summaryrefslogtreecommitdiff
path: root/magick.py
blob: 8299cf1c5d7738dcfabf0dded90991963144caec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#!/usr/bin/env python3

import sys
import numpy
import scipy.signal
import zlib
import struct


def find_closest_palette_color(color, palette):
    if color.ndim == 0:
        idx = (numpy.abs(palette - color)).argmin()
    else:
        # naive distance function by computing the euclidean distance in RGB space
        idx = ((palette - color) ** 2).sum(axis=-1).argmin()
    return palette[idx]


def floyd_steinberg(img, palette):
    for y in range(img.shape[0]):
        for x in range(img.shape[1]):
            oldpixel = img[y, x]
            newpixel = find_closest_palette_color(oldpixel, palette)
            quant_error = oldpixel - newpixel
            img[y, x] = newpixel
            if x + 1 < img.shape[1]:
                img[y, x + 1] += quant_error * 7 / 16
            if y + 1 < img.shape[0]:
                img[y + 1, x - 1] += quant_error * 3 / 16
                img[y + 1, x] += quant_error * 5 / 16
            if x + 1 < img.shape[1] and y + 1 < img.shape[0]:
                img[y + 1, x + 1] += quant_error * 1 / 16
    return img


def convolve_rgba(img, kernel):
    return numpy.stack(
        (
            scipy.signal.convolve2d(img[:, :, 0], kernel, "same"),
            scipy.signal.convolve2d(img[:, :, 1], kernel, "same"),
            scipy.signal.convolve2d(img[:, :, 2], kernel, "same"),
            scipy.signal.convolve2d(img[:, :, 3], kernel, "same"),
        ),
        axis=-1,
    )


def rgb2gray(img):
    result = numpy.zeros((60, 60), dtype=numpy.dtype("int64"))
    for y in range(img.shape[0]):
        for x in range(img.shape[1]):
            clin = sum(img[y, x] * [0.2126, 0.7152, 0.0722]) / 0xFFFF
            if clin <= 0.0031308:
                csrgb = 12.92 * clin
            else:
                csrgb = 1.055 * clin ** (1 / 2.4) - 0.055
            result[y, x] = csrgb * 0xFFFF
    return result


def palettize(img, pal):
    result = numpy.zeros((img.shape[0], img.shape[1]), dtype=numpy.dtype("int64"))
    for y in range(img.shape[0]):
        for x in range(img.shape[1]):
            for i, col in enumerate(pal):
                if numpy.array_equal(img[y, x], col):
                    result[y, x] = i
                    break
            else:
                raise Exception()
    return result


def write_png(data, path, bitdepth, colortype, palette=None):
    with open(path, "wb") as f:
        f.write(b"\x89PNG\r\n\x1A\n")
        # PNG image type        Colour type Allowed bit depths
        # Greyscale             0           1, 2, 4, 8, 16
        # Truecolour            2           8, 16
        # Indexed-colour        3           1, 2, 4, 8
        # Greyscale with alpha  4           8, 16
        # Truecolour with alpha 6           8, 16
        block = b"IHDR" + struct.pack(
            ">IIBBBBB",
            data.shape[1],  # width
            data.shape[0],  # height
            bitdepth,  # bitdepth
            colortype,  # colortype
            0,  # compression
            0,  # filtertype
            0,  # interlaced
        )
        f.write(
            struct.pack(">I", len(block) - 4)
            + block
            + struct.pack(">I", zlib.crc32(block))
        )
        if palette is not None:
            block = b"PLTE"
            for col in palette:
                block += struct.pack(">BBB", col[0], col[1], col[2])
            f.write(
                struct.pack(">I", len(block) - 4)
                + block
                + struct.pack(">I", zlib.crc32(block))
            )
        raw = b""
        for y in range(data.shape[0]):
            raw += b"\0"
            if bitdepth == 16:
                raw += data[y].astype(">u2").tobytes()
            elif bitdepth == 8:
                raw += data[y].astype(">u1").tobytes()
            elif bitdepth in [4, 2, 1]:
                valsperbyte = 8 // bitdepth
                for x in range(0, data.shape[1], valsperbyte):
                    val = 0
                    for j in range(valsperbyte):
                        if x + j >= data.shape[1]:
                            break
                        val |= (data[y, x + j].astype(">u2") & (2 ** bitdepth - 1)) << (
                            (valsperbyte - j - 1) * bitdepth
                        )
                    raw += struct.pack(">B", val)
            else:
                raise Exception()
        compressed = zlib.compress(raw)
        block = b"IDAT" + compressed
        f.write(
            struct.pack(">I", len(compressed))
            + block
            + struct.pack(">I", zlib.crc32(block))
        )
        block = b"IEND"
        f.write(struct.pack(">I", 0) + block + struct.pack(">I", zlib.crc32(block)))


def main():
    outdir = sys.argv[1]

    # create a 256 color palette by first writing 16 shades of gray
    # and then writing an array of RGB colors with 6, 8 and 5 levels
    # for red, green and blue, respectively
    pal8 = numpy.zeros((256, 3), dtype=numpy.dtype("int64"))
    i = 0
    for gray in range(15, 255, 15):
        pal8[i] = [gray, gray, gray]
        i += 1
    for red in 0, 0x33, 0x66, 0x99, 0xCC, 0xFF:
        for green in 0, 0x24, 0x49, 0x6D, 0x92, 0xB6, 0xDB, 0xFF:
            for blue in 0, 0x40, 0x80, 0xBF, 0xFF:
                pal8[i] = [red, green, blue]
                i += 1
    assert i == 256

    # windows 16 color palette
    pal4 = numpy.array(
        [
            [0x00, 0x00, 0x00],
            [0x80, 0x00, 0x00],
            [0x00, 0x80, 0x00],
            [0x80, 0x80, 0x00],
            [0x00, 0x00, 0x80],
            [0x80, 0x00, 0x80],
            [0x00, 0x80, 0x80],
            [0xC0, 0xC0, 0xC0],
            [0x80, 0x80, 0x80],
            [0xFF, 0x00, 0x00],
            [0x00, 0xFF, 0x00],
            [0xFF, 0x00, 0x00],
            [0x00, 0xFF, 0x00],
            [0xFF, 0x00, 0xFF],
            [0x00, 0xFF, 0x00],
            [0xFF, 0xFF, 0xFF],
        ],
        dtype=numpy.dtype("int64"),
    )

    # choose values slightly off red, lime and blue because otherwise
    # imagemagick will classify the image as Depth: 8/1-bit
    pal2 = numpy.array(
        [[0, 0, 0], [0xFE, 0, 0], [0, 0xFE, 0], [0, 0, 0xFE]],
        dtype=numpy.dtype("int64"),
    )

    # don't choose black and white or otherwise imagemagick will classify the
    # image as bilevel with 8/1-bit depth instead of palette with 8-bit color
    # don't choose gray colors or otherwise imagemagick will classify the
    # image as grayscale
    pal1 = numpy.array(
        [[0x01, 0x02, 0x03], [0xFE, 0xFD, 0xFC]], dtype=numpy.dtype("int64")
    )

    # gaussian kernel with sigma=3
    kernel = numpy.array(
        [
            [0.011362, 0.014962, 0.017649, 0.018648, 0.017649, 0.014962, 0.011362],
            [0.014962, 0.019703, 0.02324, 0.024556, 0.02324, 0.019703, 0.014962],
            [0.017649, 0.02324, 0.027413, 0.028964, 0.027413, 0.02324, 0.017649],
            [0.018648, 0.024556, 0.028964, 0.030603, 0.028964, 0.024556, 0.018648],
            [0.017649, 0.02324, 0.027413, 0.028964, 0.027413, 0.02324, 0.017649],
            [0.014962, 0.019703, 0.02324, 0.024556, 0.02324, 0.019703, 0.014962],
            [0.011362, 0.014962, 0.017649, 0.018648, 0.017649, 0.014962, 0.011362],
        ],
        numpy.float,
    )

    # constructs a 2D array of a circle with a width of 36
    circle = list()
    offsets_36 = [14, 11, 9, 7, 6, 5, 4, 3, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0]
    for offs in offsets_36 + offsets_36[::-1]:
        circle.append([0] * offs + [1] * (len(offsets_36) - offs) * 2 + [0] * offs)

    alpha = numpy.zeros((60, 60, 4), dtype=numpy.dtype("int64"))

    # draw three circles
    for (xpos, ypos, color) in [
        (12, 3, [0xFFFF, 0, 0, 0xFFFF]),
        (21, 21, [0, 0xFFFF, 0, 0xFFFF]),
        (3, 21, [0, 0, 0xFFFF, 0xFFFF]),
    ]:
        for x, row in enumerate(circle):
            for y, pos in enumerate(row):
                if pos:
                    alpha[y + ypos, x + xpos] += color
    alpha = numpy.clip(alpha, 0, 0xFFFF)
    alpha = convolve_rgba(alpha, kernel)

    write_png(alpha, outdir + "/alpha.png", 16, 6)

    normal16 = alpha[:, :, 0:3]
    write_png(normal16, outdir + "/normal16.png", 16, 2)

    write_png(normal16 / 0xFFFF * 0xFF, outdir + "/normal.png", 8, 2)

    write_png(0xFF - normal16 / 0xFFFF * 0xFF, outdir + "/inverse.png", 8, 2)

    gray16 = rgb2gray(normal16)

    write_png(gray16, outdir + "/gray16.png", 16, 0)

    write_png(gray16 / 0xFFFF * 0xFF, outdir + "/gray8.png", 8, 0)

    write_png(
        floyd_steinberg(gray16, numpy.arange(16) / 0xF * 0xFFFF) / 0xFFFF * 0xF,
        outdir + "/gray4.png",
        4,
        0,
    )

    write_png(
        floyd_steinberg(gray16, numpy.arange(4) / 0x3 * 0xFFFF) / 0xFFFF * 0x3,
        outdir + "/gray2.png",
        2,
        0,
    )

    write_png(
        floyd_steinberg(gray16, numpy.arange(2) / 0x1 * 0xFFFF) / 0xFFFF * 0x1,
        outdir + "/gray1.png",
        1,
        0,
    )

    write_png(
        palettize(
            floyd_steinberg(normal16, pal8 * 0xFFFF / 0xFF) / 0xFFFF * 0xFF, pal8
        ),
        outdir + "/palette8.png",
        8,
        3,
        pal8,
    )

    write_png(
        palettize(
            floyd_steinberg(normal16, pal4 * 0xFFFF / 0xFF) / 0xFFFF * 0xFF, pal4
        ),
        outdir + "/palette4.png",
        4,
        3,
        pal4,
    )

    write_png(
        palettize(
            floyd_steinberg(normal16, pal2 * 0xFFFF / 0xFF) / 0xFFFF * 0xFF, pal2
        ),
        outdir + "/palette2.png",
        2,
        3,
        pal2,
    )

    write_png(
        palettize(
            floyd_steinberg(normal16, pal1 * 0xFFFF / 0xFF) / 0xFFFF * 0xFF, pal1
        ),
        outdir + "/palette1.png",
        1,
        3,
        pal1,
    )


if __name__ == "__main__":
    main()