summaryrefslogtreecommitdiff
path: root/examples/example_confidence_interval.py
blob: baa792b8bf11ae2928d049f385e306b69a205536 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
"""
Calculate Confidence Intervals
==============================

"""
import matplotlib.pyplot as plt
from numpy import argsort, exp, linspace, pi, random, sign, sin, unique
from scipy.interpolate import interp1d

from lmfit import (Minimizer, Parameters, conf_interval, conf_interval2d,
                   report_ci, report_fit)

###############################################################################
# Define the residual function, specify "true" parameter values, and generate
# a synthetic data set with some noise:


def residual(pars, x, data=None):
    argu = (x*pars['decay'])**2
    shift = pars['shift']
    if abs(shift) > pi/2:
        shift = shift - sign(shift)*pi
    model = pars['amp']*sin(shift + x/pars['period']) * exp(-argu)
    if data is None:
        return model
    return model - data


p_true = Parameters()
p_true.add('amp', value=14.0)
p_true.add('period', value=5.33)
p_true.add('shift', value=0.123)
p_true.add('decay', value=0.010)

x = linspace(0.0, 250.0, 2500)
random.seed(2021)
noise = random.normal(scale=0.7215, size=x.size)
data = residual(p_true, x) + noise

###############################################################################
# Create fitting parameters and set initial values:
fit_params = Parameters()
fit_params.add('amp', value=13.0)
fit_params.add('period', value=2)
fit_params.add('shift', value=0.0)
fit_params.add('decay', value=0.02)

###############################################################################
# Set-up the minimizer and perform the fit using ``leastsq`` algorithm, and
# show the report:
mini = Minimizer(residual, fit_params, fcn_args=(x,), fcn_kws={'data': data})
out = mini.leastsq()

fit = residual(out.params, x)
report_fit(out)

###############################################################################
# Calculate the confidence intervals for parameters and display the results:
ci, tr = conf_interval(mini, out, trace=True)

report_ci(ci)

names = out.params.keys()
i = 0
gs = plt.GridSpec(4, 4)
sx = {}
sy = {}
for fixed in names:
    j = 0
    for free in names:
        if j in sx and i in sy:
            ax = plt.subplot(gs[i, j], sharex=sx[j], sharey=sy[i])
        elif i in sy:
            ax = plt.subplot(gs[i, j], sharey=sy[i])
            sx[j] = ax
        elif j in sx:
            ax = plt.subplot(gs[i, j], sharex=sx[j])
            sy[i] = ax
        else:
            ax = plt.subplot(gs[i, j])
            sy[i] = ax
            sx[j] = ax
        if i < 3:
            plt.setp(ax.get_xticklabels(), visible=False)
        else:
            ax.set_xlabel(free)

        if j > 0:
            plt.setp(ax.get_yticklabels(), visible=False)
        else:
            ax.set_ylabel(fixed)

        res = tr[fixed]
        prob = res['prob']
        f = prob < 0.96

        x, y = res[free], res[fixed]
        ax.scatter(x[f], y[f], c=1-prob[f], s=25*(1-prob[f]+0.5))
        ax.autoscale(1, 1)
        j += 1
    i += 1


###############################################################################
# It is also possible to calculate the confidence regions for two fixed
# parameters using the function ``conf_interval2d``:
names = list(out.params.keys())

plt.figure()
for i in range(4):
    for j in range(4):
        indx = 16-j*4-i
        ax = plt.subplot(4, 4, indx)
        ax.ticklabel_format(style='sci', scilimits=(-2, 2), axis='y')

        # set-up labels and tick marks
        ax.tick_params(labelleft=False, labelbottom=False)
        if indx in (2, 5, 9, 13):
            plt.ylabel(names[j])
            ax.tick_params(labelleft=True)
        if indx == 1:
            ax.tick_params(labelleft=True)
        if indx in (13, 14, 15, 16):
            plt.xlabel(names[i])
            ax.tick_params(labelbottom=True)
            [label.set_rotation(45) for label in ax.get_xticklabels()]

        if i != j:
            x, y, m = conf_interval2d(mini, out, names[i], names[j], 20, 20)
            plt.contourf(x, y, m, linspace(0, 1, 10))

            x = tr[names[i]][names[i]]
            y = tr[names[i]][names[j]]
            pr = tr[names[i]]['prob']
            s = argsort(x)
            plt.scatter(x[s], y[s], c=pr[s], s=30, lw=1)

        else:
            x = tr[names[i]][names[i]]
            y = tr[names[i]]['prob']

            t, s = unique(x, True)
            f = interp1d(t, y[s], 'slinear')
            xn = linspace(x.min(), x.max(), 50)
            plt.plot(xn, f(xn), lw=1)
            plt.ylabel('prob')
            ax.tick_params(labelleft=True)

plt.tight_layout()
plt.show()