summaryrefslogtreecommitdiff
path: root/lib/MCE/Core.pod
blob: 62c66f225a3b7a57a1efe1e688b2c9c0b31b4f42 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
=head1 NAME

MCE::Core - Documentation describing the core MCE API

=head1 VERSION

This document describes MCE::Core version 1.888

=head1 SYNOPSIS

This is a simplistic use case of MCE running with 5 workers.

 # Construction using the Core API

 use MCE;

 my $mce = MCE->new(
    max_workers => 5,
    user_func => sub {
       my ($mce) = @_;
       $mce->say("Hello from " . $mce->wid);
    }
 );

 $mce->run;

 # Construction using a MCE model

 use MCE::Flow max_workers => 5;

 mce_flow sub {
    my ($mce) = @_;
    MCE->say("Hello from " . MCE->wid);
 };

 -- Output

 Hello from 2
 Hello from 4
 Hello from 5
 Hello from 1
 Hello from 3

=head2 MCE->new ( [ options ] )

Below, a new instance is configured with all available options.

 use MCE;

 my $mce = MCE->new(

    max_workers => 8,                   # Default 1

       # Number of workers to spawn.

       # MCE sets an upper-limit of 8 for 'auto'. MCE 1.521+.
       # max_workers => 'auto',         # # of lcores, 8 maximum
       # max_workers => 'auto-1',       # 7 on HW with 16 lcores
       # max_workers => 'auto-1',       # 3 on HW with  4 lcores

       # Specify a percentage. MCE 1.875+.
       # max_workers => '25%',          # 4 on HW with 16 lcores
       # max_workers => '50%',          # 8 on HW with 16 lcores

       # Run on all logical cores.
       # max_workers => MCE::Util::get_ncpu(),

    chunk_size => 2000,                 # Default 1

       # Can also take a suffix; k (kibiBytes) or m (mebiBytes).
       # The default is 1 when using the Core API and 'auto' for
       # MCE Models. For arrays or queues, chunk_size means the
       # number of records per chunk. For iterators, MCE will not
       # use chunk_size, though the iterator may use it to determine
       # how much to return per iteration. For files, smaller than or
       # equal to 8192 is the number of records.  Greater than 8192
       # is the number of bytes. MCE reads until the end of record
       # before calling user_func.

       # chunk_size => 1,               # Consists of 1 record
       # chunk_size => 1000,            # Consists of 1000 records
       # chunk_size => '16k',           # Approximate 16 kibiBytes (KiB)
       # chunk_size => '20m',           # Approximate 20 mebiBytes (MiB)

    tmp_dir => $tmp_dir,                # Default $MCE::Signal::tmp_dir

       # Default is $MCE::Signal::tmp_dir which points to
       # $ENV{TEMP} if defined. Otherwise, tmp_dir points
       # to a location under /tmp.

    freeze => \&encode_sereal,          # Default \&Storable::freeze
    thaw   => \&decode_sereal,          # Default \&Storable::thaw

       # Release 1.412 allows freeze and thaw to be overridden.
       # Simply include a serialization module prior to loading
       # MCE. Configure freeze/thaw options.

       # use Sereal qw( encode_sereal decode_sereal );
       # use CBOR::XS qw( encode_cbor decode_cbor );
       # use JSON::XS qw( encode_json decode_json );
       #
       # use MCE;

    gather => \@a,                      # Default undef

       # Release 1.5 allows for gathering of data to an array or
       # hash reference, a MCE::Queue/Thread::Queue object, or code
       # reference. One invokes gathering by calling the gather
       # method as often as needed.

       # gather => \@array,
       # gather => \%hash,
       # gather => $queue,
       # gather => \&order,

    init_relay => 0,                    # Default undef

       # For specifying the initial relay value. Allowed values
       # are array_ref, hash_ref, or scalar. The MCE::Relay module
       # is loaded automatically when specified.

       # init_relay => \@array,
       # init_relay => \%hash,
       # init_relay => scalar,

    input_data => $input_file,          # Default undef
    RS         => "\n>",                # Default undef

       # input_data => '/path/to/file'  # Process file
       # input_data => \@array          # Process array
       # input_data => \*FILE_HNDL      # Process file handle
       # input_data => $io              # Process IO::All { File, Pipe, STDIO }
       # input_data => \$scalar         # Treated like a file
       # input_data => \&iterator       # User specified iterator

       # The RS option (for input record separator) applies to files
       # and file handles.

       # MCE applies additional logic when RS begins with a newline
       # character; e.g. RS => "\n>". It trims away characters after
       # the newline and prepends them to the next record.
       #
       # Typically, the left side is what happens for $/ = "\n>".
       # The right side is what user_func receives.
       #
       # All records begin with > and end with \n
       #    Record 1:  >seq1 ... \n>   (to)   >seq1 ... \n
       #    Record 2:  seq2  ... \n>          >seq2 ... \n
       #    Record 3:  seq3  ... \n>          >seq3 ... \n
       #    Last Rec:  seqN  ... \n           >seqN ... \n

    loop_timeout => 20,                 # Default 0

       # Added in 1.7, enables the manager process to timeout of a read
       # operation on channel 0 (UNIX platforms only). The manager process
       # decrements the total workers running for any worker which have
       # died in an uncontrollable manner. Specify this option if on
       # occassion a worker dies unexpectedly (i.e. from an XS module).

       # Option works with init_relay on UNIX platforms since MCE 1.844.
       # A number smaller than 5 is silently increased to 5.

    max_retries => 2,                   # Default 0

       # This option, added in 1.7, causes MCE to retry a failed
       # chunk from a worker dying while processing input data or
       # sequence of numbers.

    parallel_io => 1,                   # Default 0
    posix_exit  => 1,                   # Default 0
    use_slurpio => 1,                   # Default 0

       # The parallel_io option enables parallel reads during large
       # slurpio, useful when reading from fast storage. Do not enable
       # parallel_io when running MCE on many nodes with input coming
       # from shared storage.

       # Set posix_exit to avoid all END and destructor processing.
       # Constructing MCE inside a thread implies 1 or if present CGI,
       # FCGI, Coro, Curses, Gearman::Util, Gearman::XS, LWP::UserAgent,
       # Mojo::IOLoop, STFL, Tk, Wx, or Win32::GUI.

       # Enable slurpio to pass the raw chunk (scalar ref) to the user
       # function when reading input files.

    use_threads => 1,                   # Auto 0 or 1

       # By default MCE spawns child processes on UNIX platforms and
       # threads on Windows (i.e. $^O eq 'MSWin32').

       # MCE supports threads via two threading libraries if threads
       # is preferred over child processes. The use of threads requires
       # a thread library prior to loading MCE, causing the use_threads
       # option to default to 1. Specify 0 for child processes.
       #
       #   use threads;              use forks;
       #   use threads::shared;      use forks::shared;
       #   use MCE              (or) use MCE;           (or) use MCE;

    spawn_delay  => 0.045,              # Default undef
    submit_delay => 0.015,              # Default undef
    job_delay    => 0.060,              # Default undef

       # Time to wait in fractional seconds after spawning a worker,
       # after submitting parameters to worker (MCE->run, MCE->process),
       # and worker running (one time staggered delay).

       # Specify job_delay to stagger workers connecting to a database.

    on_post_exit => \&on_post_exit,     # Default undef
    on_post_run  => \&on_post_run,      # Default undef

       # Execute the code block after a worker exits or dies.
       # (i.e. MCE->exit, exit, die)

       # Execute the code block after running.
       # (i.e. MCE->process, MCE->run)

    progress => sub { ... },            # Default undef

       # A code block for receiving info on the progress made.
       # See section labeled "MCE PROGRESS DEMONSTRATIONS" at the
       # end of this document.

    user_args => { env => 'test' },     # Default undef

       # MCE release 1.4 added a new parameter to allow one to
       # specify arbitrary arguments such as a string, an ARRAY
       # or HASH reference. Workers can access this directly.
       # (i.e. my $args = $mce->{user_args} or MCE->user_args)

    user_begin => \&user_begin,         # Default undef
    user_func => \&user_func,           # Default undef
    user_end => \&user_end,             # Default undef

       # Think of user_begin, user_func, and user_end as in
       # the awk scripting language:
       # awk 'BEGIN { begin } { func } { func } ... END { end }'

       # MCE workers call user_begin once at the start of a job,
       # then user_func repeatedly until no chunks remain.
       # Afterwards, user_end is called.

    user_error => \&user_error,         # Default undef
    user_output => \&user_output,       # Default undef

       # MCE will forward data to user_error/user_output,
       # when defined, for the following methods.

       # MCE->sendto(\*STDERR, "sent to user_error\n");
       # MCE->printf(\*STDERR, "%s\n", "sent to user_error");
       # MCE->print(\*STDERR, "sent to user_error\n");
       # MCE->say(\*STDERR, "sent to user_error");

       # MCE->sendto(\*STDOUT, "sent to user_output\n");
       # MCE->printf("%s\n", "sent to user_output");
       # MCE->print("sent to user_output\n");
       # MCE->say("sent to user_output");

    stderr_file => 'err_file',          # Default STDERR
    stdout_file => 'out_file',          # Default STDOUT

       # Or to file; user_error and user_output take precedence.

    flush_file   => 0,                  # Default 1
    flush_stderr => 0,                  # Default 1
    flush_stdout => 0,                  # Default 1

       # Flush sendto file, standard error, or standard output.

    interval => {
        delay => 0.007 [, max_nodes => 4, node_id => 1 ]
    },

       # For use with the yield method introduced in MCE 1.5.
       # Both max_nodes & node_id are optional and default to 1.
       # Delay is the amount of time between intervals.

       # interval => 0.007              # Shorter; MCE 1.506+

    sequence => {                       # Default undef
        begin => -1, end => 1 [, step => 0.1 [, format => "%4.1f" ] ]
    },

    bounds_only => 1,                   # Default undef

       # For looping through a sequence of numbers in parallel.
       # STEP, if omitted, defaults to 1 if BEGIN is smaller than
       # END or -1 if BEGIN is greater than END. The FORMAT string
       # is passed to sprintf behind the scene (% may be omitted).
       # e.g. $seq_n_formatted = sprintf("%4.1f", $seq_n);

       # Do not specify both options; input_data and sequence.
       # Release 1.4 allows one to specify an array reference.
       # e.g. sequence => [ -1, 1, 0.1, "%4.1f" ]

       # The bounds_only => 1 option will compute the 'begin' and
       # 'end' items only for the chunk and not the items in between
       # (hence boundaries only). This option has no effect when
       # sequence is not specified or chunk_size equals 1.

       # my $begin = $chunk_ref->[0]; my $end = $chunk_ref->[1];

    task_end => \&task_end,             # Default undef

       # This is called by the manager process after the task
       # has completed processing. MCE 1.5 allows this option
       # to be specified at the top level.

    task_name => 'string',              # Default 'MCE'

       # Added in MCE 1.5 and mainly beneficial for user_tasks.
       # One may specify a unique name per each sub-task.
       # The string is passed as the 3rd arg to task_end.

    user_tasks => [                     # Default undef
       { ... },                         # Options for task 0
       { ... },                         # Options for task 1
       { ... },                         # Options for task 2
    ],

       # Takes a list of hash references, each allowing up to 17
       # options. All other MCE options are ignored. The init_relay,
       # input_data, RS, and use_slurpio options are applicable to
       # the first task only.

       # max_workers, chunk_size, input_data, interval, sequence,
       # bounds_only, user_args, user_begin, user_end, user_func,
       # gather, task_end, task_name, use_slurpio, use_threads,
       # init_relay, RS

       # Options not specified here will default to same option
       # specified at the top level.
 );

=head2 EXPORT_CONST, CONST

There are 3 constants which are exportable. Using the constants in lieu of
0,1,2 makes it more legible when accessing the user_func arguments directly.

=head3 SELF CHUNK CID - MCE CONSTANTS

Exports SELF => 0, CHUNK => 1, and CID => 2.

 use MCE export_const => 1;
 use MCE const => 1;                    # Shorter; MCE 1.415+

 user_func => sub {
  # my ($mce, $chunk_ref, $chunk_id) = @_;
    print "Hello from ", $_[SELF]->wid, "\n";
 }

MCE 1.5 allows all public method to be called directly.

 use MCE;

 user_func => sub {
  # my ($mce, $chunk_ref, $chunk_id) = @_;
    print "Hello from ", MCE->wid, "\n";
 }

=head2 OVERRIDING DEFAULTS

The following list options which may be overridden when loading the module.

 use Sereal qw( encode_sereal decode_sereal );
 use CBOR::XS qw( encode_cbor decode_cbor );
 use JSON::XS qw( encode_json decode_json );

 use MCE
     max_workers => 4,                  # Default 1
     chunk_size => 100,                 # Default 1
     tmp_dir => "/path/to/app/tmp",     # $MCE::Signal::tmp_dir
     freeze => \&encode_sereal,         # \&Storable::freeze
     thaw => \&decode_sereal,           # \&Storable::thaw
     init_relay => 0,                   # Default undef; MCE 1.882+
     use_threads => 0,                  # Default undef; MCE 1.882+
 ;

 my $mce = MCE->new( ... );

From MCE 1.8 onwards, Sereal 3.015+ is loaded automatically if available.
Specify C<< Sereal => 0 >> to use Storable instead.

 use MCE Sereal => 0;

=head2 RUNNING

Run calls spawn, submits the job; workers call user_begin, user_func, and
user_end. Run shuts down workers afterwards. Call spawn whenever the need
arises for large data structures prior to running.

 $mce->spawn;                           # Call early if desired

 $mce->run;                             # Call run or process below

 # Acquire data arrays and/or input_files. Workers persist after
 # processing.

 $mce->process(\@input_data_1);         # Process array
 $mce->process(\@input_data_2);
 $mce->process(\@input_data_n);

 $mce->process(\%input_hash_1);         # Process hash, current API
 $mce->process(\%input_hash_2);         # available since 1.828
 $mce->process(\%input_hash_n);

 $mce->process('input_file_1');         # Process file
 $mce->process('input_file_2');
 $mce->process('input_file_n');

 $mce->shutdown;                        # Shutdown workers

=head2 SYNTAX for ON_POST_EXIT

Often times, one may want to capture the exit status. The on_post_exit option,
if defined, is executed immediately by the manager process after a worker exits
via exit (children only), MCE->exit (children and threads), or die.

The format of $e->{pid} is PID_123 for children and THR_123 for threads.

 my $restart_flag = 1;

 sub on_post_exit {
    my ($mce, $e) = @_;

    # Display all possible hash elements.
    print "$e->{wid}: $e->{pid}: $e->{status}: $e->{msg}: $e->{id}\n";

    # Restart this worker if desired.
    if ($restart_flag && $e->{wid} == 2) {
       $mce->restart_worker;
       $restart_flag = 0;
    }
 }

 sub user_func {
    my ($mce) = @_;
    MCE->exit(0, 'msg_foo', 1000 + MCE->wid);  # Args, not necessary
 }

 my $mce = MCE->new(
    on_post_exit => \&on_post_exit,
    user_func => \&user_func,
    max_workers => 3
 );

 $mce->run;

 -- Output (child processes)

 2: PID_33223: 0: msg_foo: 1002
 1: PID_33222: 0: msg_foo: 1001
 3: PID_33224: 0: msg_foo: 1003
 2: PID_33225: 0: msg_foo: 1002

 -- Output (running with threads)

 3: TID_3: 0: msg_foo: 1003
 2: TID_2: 0: msg_foo: 1002
 1: TID_1: 0: msg_foo: 1001
 2: TID_4: 0: msg_foo: 1002

=head2 SYNTAX for ON_POST_RUN

The on_post_run option, if defined, is executed immediately by the manager
process after running MCE->process or MCE->run. This option receives an
array reference of hashes.

The difference between on_post_exit and on_post_run is that the former is
called immediately whereas the latter is called after all workers have
completed running.

 sub on_post_run {
    my ($mce, $status_ref) = @_;
    foreach my $e ( @{ $status_ref } ) {
       # Display all possible hash elements.
       print "$e->{wid}: $e->{pid}: $e->{status}: $e->{msg}: $e->{id}\n";
    }
 }

 sub user_func {
    my ($mce) = @_;
    MCE->exit(0, 'msg_foo', 1000 + MCE->wid);  # Args, not necessary
 }

 my $mce = MCE->new(
    on_post_run => \&on_post_run,
    user_func => \&user_func,
    max_workers => 3
 );

 $mce->run;

 -- Output (child processes)

 3: PID_33174: 0: msg_foo: 1003
 1: PID_33172: 0: msg_foo: 1001
 2: PID_33173: 0: msg_foo: 1002

 -- Output (running with threads)

 2: TID_2: 0: msg_foo: 1002
 3: TID_3: 0: msg_foo: 1003
 1: TID_1: 0: msg_foo: 1001

=head2 SYNTAX for INPUT_DATA

MCE supports many ways to specify input_data. Support for iterators was added
in MCE 1.505. The RS option allows one to specify the record separator when
processing files.

MCE is a chunking engine. Therefore, chunk_size is applicable to input_data.
Specifying 1 for use_slurpio causes user_func to receive a scalar reference
containing the raw data (applicable to files only) instead of an array
reference.

C<IO::All> { File, Pipe, STDIO } is supported since MCE 1.845.

 input_data  => '/path/to/file',  # process file
 input_data  => \@array,          # process array
 input_data  => \%hash,           # process hash, API since 1.828
 input_data  => \*FILE_HNDL,      # process file handle
 input_data  => $fh,              # open $fh, "<", "file"
 input_data  => $fh,              # IO::File "file", "r"
 input_data  => $fh,              # IO::Uncompress::Gunzip "file.gz"
 input_data  => $io,              # IO::All { File, Pipe, STDIO }
 input_data  => \$scalar,         # treated like a file
 input_data  => \&iterator,       # user specified iterator

 chunk_size  => 1,                # >1 means looping inside user_func
 use_slurpio => 1,                # $chunk_ref is a scalar ref
 RS          => "\n>",            # input record separator

The chunk_size value determines the chunking mode to use when processing files.
Otherwise, chunk_size is the number of elements for arrays. For files, a chunk
size value of <= 8192 is how many records to read. Greater than 8192 is how
many bytes to read. MCE appends (the rest) up to the next record separator.

 chunk_size  => 8192,             # Consists of 8192 records
 chunk_size  => 8193,             # Approximate 8193 bytes for files

 chunk_size  => 1,                # Consists of 1 record or element
 chunk_size  => 1000,             # Consists of 1000 records
 chunk_size  => '16k',            # Approximate 16 kibiBytes (KiB)
 chunk_size  => '20m',            # Approximate 20 mebiBytes (MiB)

The construction for user_func when chunk_size > 1 and assuming use_slurpio
equals 0.

 user_func => sub {
    my ($mce, $chunk_ref, $chunk_id) = @_;

    # $_ is $chunk_ref->[0] when chunk_size equals 1
    # $_ is $chunk_ref otherwise; $_ can be used below

    for my $record ( @{ $chunk_ref } ) {
       print "$chunk_id: $record\n";
    }
 }

 # input_data => \%hash
 # current API available since 1.828

 user_func => sub {
    my ($mce, $chunk_ref, $chunk_id) = @_;

    # $_ points to $chunk_ref regardless of chunk_size

    for my $key ( keys %{ $chunk_ref } ) {
       print "$key: ", $chunk_ref->{$key}, "\n";
    }
 }

Specifying a value for input_data is straight forward for arrays and files.
The next several examples specify an iterator reference for input_data.

 use MCE;

 # A factory function which creates a closure (the iterator itself)
 # for generating a sequence of numbers. The external variables
 # ($n, $max, $step) are used for keeping state across successive
 # calls to the closure. The iterator simply returns when $n > max.

 sub input_iterator {
    my ($n, $max, $step) = @_;

    return sub {
       return if $n > $max;

       my $current = $n;
       $n += $step;

       return $current;
    };
 }

 # Run user_func in parallel. Input data can be specified during
 # the construction or as an argument to the process method.

 my $mce = MCE->new(

  # input_data => input_iterator(10, 30, 2),
    chunk_size => 1, max_workers => 4,

    user_func => sub {
       my ($mce, $chunk_ref, $chunk_id) = @_;
       MCE->print("$_: ", $_ * 2, "\n");
    }

 )->spawn;

 $mce->process( input_iterator(10, 30, 2) );

 -- Output   Note that output order is not guaranteed
             Take a look at iterator.pl for ordered output

 10: 20
 12: 24
 16: 32
 20: 40
 14: 28
 22: 44
 18: 36
 24: 48
 26: 52
 28: 56
 30: 60

The following example queries the DB for the next 1000 rows. Notice the use of
fetchall_arrayref. The iterator function itself receives one argument which is
chunk_size (added in MCE 1.510) to determine how much to return per iteration.
The default is 1 for the Core API and MCE Models.

 use DBI;
 use MCE;

 sub db_iter {

    my $dsn = "DBI:Oracle:host=db_server;port=db_port;sid=db_name";

    my $dbh = DBI->connect($dsn, 'db_user', 'db_passwd') ||
              die "Could not connect to database: $DBI::errstr";

    my $sth = $dbh->prepare('select color, desc from table');

    $sth->execute;

    return sub {
       my ($chunk_size) = @_;

       if (my $aref = $sth->fetchall_arrayref(undef, $chunk_size)) {
          return @{ $aref };
       }

       return;
    };
 }

 # Let's enumerate column indexes for easy column retrieval.
 my ($i_color, $i_desc) = (0 .. 1);

 my $mce = MCE->new(
    max_workers => 3, chunk_size => 1000,
    input_data => db_iter(),

    user_func => sub {
       my ($mce, $chunk_ref, $chunk_id) = @_;
       my $ret = '';

       foreach my $row (@{ $chunk_ref }) {
          $ret .= $row->[$i_color] .": ". $row->[$i_desc] ."\n";
       }

       MCE->print($ret);
    }
 );

 $mce->run;

There are many modules on CPAN which return an iterator reference. Showing
one such example below. The demonstration ensures MCE workers are spawned
before obtaining the iterator. Note the worker_id value (left column) in
the output.

 use Path::Iterator::Rule;
 use MCE;

 my $start_dir = shift
    or die "Please specify a starting directory";

 -d $start_dir
    or die "Cannot open ($start_dir): No such file or directory";

 my $mce = MCE->new(
    max_workers => 'auto',
    user_func => sub { MCE->say( MCE->wid . ": $_" ) }
 )->spawn;

 my $rule = Path::Iterator::Rule->new->file->name( qr/[.](pm)$/ );

 my $iterator = $rule->iter(
    $start_dir, { follow_symlinks => 0, depthfirst => 1 }
 );

 $mce->process( $iterator );

 -- Output

 8: lib/MCE/Core/Input/Generator.pm
 5: lib/MCE/Core/Input/Handle.pm
 6: lib/MCE/Core/Input/Iterator.pm
 2: lib/MCE/Core/Input/Request.pm
 3: lib/MCE/Core/Manager.pm
 4: lib/MCE/Core/Input/Sequence.pm
 7: lib/MCE/Core/Validation.pm
 1: lib/MCE/Core/Worker.pm
 8: lib/MCE/Flow.pm
 5: lib/MCE/Grep.pm
 6: lib/MCE/Loop.pm
 2: lib/MCE/Map.pm
 3: lib/MCE/Queue.pm
 4: lib/MCE/Signal.pm
 7: lib/MCE/Stream.pm
 1: lib/MCE/Subs.pm
 8: lib/MCE/Util.pm
 5: lib/MCE.pm

Although MCE supports arrays, extra measures are needed to use a "lazy" array
as input data. The reason for this is that MCE needs the size of the array
before processing which may be unknown for lazy arrays. Therefore, closures
provides an excellent mechanism for this.

The code block belonging to the lazy array must return undef after exhausting
its input data. Otherwise, the process will never end.

 use Tie::Array::Lazy;
 use MCE;

 tie my @a, 'Tie::Array::Lazy', [], sub {
    my $i = $_[0]->index;

    return ($i < 10) ? $i : undef;
 };

 sub make_iterator {
    my $i = 0; my $a_ref = shift;

    return sub {
       return $a_ref->[$i++];
    };
 }

 my $mce = MCE->new(
    max_workers => 4, input_data => make_iterator(\@a),

    user_func => sub {
       my ($mce, $chunk_ref, $chunk_id) = @_;
       MCE->say($_);
    }

 )->run;

 -- Output

 0
 1
 2
 3
 4
 6
 7
 8
 5
 9

The following demonstrates how to retrieve a chunk from the lazy array per
each successive call. Here, undef is sent by the iterator block when $i is
greater than $max. Iterators may optionally use chunk_size to determine how
much to return per iteration.

 use Tie::Array::Lazy;
 use MCE;

 tie my @a, 'Tie::Array::Lazy', [], sub {
    $_[0]->index;
 };

 sub make_iterator {
    my $j = 0; my ($a_ref, $max) = @_;

    return sub {
       my ($chunk_size) = @_;
       my $i = $j;  $j += $chunk_size;

       return if $i > $max;
       return $j <= $max ? @$a_ref[$i .. $j - 1] : @$a_ref[$i .. $max];
    };
 }

 my $mce = MCE->new(
    chunk_size => 15, max_workers => 4,
    input_data => make_iterator(\@a, 100),

    user_func => sub {
       my ($mce, $chunk_ref, $chunk_id) = @_;
       MCE->say("$chunk_id: " . join(' ', @{ $chunk_ref }));
    }

 )->run;

 -- Output

 1: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
 2: 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 3: 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
 4: 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
 5: 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
 6: 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 7: 90 91 92 93 94 95 96 97 98 99 100

=head2 SYNTAX for SEQUENCE

The 1.3 release and above allows workers to loop through a sequence of numbers
computed mathematically without the overhead of an array. The sequence can be
specified separately per each user_task entry unlike input_data which is
applicable to the first task only.

See the seq_demo.pl example, included with this distribution, on applying
sequences with the user_tasks option.

Sequence can be defined using an array or a hash reference.

 use MCE;

 my $mce = MCE->new(
    max_workers => 3,

  # sequence => [ 10, 19, 0.7, "%4.1f" ],  # up to 4 options

    sequence => {
       begin => 10, end => 19, step => 0.7, format => "%4.1f"
    },

    user_func => sub {
       my ($mce, $n, $chunk_id) = @_;
       print $n, " from ", MCE->wid, " id ", $chunk_id, "\n";
    }
 );

 $mce->run;

 -- Output (sorted afterwards, notice wid and chunk_id in output)

 10.0 from 1 id 1
 10.7 from 2 id 2
 11.4 from 3 id 3
 12.1 from 1 id 4
 12.8 from 2 id 5
 13.5 from 3 id 6
 14.2 from 1 id 7
 14.9 from 2 id 8
 15.6 from 3 id 9
 16.3 from 1 id 10
 17.0 from 2 id 11
 17.7 from 3 id 12
 18.4 from 1 id 13

The 1.5 release includes a new option (bounds_only). This option tells the
sequence engine to compute 'begin' and 'end' items only, for the chunk,
and not the items in between (hence boundaries only). This option applies
to sequence only and has no effect when chunk_size equals 1.

The time to run is 0.006s below. This becomes 0.827s without the bounds_only
option due to computing all items in between, thus creating a very large
array. Basically, specify bounds_only => 1 when boundaries is all you need
for looping inside the block; e.g. Monte Carlo simulations.

Time was measured using 1 worker to emphasize the difference.

 use MCE;

 my $mce = MCE->new(
    max_workers => 1, chunk_size => 1_250_000,

    sequence => { begin => 1, end => 10_000_000 },
    bounds_only => 1,

    # For sequence, the input scalar $_ points to $chunk_ref
    # when chunk_size > 1, otherwise $chunk_ref->[0].
    #
    # user_func => sub {
    #    my $begin = $_->[0]; my $end = $_->[-1];
    #
    #    for ($begin .. $end) {
    #       ...
    #    }
    # },

    user_func => sub {
       my ($mce, $chunk_ref, $chunk_id) = @_;
       # $chunk_ref contains 2 items, not 1_250_000

       my $begin = $chunk_ref->[ 0];
       my $end   = $chunk_ref->[-1];   # or $chunk_ref->[1]

       MCE->printf("%7d .. %8d\n", $begin, $end);
    }
 );

 $mce->run;

 -- Output

       1 ..  1250000
 1250001 ..  2500000
 2500001 ..  3750000
 3750001 ..  5000000
 5000001 ..  6250000
 6250001 ..  7500000
 7500001 ..  8750000
 8750001 .. 10000000

=head2 SYNTAX for MAX_RETRIES

The max_retries option, added in 1.7, allows MCE to retry a failed chunk from
a worker dying while processing input data or a sequence of numbers.

When max_retries is set, MCE configures the on_post_exit option automatically
using the following code before running. Specify on_post_exit explicitly for
any further tailoring. The restart_worker line is necessary, obviously.

 on_post_exit => sub {
    my ( $mce, $e, $retry_cnt ) = @_;

    if ( $e->{id} ) {
       my $cnt = $retry_cnt + 1;
       my $msg = "Error: chunk $e->{id} failed";

       if ( defined $mce->{init_relay} ) {
          print {*STDERR} "$msg, retrying chunk attempt # $cnt\n"
             if ( $retry_cnt < $mce->{max_retries} );
       }
       else {
          ( $retry_cnt < $mce->{max_retries} )
             ? print {*STDERR} "$msg, retrying chunk attempt # $cnt\n"
             : print {*STDERR} "$msg\n";
       }

       $mce->restart_worker;
    }
 }

We let MCE handle on_post_exit automatically below, which is essentially the
same code shown above. For max_retries to work, the worker must die, abnormally
included, or call MCE->exit. Notice that we pass the chunk_id value for the 3rd
argument to MCE->exit (defaults to chunk_id if omitted since MCE 1.844).

 # max_retries demonstration

 use strict;
 use warnings;

 use MCE;

 sub user_func {
    my ( $mce, $chunk_ref, $chunk_id ) = @_;

    # die "Died : chunk_id = 3\n"  if $chunk_id == 3;
    MCE->exit(1, undef, $chunk_id) if $chunk_id == 3;

    print "$chunk_id\n";
 }

 my $mce = MCE->new(
    max_workers => 1,
    max_retries => 2,
    user_func   => \&user_func,
 )->spawn;

 my $input_data = [ 0..7 ];

 $mce->process( { chunk_size => 1 }, $input_data );
 $mce->shutdown;

 -- Output

 1
 2
 Error: chunk 3 failed, retrying chunk attempt # 1
 Error: chunk 3 failed, retrying chunk attempt # 2
 Error: chunk 3 failed
 4
 5
 6
 7
 8

Orderly output with max_retries is possible since MCE 1.844. Below, chunk 3
succeeds whereas chunk 5 fails due to exceeding the number of retries. Be sure
to call MCE::relay inside C<user_func> and near the end of the block.

 # max_retries demonstration with init_relay

 use strict;
 use warnings;

 use MCE;
 use MCE::Shared;

 tie my $retries1, 'MCE::Shared', 0;
 tie my $retries2, 'MCE::Shared', 0;

 MCE->new(
    max_workers  => 4,
    input_data   => [ 1..7 ],
    chunk_size   => 1,

    max_retries  => 2,
    init_relay   => 0,

    user_func    => sub {
       if ( MCE->chunk_id == 3 ) {
          MCE->exit if ++$retries1 <= 2;
       }
       if ( MCE->chunk_id == 5 ) {
          MCE->exit if ++$retries2 <= 3;
       }
       MCE::relay {
          $_ += 1;
          print MCE->chunk_id, "\n";
       };
    }
 )->run;

 print "final: ", MCE::relay_final(), "\n";

 -- Output

 1
 2
 Error: chunk 3 failed, retrying chunk attempt # 1
 Error: chunk 5 failed, retrying chunk attempt # 1
 Error: chunk 3 failed, retrying chunk attempt # 2
 Error: chunk 5 failed, retrying chunk attempt # 2
 3
 4
 Error: chunk 5 failed
 6
 7
 final: 6

=head2 SYNTAX for USER_BEGIN and USER_END

The user_begin and user_end options, if specified, behave similarly to
awk 'BEGIN { begin } { func } { func } ... END { end }'. These are called
once per worker during each run.

MCE 1.510 passes 2 additional parameters ($task_id and $task_name).

 sub user_begin {                   # Called once at the beginning
    my ($mce, $task_id, $task_name) = @_;
    $mce->{wk_total_rows} = 0;
 }

 sub user_func {                    # Called while processing
    my $mce = shift;
    $mce->{wk_total_rows} += 1;
 }

 sub user_end {                     # Called once at the end
    my ($mce, $task_id, $task_name) = @_;
    printf "## %d: Processed %d rows\n",
       MCE->wid, $mce->{wk_total_rows};
 }

 my $mce = MCE->new(
    user_begin => \&user_begin,
    user_func  => \&user_func,
    user_end   => \&user_end
 );

 $mce->run;

=head2 SYNTAX for USER_FUNC with USE_SLURPIO => 0

When processing input data, MCE can pass an array of rows or a slurped chunk.
Below, a reference to an array containing the chunk data is processed.

e.g. $chunk_ref = [ record1, record2, record3, ... ]

 sub user_func {

    my ($mce, $chunk_ref, $chunk_id) = @_;

    foreach my $row ( @{ $chunk_ref } ) {
       $mce->{wk_total_rows} += 1;
       print $row;
    }
 }

 my $mce = MCE->new(
    chunk_size  => 100,
    input_data  => "/path/to/file",
    user_func   => \&user_func,
    use_slurpio => 0
 );

 $mce->run;

=head2 SYNTAX for USER_FUNC with USE_SLURPIO => 1

Here, a reference to a scalar containing the raw chunk data is processed.

 sub user_func {

    my ($mce, $chunk_ref, $chunk_id) = @_;

    my $count = () = $$chunk_ref =~ /abc/;
 }

 my $mce = MCE->new(
    chunk_size  => 16000,
    input_data  => "/path/to/file",
    user_func   => \&user_func,
    use_slurpio => 1
 );

 $mce->run;

=head2 SYNTAX for USER_ERROR and USER_OUTPUT

Output from MCE->sendto('STDERR/STDOUT', ...), MCE->printf, MCE->print, and
MCE->say can be intercepted by specifying the user_error and user_output
options. MCE on receiving output will forward to user_error or user_output
in a serialized fashion.

Handy when wanting to filter, modify, and/or direct the output elsewhere.

 sub user_error {                   # Redirect STDERR to STDOUT
    my $error = shift;
    print {*STDOUT} $error;
 }

 sub user_output {                  # Redirect STDOUT to STDERR
    my $output = shift;
    print {*STDERR} $output;
 }

 sub user_func {
    my ($mce, $chunk_ref, $chunk_id) = @_;
    my $count = 0;

    foreach my $row ( @{ $chunk_ref } ) {
       MCE->print($row);
       $count += 1;
    }

    MCE->print(\*STDERR, "$chunk_id: processed $count rows\n");
 }

 my $mce = MCE->new(
    chunk_size  => 1000,
    input_data  => "/path/to/file",
    user_error  => \&user_error,
    user_output => \&user_output,
    user_func   => \&user_func
 );

 $mce->run;

=head2 SYNTAX for USER_TASKS and TASK_END

This option takes an array of tasks. Each task allows up to 17 options.
The init_relay, input_data, RS, and use_slurpio options may be defined
inside the first task or at the top level, otherwise ignored under
other sub-tasks.

 max_workers, chunk_size, input_data, interval, sequence,
 bounds_only, user_args, user_begin, user_end, user_func,
 gather, task_end, task_name, use_slurpio, use_threads,
 init_relay, RS

Sequence and chunk_size were added in 1.3. User_args was introduced in 1.4.
Name and input_data are new options allowed in 1.5. In addition, one can
specify task_end at the top level. Task_end also receives 2 additional
arguments $task_id and $task_name (shown below).

Options not specified here will default to the same option specified at the
top level. The task_end option is called by the manager process when all
workers for that sub-task have completed processing.

Forking and threading can be intermixed among tasks unless running Cygwin.
The run method will continue running until all workers have completed
processing.

 use threads;
 use threads::shared;

 use MCE;

 sub parallel_task1 { sleep 2; }
 sub parallel_task2 { sleep 1; }

 my $mce = MCE->new(

    task_end => sub {
       my ($mce, $task_id, $task_name) = @_;
       print "Task [$task_id -- $task_name] completed processing\n";
    },

    user_tasks => [{
       task_name   => 'foo',
       max_workers => 2,
       user_func   => \&parallel_task1,
       use_threads => 0             # Not using threads

    },{
       task_name   => 'bar',
       max_workers => 4,
       user_func   => \&parallel_task2,
       use_threads => 1             # Yes, threads

    }]
 );

 $mce->run;

 -- Output

 Task [1 -- bar] completed processing
 Task [0 -- foo] completed processing

=head1 DEFAULT INPUT SCALAR

Beginning with MCE 1.5, the input scalar $_ is localized prior to calling
user_func for input_data and sequence of numbers. The following applies.

=over 3

=item use_slurpio => 1

 $_ is a reference to the buffer e.g. $_ = \$_buffer;
 $_ is a reference regardless of whether chunk_size is 1 or greater

 user_func => sub {
  # my ($mce, $chunk_ref, $chunk_id) = @_;
    print ${ $_ };    # $_ is same as $chunk_ref
 }

=item chunk_size is greater than 1, use_slurpio => 0

 $_ is a reference to an array. $_ = \@_records; $_ = \@_seq_n;
 $_ is same as $chunk_ref or $_[CHUNK]

 user_func => sub {
  # my ($mce, $chunk_ref, $chunk_id) = @_;
    for my $row ( @{ $_ } ) {
       print $row, "\n";
    }
 }

 use MCE const => 1;

 user_func => sub {
  # my ($mce, $chunk_ref, $chunk_id) = @_;
    for my $row ( @{ $_[CHUNK] } ) {
       print $row, "\n";
    }
 }

=item chunk_size equals 1, use_slurpio => 0

 $_ contains the actual value. $_ = $_buffer; $_ = $seq_n;

 # Note that $_ and $chunk_ref are not the same below.
 # $chunk_ref is a reference to an array.

 user_func => sub {
  # my ($mce, $chunk_ref, $chunk_id) = @_;
    print $_, "\n;    # Same as $chunk_ref->[0];
 }

 $mce->foreach("/path/to/file", sub {
  # my ($mce, $chunk_ref, $chunk_id) = @_;
    print $_;         # Same as $chunk_ref->[0];
 });

 # However, that is not the case for the forseq method.
 # Both $_ and $n_seq are the same when chunk_size => 1.

 $mce->forseq([ 1, 9 ], sub {
  # my ($mce, $n_seq, $chunk_id) = @_;
    print $_, "\n";   # Same as $n_seq
 });

Sequence can also be specified using an array reference. The below is the
same as the example afterwards.

 $mce->forseq( { begin => 10, end => 40, step => 2 }, ... );

The code block receives an array containing the next 5 sequences. Chunk 1
(chunk_id 1) contains 10,12,14,16,18. $n_seq is a reference to an array,
same as $_, due to chunk_size being greater than 1.

 $mce->forseq( [ 10, 40000, 2 ], { chunk_size => 5 }, sub {
  # my ($mce, $n_seq, $chunk_id) = @_;
    my @result;
    for my $n ( @{ $_ } ) {
       ... do work, append to result for 5
    }
    ... do something with result afterwards
 });

=back

=head1 METHODS for the MANAGER PROCESS and WORKERS

The methods listed below are callable by the main process and workers.

=head2 MCE->abort ( void )

=head2 $mce->abort ( void )

The 'abort' method is applicable when processing input_data only. This
causes all workers to abort after processing the current chunk.

Workers write the next offset position to the queue socket for the next
available worker. In essence, the 'abort' method writes the last offset
position. Workers, on requesting the next offset position, will think
the end of input_data has been reached and leave the chunking loop.

 MCE->abort;
 $mce->abort;

=head2 MCE->chunk_id ( void )

=head2 $mce->chunk_id ( void )

Returns the chunk_id for the current chunk. The value starts at 1. Chunking
applies to input_data or sequence. The value is 0 for the manager process.

 my $chunk_id = MCE->chunk_id;
 my $chunk_id = $mce->chunk_id;

=head2 MCE->chunk_size ( void )

=head2 $mce->chunk_size ( void )

Getter method for chunk_size used by MCE.

 my $chunk_size = MCE->chunk_size;
 my $chunk_size = $mce->chunk_size;

=head2 MCE->do ( 'callback_func' [, $arg1, ... ] )

=head2 $mce->do ( 'callback_func' [, $arg1, ... ] )

MCE serializes data transfers from a worker process via helper functions
do & sendto to the manager process. The callback function can optionally
return a reply. Support for calling by the manager process was enabled
in MCE 1.839.

 [ $reply = ] MCE->do('callback' [, $arg1, ... ]);

Passing args to a callback function using references & scalar.

 sub callback {
    my ($array_ref, $hash_ref, $scalar_ref, $scalar) = @_;
    ...
 }

 MCE->do('main::callback', \@a, \%h, \$s, 'foo');
 MCE->do('callback', \@a, \%h, \$s, 'foo');

MCE knows if wanting a void, list, hash, or a scalar return value.

 MCE->do('callback' [, $arg1, ... ]);

 my @array  = MCE->do('callback' [, $arg1, ... ]);
 my %hash   = MCE->do('callback' [, $arg1, ... ]);
 my $scalar = MCE->do('callback' [, $arg1, ... ]);

=head2 MCE->freeze ( $object_ref )

=head2 $mce->freeze ( $object_ref )

Calls the internal freeze method to serialize an object. The default
serialization routines are handled by Sereal if available or Storable.

 my $frozen = MCE->freeze([ 0, 2, 4 ]);
 my $frozen = $mce->freeze([ 0, 2, 4 ]);

=head2 MCE->max_retries ( void )

=head2 $mce->max_retries ( void )

Getter method for max_retries used by MCE.

 my $max_retries = MCE->max_retries;
 my $max_retries = $mce->max_retries;

=head2 MCE->max_workers ( void )

=head2 $mce->max_workers ( void )

Getter method for max_workers used by MCE.

 my $max_workers = MCE->max_workers;
 my $max_workers = $mce->max_workers;

=head2 MCE->pid ( void )

=head2 $mce->pid ( void )

Returns the Process ID. Threads have thread ID attached to the value.

 my $pid = MCE->pid;    # 16180 (pid) ; 16180.2 (pid.tid)
 my $pid = $mce->pid;

=head2 MCE->printf ( $format, $list [, ... ] )

=head2 MCE->print ( $list [, ... ] )

=head2 MCE->say ( $list [, ... ] )

=head2 $mce->printf ( $format, $list [, ... ] )

=head2 $mce->print ( $list [, ... ] )

=head2 $mce->say ( $list [, ... ] )

Use the printf, print, and say methods when wanting to serialize output among
workers and the manager process. These are sugar syntax for the sendto method.
These behave similar to the native subroutines in Perl with the exception
that barewords must be passed as a reference and require the comma after
it including file handles.

Say is like print, but implicitly appends a newline.

 MCE->printf(\*STDOUT, "%s: %d\n", $name, $age);
 MCE->printf($fh, "%s: %d\n", $name, $age);
 MCE->printf("%s: %d\n", $name, $age);

 MCE->print(\*STDERR, "$error_msg\n");
 MCE->print($fh, $log_msg."\n");
 MCE->print("$output_msg\n");

 MCE->say(\*STDERR, $error_msg);
 MCE->say($fh, $log_msg);
 MCE->say($output_msg);

Caveat: Use the following syntax when passing a reference not a glob or file
handle. Otherwise, MCE will error indicating the first argument is not a glob
reference.

 MCE->print(\*STDOUT, \@array, "\n");
 MCE->print("", \@array, "\n");         # ok

Sending to C<IO::All> { File, Pipe, STDIO } is supported since MCE 1.845.

 use IO::All;

 my $out = io->stdout;
 my $err = io->stderr;

 MCE->printf($out, "%s\n", "sent to stdout");
 MCE->printf($err, "%s\n", "sent to stderr");

 MCE->print($out, "sent to stdout\n");
 MCE->print($err, "sent to stderr\n");

 MCE->say($out, "sent to stdout");
 MCE->say($err, "sent to stderr");

=head2 MCE->sess_dir ( void )

=head2 $mce->sess_dir ( void )

Returns the session directory used by the MCE instance. This is defined
during spawning and removed during shutdown.

 my $sess_dir = MCE->sess_dir;
 my $sess_dir = $mce->sess_dir;

=head2 MCE->task_id ( void )

=head2 $mce->task_id ( void )

Returns the task ID. This applies to the user_tasks option (starts at 0).

 my $task_id = MCE->task_id;
 my $task_id = $mce->task_id;

=head2 MCE->task_name ( void )

=head2 $mce->task_name ( void )

Returns the task_name value specified via the task_name option when
configuring MCE.

 my $task_name = MCE->task_name;
 my $task_name = $mce->task_name;

=head2 MCE->task_wid ( void )

=head2 $mce->task_wid ( void )

Returns the task worker ID (applies to user_tasks). The value starts at 1 per
each task configured within user_tasks. The value is 0 for the manager process.

 my $task_wid = MCE->task_wid;
 my $task_wid = $mce->task_wid;

=head2 MCE->thaw ( $frozen )

=head2 $mce->thaw ( $frozen )

Calls the internal thaw method to un-serialize the frozen object.

 my $object_ref = MCE->thaw($frozen);
 my $object_ref = $mce->thaw($frozen);

=head2 MCE->tmp_dir ( void )

=head2 $mce->tmp_dir ( void )

Returns the temporary directory used by MCE.

 my $tmp_dir = MCE->tmp_dir;
 my $tmp_dir = $mce->tmp_dir;

=head2 MCE->user_args ( void )

=head2 $mce->user_args ( void )

Returns the arguments specified via the user_args option.

 my ($arg1, $arg2, $arg3) = MCE->user_args;
 my ($arg1, $arg2, $arg3) = $mce->user_args;

=head2 MCE->wid ( void )

=head2 $mce->wid ( void )

Returns the MCE worker ID. Starts at 1 per each MCE instance. The value is
0 for the manager process.

 my $wid = MCE->wid;
 my $wid = $mce->wid;

=head1 METHODS for the MANAGER PROCESS only

Methods listed below are callable by the main process only.

=head2 MCE->forchunk ( $input_data [, { options } ], sub { ... } )

=head2 MCE->foreach ( $input_data [, { options } ], sub { ... } )

=head2 MCE->forseq ( $sequence_spec [, { options } ], sub { ... } )

=head2 $mce->forchunk ( $input_data [, { options } ], sub { ... } )

=head2 $mce->foreach ( $input_data [, { options } ], sub { ... } )

=head2 $mce->forseq ( $sequence_spec [, { options } ], sub { ... } )

Forchunk, foreach, and forseq are sugar methods and described in
L<MCE::Candy>. Stubs exist in MCE which load MCE::Candy automatically.

=head2 MCE->process ( $input_data [, { options } ] )

=head2 $mce->process ( $input_data [, { options } ] )

The process method will spawn workers automatically if not already spawned.
It will set input_data => $input_data. It calls run(0) to not auto-shutdown
workers. Specifying options is optional.

Allowable options { key => value, ... } are:

 chunk_size input_data job_delay spawn_delay submit_delay
 flush_file flush_stderr flush_stdout stderr_file stdout_file
 on_post_exit on_post_run sequence user_args user_begin user_end
 user_func user_error user_output use_slurpio RS

Options remain persistent going forward unless changed. Setting user_begin,
user_end, or user_func will cause already spawned workers to shut down and
re-spawn automatically. Therefore, define these during instantiation.

The below will cause workers to re-spawn after running.

 my $mce = MCE->new( max_workers => 'auto' );

 $mce->process( {
    user_begin => sub { # connect to DB },
    user_func  => sub { # process each row },
    user_end   => sub { # close handle to DB },
 }, \@input_data );

 $mce->process( {
    user_begin => sub { # connect to DB },
    user_func  => sub { # process each file },
    user_end   => sub { # close handle to DB },
 }, "/list/of/files" );

Do the following if wanting workers to persist between jobs.

 use MCE max_workers => 'auto';

 my $mce = MCE->new(
    user_begin => sub { # connect to DB },
    user_func  => sub { # process each chunk or row or host },
    user_end   => sub { # close handle to DB },
 );

 $mce->spawn;           # Spawn early if desired

 $mce->process("/one/very_big_file/_mce_/will_chunk_in_parallel");
 $mce->process(\@array_of_files_to_grep);
 $mce->process("/path/to/host/list");

 $mce->process($array_ref);
 $mce->process($array_ref, { stdout_file => $output_file });

 # This was not allowed before. Fixed in 1.415.
 $mce->process({ sequence => { begin => 10, end => 90, step 2 } });
 $mce->process({ sequence => [ 10, 90, 2 ] });

 $mce->shutdown;

=head2 MCE->relay_final ( void )

=head2 $mce->relay_final ( void )

The relay methods are described in L<MCE::Relay>. Relay capabilities are
enabled by specifying the C<init_relay> MCE option.

=head2 MCE->restart_worker ( void )

=head2 $mce->restart_worker ( void )

One can restart a worker who has died or exited. The job never ends below
due to restarting each time. Recommended is to call MCE->exit or $mce->exit
instead of the native exit function for better handling, especially under
the Windows environment.

The $e->{wid} argument is no longer necessary starting with the 1.5 release.

Press [ctrl-c] to terminate the script.

 my $mce = MCE->new(

    on_post_exit => sub {
       my ($mce, $e) = @_;
       print "$e->{wid}: $e->{pid}: status $e->{status}: $e->{msg}";
     # $mce->restart_worker($e->{wid});    # MCE-1.415 and below
       $mce->restart_worker;               # MCE-1.500 and above
    },

    user_begin => sub {
       my ($mce, $task_id, $task_name) = @_;
       # Not interested in die messages going to STDERR,
       # because the die handler calls MCE->exit(255, $_[0]).
       close STDERR;
    },

    user_tasks => [{
       max_workers => 5,
       user_func => sub {
          my ($mce) = @_; sleep MCE->wid;
          MCE->exit(3, "exited from " . MCE->wid . "\n");
       }
    },{
       max_workers => 4,
       user_func => sub {
          my ($mce) = @_; sleep MCE->wid;
          die("died from " . MCE->wid . "\n");
       }
    }]
 );

 $mce->run;

 -- Output

 1: PID_85388: status 3: exited from 1
 2: PID_85389: status 3: exited from 2
 1: PID_85397: status 3: exited from 1
 3: PID_85390: status 3: exited from 3
 1: PID_85399: status 3: exited from 1
 4: PID_85391: status 3: exited from 4
 2: PID_85398: status 3: exited from 2
 1: PID_85401: status 3: exited from 1
 5: PID_85392: status 3: exited from 5
 1: PID_85404: status 3: exited from 1
 6: PID_85393: status 255: died from 6
 3: PID_85400: status 3: exited from 3
 2: PID_85403: status 3: exited from 2
 1: PID_85406: status 3: exited from 1
 7: PID_85394: status 255: died from 7
 1: PID_85410: status 3: exited from 1
 8: PID_85395: status 255: died from 8
 4: PID_85402: status 3: exited from 4
 2: PID_85409: status 3: exited from 2
 1: PID_85412: status 3: exited from 1
 9: PID_85396: status 255: died from 9
 3: PID_85408: status 3: exited from 3
 1: PID_85416: status 3: exited from 1

 ...

=head2 MCE->run ( [ $auto_shutdown [, { options } ] ] )

=head2 $mce->run ( [ $auto_shutdown [, { options } ] ] )

The run method, by default, spawns workers, processes once, and shuts down
afterwards. Specify 0 for $auto_shutdown when wanting workers to persist
after running (default 1).

Specifying options is optional. Valid options are the same as for the
process method.

 my $mce = MCE->new( ... );

 # Disables auto-shutdown
 $mce->run(0);

=head2 MCE->send ( $data_ref )

=head2 $mce->send ( $data_ref )

The 'send' method is useful when wanting to spawn workers early to minimize
memory consumption and afterwards send data individually to each worker. One
cannot send more than the total workers spawned. Workers store the received
data as $mce->{user_data}.

The data which can be sent is restricted to an ARRAY, HASH, or PDL reference.
Workers begin processing immediately after receiving data. Workers set
$mce->{user_data} to undef after processing. One cannot specify input_data,
sequence, or user_tasks when using the "send" method.

Passing any options e.g. run(0, { options }) is ignored due to workers running
immediately after receiving user data. There is no guarantee to which worker
will receive data first. It depends on which worker is available awaiting data.

 use MCE;

 my $mce = MCE->new(
    max_workers => 5,

    user_func => sub {
       my ($mce) = @_;
       my $data = $mce->{user_data};
       my $first_name = $data->{first_name};
       print MCE->wid, ": Hello from $first_name\n";
    }
 );

 $mce->spawn;     # Optional, send will spawn if necessary.

 $mce->send( { first_name => "Theresa" } );
 $mce->send( { first_name => "Francis" } );
 $mce->send( { first_name => "Padre"   } );
 $mce->send( { first_name => "Anthony" } );

 $mce->run;       # Wait for workers to complete processing.

 -- Output

 2: Hello from Theresa
 5: Hello from Anthony
 3: Hello from Francis
 4: Hello from Padre

=head2 MCE->shutdown ( void )

=head2 $mce->shutdown ( void )

The run method will automatically spawn workers, run once, and shutdown workers
automatically. Workers persist after running below. Shutdown may be called as
needed or prior to exiting.

 my $mce = MCE->new( ... );

 $mce->spawn;

 $mce->process(\@input_data_1);         # Processing multiple arrays
 $mce->process(\@input_data_2);
 $mce->process(\@input_data_n);

 $mce->shutdown;

 $mce->process('input_file_1');         # Processing multiple files
 $mce->process('input_file_2');
 $mce->process('input_file_n');

 $mce->shutdown;

=head2 MCE->spawn ( void )

=head2 $mce->spawn ( void )

Workers are normally spawned automatically. The spawn method allows one to
spawn workers early if so desired.

 my $mce = MCE->new( ... );

 $mce->spawn;

=head2 MCE->status ( void )

=head2 $mce->status ( void )

The greatest exit status is saved among workers while running. Look at
the on_post_exit or on_post_run options for callback support.

 my $mce = MCE->new( ... );

 $mce->run;

 my $exit_status = $mce->status;

=head1 METHODS for WORKERS only

Methods listed below are callable by workers only.

=head2 MCE->exit ( [ $status [, $message [, $id ] ] ] )

=head2 $mce->exit ( [ $status [, $message [, $id ] ] ] )

A worker exits from MCE entirely. $id (optional) can be used for passing the
primary key or a string along with the message. Look at the on_post_exit
or on_post_run options for callback support.

 MCE->exit;           # default 0
 MCE->exit(1);
 MCE->exit(2, 'chunk failed', $chunk_id);
 MCE->exit(0, 'msg_foo', 'id_1000');

=head2 MCE->gather ( $arg1, [, $arg2, ... ] )

=head2 $mce->gather ( $arg1, [, $arg2, ... ] )

A worker can submit data to the location specified via the gather option by
calling this method. See L<MCE::Flow> and L<MCE::Loop> for additional use-case.

 use MCE;

 my @hosts = qw(
    hosta hostb hostc hostd hoste
 );

 my $mce = MCE->new(
    chunk_size => 1, max_workers => 3,

    user_func => sub {
     # my ($mce, $chunk_ref, $chunk_id) = @_;
       my ($output, $error, $status); my $host = $_;

       # Do something with $host;
       $output = "Worker ". MCE->wid .": Hello from $host";

       if (MCE->chunk_id % 3 == 0) {
          # Simulating an error condition
          local $? = 1; $status = $?;
          $error = "Error from $host"
       }
       else {
          $status = 0;
       }

       # Ensure unique keys (key, value) when gathering to a
       # hash.
       MCE->gather("$host.out", $output, "$host.sta", $status);
       MCE->gather("$host.err", $error) if (defined $error);
    }
 );

 my %h; $mce->process(\@hosts, { gather => \%h });

 foreach my $host (@hosts) {
    print $h{"$host.out"}, "\n";
    print $h{"$host.err"}, "\n" if (exists $h{"$host.err"});
    print "Exit status: ", $h{"$host.sta"}, "\n\n";
 }

 -- Output

 Worker 2: Hello from hosta
 Exit status: 0

 Worker 1: Hello from hostb
 Exit status: 0

 Worker 3: Hello from hostc
 Error from hostc
 Exit status: 1

 Worker 2: Hello from hostd
 Exit status: 0

 Worker 1: Hello from hoste
 Exit status: 0

=head2 MCE->last ( void )

=head2 $mce->last ( void )

Worker leaves the chunking loop or user_func block immediately. Callable from
inside foreach, forchunk, forseq, and user_func.

 use MCE;

 my $mce = MCE->new(
    max_workers => 5
 );

 my @list = (1 .. 80);

 $mce->forchunk(\@list, { chunk_size => 2 }, sub {

    my ($mce, $chunk_ref, $chunk_id) = @_;
    MCE->last if ($chunk_id > 4);

    my @output = ();

    foreach my $rec ( @{ $chunk_ref } ) {
       push @output, $rec, "\n";
    }

    MCE->print(@output);
 });

 -- Output (each chunk above consists of 2 elements)

 3
 4
 1
 2
 7
 8
 5
 6

=head2 MCE->next ( void )

=head2 $mce->next ( void )

Worker starts the next iteration of the chunking loop. Callable from inside
foreach, forchunk, forseq, and user_func.

 use MCE;

 my $mce = MCE->new(
    max_workers => 5
 );

 my @list = (1 .. 80);

 $mce->forchunk(\@list, { chunk_size => 4 }, sub {

    my ($mce, $chunk_ref, $chunk_id) = @_;
    MCE->next if ($chunk_id < 20);

    my @output = ();

    foreach my $rec ( @{ $chunk_ref } ) {
       push @output, $rec, "\n";
    }

    MCE->print(@output);
 });

 -- Output (each chunk above consists of 4 elements)

 77
 78
 79
 80

=head2 MCE::relay { code }

=head2 MCE->relay ( sub { code } )

=head2 MCE->relay_recv ( void )

=head2 $mce->relay ( sub { code } )

=head2 $mce->relay_recv ( void )

The relay methods are described in L<MCE::Relay>. Relay capabilities are
enabled by specifying the C<init_relay> MCE option.

=head2 MCE->sendto ( $to, $arg1, ... )

=head2 $mce->sendto ( $to, $arg1, ... )

The sendto method is called by workers for serializing data to standard output,
standard error, or end of file. The action is done by the manager process.

Release 1.00x supported 1 data argument, not more.

 MCE->sendto('file', \@array, '/path/to/file');
 MCE->sendto('file', \$scalar, '/path/to/file');
 MCE->sendto('file', $scalar, '/path/to/file');

 MCE->sendto('STDERR', \@array);
 MCE->sendto('STDERR', \$scalar);
 MCE->sendto('STDERR', $scalar);

 MCE->sendto('STDOUT', \@array);
 MCE->sendto('STDOUT', \$scalar);
 MCE->sendto('STDOUT', $scalar);

Release 1.100 added the ability to pass multiple arguments. Notice the syntax
change for sending to a file. Passing a reference to an array is no longer
necessary.

 MCE->sendto('file:/path/to/file', $arg1 [, $arg2, ... ]);
 MCE->sendto('STDERR', $arg1 [, $arg2, ... ]);
 MCE->sendto('STDOUT', $arg1 [, $arg2, ... ]);

 MCE->sendto('STDOUT', @a, "\n", %h, "\n", $s, "\n");

To retain 1.00x compatibility, sendto outputs the content when a single data
reference is specified. Otherwise, the reference for \@array or \$scalar is
shown in 1.500, not the content.

 MCE->sendto('STDERR', \@array);        # 1.00x behavior, content
 MCE->sendto('STDOUT', \$scalar);
 MCE->sendto('file:/path/to/file', \@array);

 # Output matches the print statement

 MCE->sendto(\*STDERR, \@array);        # 1.500 behavior, reference
 MCE->sendto(\*STDOUT, \$scalar);
 MCE->sendto($fh, \@array);

 MCE->sendto('STDOUT', \@array, "\n", \$scalar, "\n");
 print {*STDOUT} \@array, "\n", \$scalar, "\n";

MCE 1.500 added support for sending to a glob reference, file descriptor, and
file handle.

 MCE->sendto(\*STDERR, "foo\n", \@array, \$scalar, "\n");
 MCE->sendto('fd:2', "foo\n", \@array, \$scalar, "\n");
 MCE->sendto($fh, "foo\n", \@array, \$scalar, "\n");

=head2 MCE->sync ( void )

=head2 $mce->sync ( void )

A barrier sync operation means any worker must stop at this point until all
workers reach this barrier. Barrier syncing is useful for many computer
algorithms.

Barrier synchronization is supported for task 0 only or omitting user_tasks.
All workers assigned task_id 0 must call sync whenever barrier syncing.

 use MCE;

 sub user_func {

    my ($mce) = @_;
    my $wid = MCE->wid;

    MCE->sendto("STDOUT", "a: $wid\n");   # MCE 1.0+
    MCE->sync;

    MCE->sendto(\*STDOUT, "b: $wid\n");   # MCE 1.5+
    MCE->sync;

    MCE->print("c: $wid\n");              # MCE 1.5+
    MCE->sync;

    return;
 }

 my $mce = MCE->new(
    max_workers => 4, user_func => \&user_func
 )->run;

 -- Output (without barrier synchronization)

 a: 1
 a: 2
 b: 1
 b: 2
 c: 1
 c: 2
 a: 3
 b: 3
 c: 3
 a: 4
 b: 4
 c: 4

 -- Output (with barrier synchronization)

 a: 1
 a: 2
 a: 4
 a: 3
 b: 2
 b: 1
 b: 3
 b: 4
 c: 1
 c: 4
 c: 2
 c: 3

Consider the following example. The MCE->sync operation is done inside a loop
along with MCE->do. A stall may occur for workers calling sync the 2nd or 3rd
time while other workers are sending results via MCE->do or MCE->sendto.

It requires another semaphore lock in MCE to solve this which was not done in
order to keep resources low. Therefore, please keep this in mind when mixing
MCE->sync with MCE->do or output serialization methods inside a loop.

 sub user_func {

    my ($mce) = @_;
    my @result;

    for (1 .. 3) {
       ... compute algorithm ...

       MCE->sync;

       ... compute algorithm ...

       MCE->sync;

       MCE->do('aggregate_result', \@result);  # or MCE->sendto

       MCE->sync;      # The sync operation is also needed here to
                       # prevent MCE from stalling.
    }
 }

=head2 MCE->yield ( void )

=head2 $mce->yield ( void )

There may be on occasion when the MCE driven app is too fast. The interval
option combined with the yield method, both introduced with MCE 1.5, allows
one to throttle the app. It adds a "grace" factor to the design.

A use case is an app configured with 100 workers running on a 24 logical way
box. Data is polled from a database containing over 2.5 million rows. Workers
chunk away at 300 rows per chunk performing SNMP gets (300 sockets per worker)
polling 25 metrics from each device. With this scenario, the load on the box
may rise beyond 90+. In addition, IP_Tables may reach its contention point
causing the entire application to fail.

The scenario above is solved by simply having workers yield among themselves
in a synchronized fashion. A delay of 0.007 seconds between intervals is all
that's needed. The load on the box will hover between 23 ~ 27 for the duration
of the run. Polling completes in under 17 minutes time. This is quite fast
considering the app polls 62.5 million metrics combined. The math equates
to 3,676,470 per minute or rather 61,275 per second from a single box.

 # Both max_nodes and node_id are optional (default 1).

 interval => {
    delay => 0.007, max_nodes => $max_nodes, node_id => $node_id
 }

A 4 node setup can poll 10 million devices without the additional overhead of a
distribution agent. The difference between the 4 nodes are simply node_id and
the where clause used to query the database. The mac addresses are random such
that the data divides equally to any power of 2. The distribution key lies in
the mac address itself. In fact, the 2nd character from the right is sufficient
for maximizing on the power of randomness for equal distribution.

 Query NodeID 1: ... AND substr(MAC, -2, 1) IN ('0', '1', '2', '3')
 Query NodeID 2: ... AND substr(MAC, -2, 1) IN ('4', '5', '6', '7')
 Query NodeID 3: ... AND substr(MAC, -2, 1) IN ('8', '9', 'A', 'B')
 Query NodeID 4: ... AND substr(MAC, -2, 1) IN ('C', 'D', 'E', 'F')

Below, the user_tasks is configured to simulate 4 nodes. This demonstration
uses 2 workers to minimize the output size. Input is from the sequence option.

 use Time::HiRes qw(time);
 use MCE;

 my $d = shift || 0.1;

 local $| = 1;

 sub create_task {

    my ($node_id) = @_;

    my $seq_size  = 6;
    my $seq_start = ($node_id - 1) * $seq_size + 1;
    my $seq_end   = $seq_start + $seq_size - 1;

    return {
       max_workers => 2, sequence => [ $seq_start, $seq_end ],
       interval => { delay => $d, max_nodes => 4, node_id => $node_id }
    };
 }

 sub user_begin {

    my ($mce, $task_id, $task_name) = @_;

    # The yield method causes this worker to wait for its next time
    # interval slot before running. Yield has no effect without the
    # 'interval' option.

    # Yielding is beneficial inside a user_begin block. A use case
    # is staggering database connections among workers in order
    # to not impact the DB server.

    MCE->yield;

    MCE->printf(
       "Node %2d: %0.5f -- Worker %2d: %12s -- Started\n",
       MCE->task_id + 1, time, MCE->task_wid, ''
    );

    return;
 }

 {
    my $prev_time = time;

    sub user_func {

       my ($mce, $seq_n, $chunk_id) = @_;

       # Yield simply waits for the next time interval.
       MCE->yield;

       # Calculate how long this worker has waited.
       my $curr_time = time;
       my $time_waited = $curr_time - $prev_time;

       $prev_time = $curr_time;

       MCE->printf(
          "Node %2d: %0.5f -- Worker %2d: %12.5f -- Seq_N %3d\n",
          MCE->task_id + 1, time, MCE->task_wid, $time_waited, $seq_n
       );

       return;
    }
 }

 # Simulate a 4 node environment passing node_id to create_task.

 print "Node_ID  Current_Time        Worker_ID  Time_Waited     Comment\n";

 MCE->new(
    user_begin => \&user_begin,
    user_func  => \&user_func,

    user_tasks => [
       create_task(1),
       create_task(2),
       create_task(3),
       create_task(4)
    ]

 )->run;

 -- Output (notice Current_Time below, stays 0.10 apart)

 Node_ID  Current_Time        Worker_ID  Time_Waited     Comment
 Node  1: 1374807976.74634 -- Worker  1:              -- Started
 Node  2: 1374807976.84634 -- Worker  1:              -- Started
 Node  3: 1374807976.94638 -- Worker  1:              -- Started
 Node  4: 1374807977.04639 -- Worker  1:              -- Started
 Node  1: 1374807977.14634 -- Worker  2:              -- Started
 Node  2: 1374807977.24640 -- Worker  2:              -- Started
 Node  3: 1374807977.34649 -- Worker  2:              -- Started
 Node  4: 1374807977.44657 -- Worker  2:              -- Started
 Node  1: 1374807977.54636 -- Worker  1:      0.90037 -- Seq_N   1
 Node  2: 1374807977.64638 -- Worker  1:      1.00040 -- Seq_N   7
 Node  3: 1374807977.74642 -- Worker  1:      1.10043 -- Seq_N  13
 Node  4: 1374807977.84643 -- Worker  1:      1.20045 -- Seq_N  19
 Node  1: 1374807977.94636 -- Worker  2:      1.30037 -- Seq_N   2
 Node  2: 1374807978.04638 -- Worker  2:      1.40040 -- Seq_N   8
 Node  3: 1374807978.14641 -- Worker  2:      1.50042 -- Seq_N  14
 Node  4: 1374807978.24644 -- Worker  2:      1.60045 -- Seq_N  20
 Node  1: 1374807978.34628 -- Worker  1:      0.79996 -- Seq_N   3
 Node  2: 1374807978.44631 -- Worker  1:      0.79996 -- Seq_N   9
 Node  3: 1374807978.54634 -- Worker  1:      0.79996 -- Seq_N  15
 Node  4: 1374807978.64636 -- Worker  1:      0.79997 -- Seq_N  21
 Node  1: 1374807978.74628 -- Worker  2:      0.79996 -- Seq_N   4
 Node  2: 1374807978.84632 -- Worker  2:      0.79997 -- Seq_N  10
 Node  3: 1374807978.94634 -- Worker  2:      0.79996 -- Seq_N  16
 Node  4: 1374807979.04636 -- Worker  2:      0.79996 -- Seq_N  22
 Node  1: 1374807979.14628 -- Worker  1:      0.80001 -- Seq_N   5
 Node  2: 1374807979.24631 -- Worker  1:      0.80000 -- Seq_N  11
 Node  3: 1374807979.34634 -- Worker  1:      0.80001 -- Seq_N  17
 Node  4: 1374807979.44636 -- Worker  1:      0.80000 -- Seq_N  23
 Node  1: 1374807979.54628 -- Worker  2:      0.80000 -- Seq_N   6
 Node  2: 1374807979.64631 -- Worker  2:      0.80000 -- Seq_N  12
 Node  3: 1374807979.74633 -- Worker  2:      0.80000 -- Seq_N  18
 Node  4: 1374807979.84636 -- Worker  2:      0.80000 -- Seq_N  24

The interval.pl example above is included with MCE.

=head1 MCE PROGRESS DEMONSTRATIONS

The C<progress> option takes a code block for receiving info on the progress
made while processing input data; e.g. C<input_data> or C<sequence>. To make
this work, one provides the C<progress> option a closure block like so, passing
along the size of the input_data; e.g C<scalar @array> or C<-s /path/to/file>.

Current API available since 1.813.

A worker, upon completing processing its chunk, notifies the manager-process
with the size of the chunk. That could be the number of rows or literally the
size of the chunk when processing an input file. The manager-process accumulates
the size before calling the code block associated with the C<progress> option.

When running many tasks simultaneously, via C<user_tasks>, the call is initiated
by workers at level 0 only or rather the first task, not shown here.

 use Time::HiRes 'sleep';
 use MCE;

 sub make_progress {
    my ($total_size) = @_;
    return sub {
       my ($completed_size) = @_;
       printf "%0.1f%%\n", $completed_size / $total_size * 100;
    };
 }

 my @input = (1..150);

 MCE->new(
    chunk_size  => 10,
    max_workers => 4,
    input_data  => \@input,
    progress    => make_progress( scalar @input ),
    user_func   => sub { sleep 1.5 }
 )->run();

 -- Output

 6.7%
 13.3%
 20.0%
 26.7%
 33.3%
 40.0%
 46.7%
 53.3%
 60.0%
 66.7%
 73.3%
 80.0%
 86.7%
 93.3%
 100.0%

Next is the code using L<MCE::Flow> and L<ProgressBar::Stack> to do the
same thing, practically.

 use Time::HiRes 'sleep';
 use ProgressBar::Stack;
 use MCE::Flow;

 sub make_progress {
    my ($total_size) = @_;
    init_progress();
    return sub {
       my ($completed_size) = @_;
       update_progress sprintf("%0.1f", $completed_size / $total_size * 100);
    };
 }

 my @input = (1..150);

 MCE::Flow->init(
    chunk_size  => 10,
    max_workers => 4,
    progress    => make_progress( scalar @input )
 );

 MCE::Flow->run( sub { sleep 1.5 }, \@input );
 MCE::Flow->finish();

 print "\n";

 -- Output

 [################    ]  80.0% ETA: 0:01

For sequence of numbers, using the C<sequence> option, one must account for
C<step_size>, typically set to C<1> automatically.

 use Time::HiRes 'sleep';
 use MCE;

 sub make_progress {
    my ($total_size) = @_;
    return sub {
       my ($completed_size) = @_;
       printf "%0.1f%%\n", $completed_size / $total_size * 100;
    };
 }

 MCE->new(
    chunk_size  => 10,
    max_workers => 4,
    sequence    => [ 1, 100, 2 ],
    progress    => make_progress( int( 100 / 2 + 0.5 ) ),
    user_func   => sub { sleep 1.5 }
 )->run();

 -- Output

 20.0%
 40.0%
 60.0%
 80.0%
 100.0%

Changing C<chunk_size> to C<1> means workers notify the manager process more
often, thus increasing granularity. Take a look at the output.

 2.0%
 4.0%
 6.0%
 8.0%
 10.0%
 ...
 92.0%
 94.0%
 96.0%
 98.0%
 100.0%

Here is the same thing using L<MCE::Flow> together with L<ProgressBar::Stack>.

 use Time::HiRes 'sleep';
 use ProgressBar::Stack;
 use MCE::Flow;

 sub make_progress {
    my ($total_size) = @_;
    init_progress();
    return sub {
       my ($completed_size) = @_;
       update_progress sprintf("%0.1f", $completed_size / $total_size * 100);
    };
 }

 MCE::Flow->init(
    chunk_size  => 1,
    max_workers => 4,
    progress    => make_progress( int( 100 / 2 + 0.5 ) )
 );

 MCE::Flow->run_seq( sub { sleep 0.5 }, 1, 100, 2 );
 MCE::Flow->finish();

 print "\n";

 -- Output

 [#########           ]  48.0% ETA: 0:03

For files and file handles, workers send the actual size of the data read
versus counting rows.

 use Time::HiRes 'sleep';
 use MCE;

 sub make_progress {
    my ($total_size) = @_;
    return sub {
       my ($completed_size) = @_;
       printf "%0.1f%%\n", $completed_size / $total_size * 100;
    };
 }

 my $input_file = "/path/to/input_file.txt";

 MCE->new(
    chunk_size  => 5,
    max_workers => 4,
    input_data  => $input_file,
    progress    => make_progress( -s $input_file ),
    user_func   => sub { sleep 0.03 }
 )->run();

For consistency, here is the example using L<MCE::Flow>, again with
L<ProgressBar::Stack>.

 use Time::HiRes 'sleep';
 use ProgressBar::Stack;
 use MCE::Flow;

 sub make_progress {
    my ($total_size) = @_;
    init_progress();
    return sub {
       my ($completed_size) = @_;
       update_progress sprintf("%0.1f", $completed_size / $total_size * 100);
    };
 }

 my $input_file = "/path/to/input_file.txt";

 MCE::Flow->init(
    chunk_size  => 5,
    max_workers => 4,
    progress    => make_progress( -s $input_file )
 );

 MCE::Flow->run_file( sub { sleep 0.03 }, $input_file );
 MCE::Flow->finish();

The next demonstration processes three arrays consecutively. For this one, MCE
workers persist after running. This needs MCE 1.814 or later to run. Otherwise,
the progress output is not shown in MCE 1.813.

 use Time::HiRes 'sleep';
 use ProgressBar::Stack;
 use MCE;

 sub make_progress {
    my ($total_size, $message) = @_;
    init_progress();
    return sub {
       my ($completed_size) = @_;
       update_progress(
          sprintf("%0.1f", $completed_size / $total_size * 100),
          $message
       );
    };
 }

 my $mce = MCE->new(
    chunk_size  => 10,
    max_workers => 4,
    user_func   => sub { sleep 0.5 }
 )->spawn();

 my @a1 = ( 1 .. 200 );
 my @a2 = ( 1 .. 500 );
 my @a3 = ( 1 .. 300 );

 $mce->process({ progress => make_progress(scalar(@a1), "array 1") }, \@a1);

 print "\n";

 $mce->process({ progress => make_progress(scalar(@a2), "array 2") }, \@a2);

 print "\n";

 $mce->process({ progress => make_progress(scalar(@a3), "array 3") }, \@a3);

 print "\n";

 $mce->shutdown;

 -- Output

 [####################] 100.0% ETA: 0:00 array 1
 [####################] 100.0% ETA: 0:00 array 2
 [####################] 100.0% ETA: 0:00 array 3

When size is not know, such as reading from C<STDIN>, the only thing one
can do is report the size completed thus far.

 # 1 kibibyte equals 1024 bytes

 progress => sub {
    my ($completed_size) = @_;
    printf "%0.1f kibibytes\n", $completed_size / 1024;
 }

=head1 SEE ALSO

=over 3

=item * L<MCE::Examples>

=back

=head1 INDEX

L<MCE|MCE>

=head1 AUTHOR

Mario E. Roy, S<E<lt>marioeroy AT gmail DOT comE<gt>>

=cut