReplaceWithImmed( tree.GetParam(0).GetImmed() * tree.GetParam(0).GetImmed() );
                      goto do_return; }
                break;
            case cExp2: // converted into cPow 2.0 x
                HANDLE_UNARY_CONST_FUNC(fp_exp2); break;
            case cRSqrt: // converted into cPow x -0.5
                if(tree.GetParam(0).IsImmed())
                    { tree.ReplaceWithImmed( Value_t(1) / fp_sqrt(tree.GetParam(0).GetImmed()) );
                      goto do_return; }
                break;
            case cCot: // converted into cMul (cPow (cTan x) -1)
                if(tree.GetParam(0).IsImmed())
                    { Value_t tmp = fp_tan(tree.GetParam(0).GetImmed());
                      if(fp_nequal(tmp, Value_t(0)))
                      { tree.ReplaceWithImmed( Value_t(1) / tmp );
                        goto do_return; } }
                break;
            case cSec: // converted into cMul (cPow (cCos x) -1)
                if(tree.GetParam(0).IsImmed())
                    { Value_t tmp = fp_cos(tree.GetParam(0).GetImmed());
                      if(fp_nequal(tmp, Value_t(0)))
                      { tree.ReplaceWithImmed( Value_t(1) / tmp );
                        goto do_return; } }
                break;
            case cCsc: // converted into cMul (cPow (cSin x) -1)
                if(tree.GetParam(0).IsImmed())
                    { Value_t tmp = fp_sin(tree.GetParam(0).GetImmed());
                      if(fp_nequal(tmp, Value_t(0)))
                      { tree.ReplaceWithImmed( Value_t(1) / tmp );
                        goto do_return; } }
                break;
            case cHypot: // converted into cSqrt(cAdd(cMul(x x), cMul(y y)))
                if(tree.GetParam(0).IsImmed() && tree.GetParam(1).IsImmed())
                {
                    tree.ReplaceWithImmed( fp_hypot(tree.GetParam(0).GetImmed(),
                                           tree.GetParam(1).GetImmed()) );
                    goto do_return;
                }
                break;

            /* Opcodes that do not occur in the tree for other reasons */
            case cRDiv: // version of cDiv
            case cRSub: // version of cSub
            case cDup:
            case cFetch:
            case cPopNMov:
            case cSinCos:
            case cSinhCosh:
            case cNop:
            case cJump:
                break; /* Should never occur */

            /* Opcodes that we can't do anything about */
            case cPCall:
            case cFCall:
                break;
        }
    do_return:;
#ifdef DEBUG_SUBSTITUTIONS
        std::cout << "[" << (&stackptr) << "]Done ConstantFolding, result: ";
        DumpTree(tree);
        std::cout << "\n";
        DumpHashes(tree);
#endif
    }
}

/* BEGIN_EXPLICIT_INSTANTATION */
#include "instantiate.hh"
namespace FPoptimizer_CodeTree
{
#define FP_INSTANTIATE(type) \
    template void ConstantFolding(CodeTree<type>& );
    FPOPTIMIZER_EXPLICITLY_INSTANTIATE(FP_INSTANTIATE)
#undef FP_INSTANTIATE
}
/* END_EXPLICIT_INSTANTATION */

#endif