summaryrefslogtreecommitdiff
path: root/src/ltc/ciphers/aes/aesni.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/ltc/ciphers/aes/aesni.c')
-rw-r--r--src/ltc/ciphers/aes/aesni.c371
1 files changed, 371 insertions, 0 deletions
diff --git a/src/ltc/ciphers/aes/aesni.c b/src/ltc/ciphers/aes/aesni.c
new file mode 100644
index 00000000..e730177a
--- /dev/null
+++ b/src/ltc/ciphers/aes/aesni.c
@@ -0,0 +1,371 @@
+/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
+/* SPDX-License-Identifier: Unlicense */
+
+/* AES-NI implementation by Steffen Jaeckel */
+/**
+ @file aesni.c
+ Implementation of AES via the AES-NI instruction on x86_64
+*/
+
+#include "tomcrypt_private.h"
+
+#if defined(LTC_HAS_AES_NI)
+
+const struct ltc_cipher_descriptor aesni_desc =
+{
+ "aes",
+ 6,
+ 16, 32, 16, 10,
+ aesni_setup, aesni_ecb_encrypt, aesni_ecb_decrypt, aesni_test, aesni_done, aesni_keysize,
+ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
+};
+
+#include <emmintrin.h>
+#include <smmintrin.h>
+#include <wmmintrin.h>
+
+#define setup_mix(t, c) _mm_extract_epi32(_mm_aeskeygenassist_si128(t, 0), c)
+#define temp_load(k) _mm_loadu_si128((__m128i*)(k))
+#define temp_update(t, k) _mm_insert_epi32(t, k, 3)
+#define temp_invert(k) _mm_aesimc_si128(*((__m128i*)(k)))
+
+
+static const ulong32 rcon[] = {
+ 0x01UL, 0x02UL, 0x04UL, 0x08UL, 0x10UL, 0x20UL, 0x40UL, 0x80UL, 0x1BUL, 0x36UL
+};
+
+ /**
+ Initialize the AES (Rijndael) block cipher
+ @param key The symmetric key you wish to pass
+ @param keylen The key length in bytes
+ @param num_rounds The number of rounds desired (0 for default)
+ @param skey The key in as scheduled by this function.
+ @return CRYPT_OK if successful
+ */
+int aesni_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
+{
+ int i;
+ unsigned char *K;
+ __m128i temp;
+ ulong32 *rk;
+ ulong32 *rrk;
+ LTC_ARGCHK(key != NULL);
+ LTC_ARGCHK(skey != NULL);
+
+ if (keylen != 16 && keylen != 24 && keylen != 32) {
+ return CRYPT_INVALID_KEYSIZE;
+ }
+
+ if (num_rounds != 0 && num_rounds != (keylen / 4 + 6)) {
+ return CRYPT_INVALID_ROUNDS;
+ }
+
+ skey->rijndael.Nr = keylen / 4 + 6;
+ K = (void*)((((size_t)&skey->rijndael.K[15]) >> 4) << 4);
+ skey->rijndael.eK = (ulong32*)K;
+ K += (60 * sizeof(ulong32));
+ skey->rijndael.dK = (ulong32*)K;
+
+ /* setup the forward key */
+ i = 0;
+ rk = skey->rijndael.eK;
+ LOAD32L(rk[0], key);
+ LOAD32L(rk[1], key + 4);
+ LOAD32L(rk[2], key + 8);
+ LOAD32L(rk[3], key + 12);
+ if (keylen == 16) {
+ temp = temp_load(key);
+ for (;;) {
+ rk[4] = rk[0] ^ setup_mix(temp, 3) ^ rcon[i];
+ rk[5] = rk[1] ^ rk[4];
+ rk[6] = rk[2] ^ rk[5];
+ rk[7] = rk[3] ^ rk[6];
+ if (++i == 10) {
+ break;
+ }
+ temp = temp_update(temp, rk[7]);
+ rk += 4;
+ }
+ } else if (keylen == 24) {
+ LOAD32L(rk[4], key + 16);
+ LOAD32L(rk[5], key + 20);
+ temp = temp_load(key + 8);
+ for (;;) {
+ rk[6] = rk[0] ^ setup_mix(temp, 3) ^ rcon[i];
+ rk[7] = rk[1] ^ rk[6];
+ rk[8] = rk[2] ^ rk[7];
+ rk[9] = rk[3] ^ rk[8];
+ if (++i == 8) {
+ break;
+ }
+ rk[10] = rk[4] ^ rk[9];
+ rk[11] = rk[5] ^ rk[10];
+ temp = temp_update(temp, rk[11]);
+ rk += 6;
+ }
+ } else if (keylen == 32) {
+ LOAD32L(rk[4], key + 16);
+ LOAD32L(rk[5], key + 20);
+ LOAD32L(rk[6], key + 24);
+ LOAD32L(rk[7], key + 28);
+ temp = temp_load(key + 16);
+ for (;;) {
+ rk[8] = rk[0] ^ setup_mix(temp, 3) ^ rcon[i];
+ rk[9] = rk[1] ^ rk[8];
+ rk[10] = rk[2] ^ rk[9];
+ rk[11] = rk[3] ^ rk[10];
+ if (++i == 7) {
+ break;
+ }
+ temp = temp_update(temp, rk[11]);
+ rk[12] = rk[4] ^ setup_mix(temp, 2);
+ rk[13] = rk[5] ^ rk[12];
+ rk[14] = rk[6] ^ rk[13];
+ rk[15] = rk[7] ^ rk[14];
+ temp = temp_update(temp, rk[15]);
+ rk += 8;
+ }
+ } else {
+ /* this can't happen */
+ /* coverity[dead_error_line] */
+ return CRYPT_ERROR;
+ }
+
+ /* setup the inverse key now */
+ rk = skey->rijndael.dK;
+ rrk = skey->rijndael.eK + skey->rijndael.Nr * 4;
+
+ /* apply the inverse MixColumn transform to all round keys but the first and the last: */
+ /* copy first */
+ *rk++ = *rrk++;
+ *rk++ = *rrk++;
+ *rk++ = *rrk++;
+ *rk = *rrk;
+ rk -= 3;
+ rrk -= 3;
+
+ for (i = 1; i < skey->rijndael.Nr; i++) {
+ rrk -= 4;
+ rk += 4;
+ temp = temp_invert(rk);
+ *((__m128i*) rk) = temp_invert(rrk);
+ }
+
+ /* copy last */
+ rrk -= 4;
+ rk += 4;
+ *rk++ = *rrk++;
+ *rk++ = *rrk++;
+ *rk++ = *rrk++;
+ *rk = *rrk;
+
+ return CRYPT_OK;
+}
+
+/**
+ Encrypts a block of text with AES
+ @param pt The input plaintext (16 bytes)
+ @param ct The output ciphertext (16 bytes)
+ @param skey The key as scheduled
+ @return CRYPT_OK if successful
+*/
+#ifdef LTC_CLEAN_STACK
+static int s_aesni_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
+#else
+int aesni_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
+#endif
+{
+ int Nr, r;
+ const __m128i *skeys;
+ __m128i block;
+
+ LTC_ARGCHK(pt != NULL);
+ LTC_ARGCHK(ct != NULL);
+ LTC_ARGCHK(skey != NULL);
+
+ Nr = skey->rijndael.Nr;
+
+ if (Nr < 2 || Nr > 16) return CRYPT_INVALID_ROUNDS;
+
+ skeys = (__m128i*) skey->rijndael.eK;
+ block = _mm_loadu_si128((const __m128i*) (pt));
+
+ block = _mm_xor_si128(block, skeys[0]);
+ for (r = 1; r < Nr - 1; r += 2) {
+ block = _mm_aesenc_si128(block, skeys[r]);
+ block = _mm_aesenc_si128(block, skeys[r + 1]);
+ }
+ block = _mm_aesenc_si128(block, skeys[Nr - 1]);
+ block = _mm_aesenclast_si128(block, skeys[Nr]);
+
+ _mm_storeu_si128((__m128i*) ct, block);
+
+ return CRYPT_OK;
+}
+
+#ifdef LTC_CLEAN_STACK
+int aesni_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
+{
+ int err = s_aesni_ecb_encrypt(pt, ct, skey);
+ burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2);
+ return err;
+}
+#endif
+
+
+/**
+ Decrypts a block of text with AES
+ @param ct The input ciphertext (16 bytes)
+ @param pt The output plaintext (16 bytes)
+ @param skey The key as scheduled
+ @return CRYPT_OK if successful
+*/
+#ifdef LTC_CLEAN_STACK
+static int s_aesni_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
+#else
+int aesni_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
+#endif
+{
+ int Nr, r;
+ const __m128i *skeys;
+ __m128i block;
+
+ LTC_ARGCHK(pt != NULL);
+ LTC_ARGCHK(ct != NULL);
+ LTC_ARGCHK(skey != NULL);
+
+ Nr = skey->rijndael.Nr;
+
+ if (Nr < 2 || Nr > 16) return CRYPT_INVALID_ROUNDS;
+
+ skeys = (__m128i*) skey->rijndael.dK;
+ block = _mm_loadu_si128((const __m128i*) (ct));
+
+ block = _mm_xor_si128(block, skeys[0]);
+ for (r = 1; r < Nr - 1; r += 2) {
+ block = _mm_aesdec_si128(block, skeys[r]);
+ block = _mm_aesdec_si128(block, skeys[r + 1]);
+ }
+ block = _mm_aesdec_si128(block, skeys[Nr - 1]);
+ block = _mm_aesdeclast_si128(block, skeys[Nr]);
+
+ _mm_storeu_si128((__m128i*) pt, block);
+
+ return CRYPT_OK;
+}
+
+
+#ifdef LTC_CLEAN_STACK
+int aesni_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
+{
+ int err = s_aesni_ecb_decrypt(ct, pt, skey);
+ burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2);
+ return err;
+}
+#endif
+
+/**
+ Performs a self-test of the AES block cipher
+ @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
+*/
+int aesni_test(void)
+{
+ #ifndef LTC_TEST
+ return CRYPT_NOP;
+ #else
+ int err;
+ static const struct {
+ int keylen;
+ unsigned char key[32], pt[16], ct[16];
+ } tests[] = {
+ { 16,
+ { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
+ { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
+ 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
+ { 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30,
+ 0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a }
+ }, {
+ 24,
+ { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 },
+ { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
+ 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
+ { 0xdd, 0xa9, 0x7c, 0xa4, 0x86, 0x4c, 0xdf, 0xe0,
+ 0x6e, 0xaf, 0x70, 0xa0, 0xec, 0x0d, 0x71, 0x91 }
+ }, {
+ 32,
+ { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f },
+ { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
+ 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
+ { 0x8e, 0xa2, 0xb7, 0xca, 0x51, 0x67, 0x45, 0xbf,
+ 0xea, 0xfc, 0x49, 0x90, 0x4b, 0x49, 0x60, 0x89 }
+ }
+ };
+
+ symmetric_key key;
+ unsigned char tmp[2][16];
+ int i, y;
+
+ for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
+ zeromem(&key, sizeof(key));
+ if ((err = aesni_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
+ return err;
+ }
+
+ aesni_ecb_encrypt(tests[i].pt, tmp[0], &key);
+ aesni_ecb_decrypt(tmp[0], tmp[1], &key);
+ if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "AES-NI Encrypt", i) ||
+ compare_testvector(tmp[1], 16, tests[i].pt, 16, "AES-NI Decrypt", i)) {
+ return CRYPT_FAIL_TESTVECTOR;
+ }
+
+ /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
+ for (y = 0; y < 16; y++) tmp[0][y] = 0;
+ for (y = 0; y < 1000; y++) aesni_ecb_encrypt(tmp[0], tmp[0], &key);
+ for (y = 0; y < 1000; y++) aesni_ecb_decrypt(tmp[0], tmp[0], &key);
+ for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
+ }
+ return CRYPT_OK;
+ #endif
+}
+
+
+/** Terminate the context
+ @param skey The scheduled key
+*/
+void aesni_done(symmetric_key *skey)
+{
+ LTC_UNUSED_PARAM(skey);
+}
+
+
+/**
+ Gets suitable key size
+ @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
+ @return CRYPT_OK if the input key size is acceptable.
+*/
+int aesni_keysize(int *keysize)
+{
+ LTC_ARGCHK(keysize != NULL);
+
+ if (*keysize < 16) {
+ return CRYPT_INVALID_KEYSIZE;
+ }
+ if (*keysize < 24) {
+ *keysize = 16;
+ return CRYPT_OK;
+ }
+ if (*keysize < 32) {
+ *keysize = 24;
+ return CRYPT_OK;
+ }
+ *keysize = 32;
+ return CRYPT_OK;
+}
+
+#endif