summaryrefslogtreecommitdiff
path: root/lmfit/_differentialevolution.py
blob: 1e1fb665db34981c856d7175af950ec31b1cf793 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
"""
differential_evolution: The differential evolution global optimization algorithm
Added by Andrew Nelson 2014
"""
from __future__ import division, print_function, absolute_import
import numpy as np
from scipy.optimize import minimize
from scipy.optimize.optimize import _status_message
import numbers

__all__ = ['differential_evolution']

_MACHEPS = np.finfo(np.float64).eps


#------------------------------------------------------------------------------
# scipy.optimize does not contain OptimizeResult until 0.14. Include here as a
# fix for scipy < 0.14.

class OptimizeResult(dict):
    """ Represents the optimization result.
    Attributes
    ----------
    x : ndarray
        The solution of the optimization.
    success : bool
        Whether or not the optimizer exited successfully.
    status : int
        Termination status of the optimizer. Its value depends on the
        underlying solver. Refer to `message` for details.
    message : str
        Description of the cause of the termination.
    fun, jac, hess, hess_inv : ndarray
        Values of objective function, Jacobian, Hessian or its inverse (if
        available). The Hessians may be approximations, see the documentation
        of the function in question.
    nfev, njev, nhev : int
        Number of evaluations of the objective functions and of its
        Jacobian and Hessian.
    nit : int
        Number of iterations performed by the optimizer.
    maxcv : float
        The maximum constraint violation.
    Notes
    -----
    There may be additional attributes not listed above depending of the
    specific solver. Since this class is essentially a subclass of dict
    with attribute accessors, one can see which attributes are available
    using the `keys()` method.
    """
    def __getattr__(self, name):
        try:
            return self[name]
        except KeyError:
            raise AttributeError(name)

    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

    def __repr__(self):
        if self.keys():
            m = max(map(len, list(self.keys()))) + 1
            return '\n'.join([k.rjust(m) + ': ' + repr(v)
                              for k, v in self.items()])
        else:
            return self.__class__.__name__ + "()"
#------------------------------------------------------------------------------


def differential_evolution(func, bounds, args=(), strategy='best1bin',
                           maxiter=None, popsize=15, tol=0.01,
                           mutation=(0.5, 1), recombination=0.7, seed=None,
                           callback=None, disp=False, polish=True,
                           init='latinhypercube'):
    """Finds the global minimum of a multivariate function.
    Differential Evolution is stochastic in nature (does not use gradient
    methods) to find the minimium, and can search large areas of candidate
    space, but often requires larger numbers of function evaluations than
    conventional gradient based techniques.

    The algorithm is due to Storn and Price [1]_.

    Parameters
    ----------
    func : callable
        The objective function to be minimized.  Must be in the form
        ``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array
        and ``args`` is a  tuple of any additional fixed parameters needed to
        completely specify the function.
    bounds : sequence
        Bounds for variables.  ``(min, max)`` pairs for each element in ``x``,
        defining the lower and upper bounds for the optimizing argument of
        `func`. It is required to have ``len(bounds) == len(x)``.
        ``len(bounds)`` is used to determine the number of parameters in ``x``.
    args : tuple, optional
        Any additional fixed parameters needed to
        completely specify the objective function.
    strategy : str, optional
        The differential evolution strategy to use. Should be one of:

            - 'best1bin'
            - 'best1exp'
            - 'rand1exp'
            - 'randtobest1exp'
            - 'best2exp'
            - 'rand2exp'
            - 'randtobest1bin'
            - 'best2bin'
            - 'rand2bin'
            - 'rand1bin'

        The default is 'best1bin'.
    maxiter : int, optional
        The maximum number of times the entire population is evolved.
        The maximum number of function evaluations is:
        ``maxiter * popsize * len(x)``
    popsize : int, optional
        A multiplier for setting the total population size.  The population has
        ``popsize * len(x)`` individuals.
    tol : float, optional
        When the mean of the population energies, multiplied by tol,
        divided by the standard deviation of the population energies
        is greater than 1 the solving process terminates:
        ``convergence = mean(pop) * tol / stdev(pop) > 1``
    mutation : float or tuple(float, float), optional
        The mutation constant.
        If specified as a float it should be in the range [0, 2].
        If specified as a tuple ``(min, max)`` dithering is employed. Dithering
        randomly changes the mutation constant on a generation by generation
        basis. The mutation constant for that generation is taken from
        ``U[min, max)``. Dithering can help speed convergence significantly.
        Increasing the mutation constant increases the search radius, but will
        slow down convergence.
    recombination : float, optional
        The recombination constant, should be in the range [0, 1]. Increasing
        this value allows a larger number of mutants to progress into the next
        generation, but at the risk of population stability.
    seed : int or `np.random.RandomState`, optional
        If `seed` is not specified the `np.RandomState` singleton is used.
        If `seed` is an int, a new `np.random.RandomState` instance is used,
        seeded with seed.
        If `seed` is already a `np.random.RandomState instance`, then that
        `np.random.RandomState` instance is used.
        Specify `seed` for repeatable minimizations.
    disp : bool, optional
        Display status messages
    callback : callable, `callback(xk, convergence=val)`, optional:
        A function to follow the progress of the minimization. ``xk`` is
        the current value of ``x0``. ``val`` represents the fractional
        value of the population convergence.  When ``val`` is greater than one
        the function halts. If callback returns `True`, then the minimization
        is halted (any polishing is still carried out).
    polish : bool, optional
        If True (default), then `scipy.optimize.minimize` with the `L-BFGS-B`
        method is used to polish the best population member at the end, which
        can improve the minimization slightly.
    init : string, optional
        Specify how the population initialization is performed. Should be
        one of:

            - 'latinhypercube'
            - 'random'

        The default is 'latinhypercube'. Latin Hypercube sampling tries to
        maximize coverage of the available parameter space. 'random' initializes
        the population randomly - this has the drawback that clustering can
        occur, preventing the whole of parameter space being covered.

    Returns
    -------
    res : OptimizeResult
        The optimization result represented as a `OptimizeResult` object.
        Important attributes are: ``x`` the solution array, ``success`` a
        Boolean flag indicating if the optimizer exited successfully and
        ``message`` which describes the cause of the termination. See
        `OptimizeResult` for a description of other attributes. If `polish`
        was employed, then OptimizeResult also contains the `jac` attribute.

    Notes
    -----
    Differential evolution is a stochastic population based method that is
    useful for global optimization problems. At each pass through the population
    the algorithm mutates each candidate solution by mixing with other candidate
    solutions to create a trial candidate. There are several strategies [2]_ for
    creating trial candidates, which suit some problems more than others. The
    'best1bin' strategy is a good starting point for many systems. In this
    strategy two members of the population are randomly chosen. Their difference
    is used to mutate the best member (the `best` in `best1bin`), :math:`b_0`,
    so far:

    .. math::

        b' = b_0 + mutation * (population[rand0] - population[rand1])

    A trial vector is then constructed. Starting with a randomly chosen 'i'th
    parameter the trial is sequentially filled (in modulo) with parameters from
    `b'` or the original candidate. The choice of whether to use `b'` or the
    original candidate is made with a binomial distribution (the 'bin' in
    'best1bin') - a random number in [0, 1) is generated.  If this number is
    less than the `recombination` constant then the parameter is loaded from
    `b'`, otherwise it is loaded from the original candidate.  The final
    parameter is always loaded from `b'`.  Once the trial candidate is built
    its fitness is assessed. If the trial is better than the original candidate
    then it takes its place. If it is also better than the best overall
    candidate it also replaces that.
    To improve your chances of finding a global minimum use higher `popsize`
    values, with higher `mutation` and (dithering), but lower `recombination`
    values. This has the effect of widening the search radius, but slowing
    convergence.

    .. versionadded:: 0.15.0

    Examples
    --------
    Let us consider the problem of minimizing the Rosenbrock function. This
    function is implemented in `rosen` in `scipy.optimize`.

    >>> from scipy.optimize import rosen, differential_evolution
    >>> bounds = [(0,2), (0, 2), (0, 2), (0, 2), (0, 2)]
    >>> result = differential_evolution(rosen, bounds)
    >>> result.x, result.fun
    (array([1., 1., 1., 1., 1.]), 1.9216496320061384e-19)

    Next find the minimum of the Ackley function
    (http://en.wikipedia.org/wiki/Test_functions_for_optimization).

    >>> from scipy.optimize import differential_evolution
    >>> import numpy as np
    >>> def ackley(x):
    ...     arg1 = -0.2 * np.sqrt(0.5 * (x[0] ** 2 + x[1] ** 2))
    ...     arg2 = 0.5 * (np.cos(2. * np.pi * x[0]) + np.cos(2. * np.pi * x[1]))
    ...     return -20. * np.exp(arg1) - np.exp(arg2) + 20. + np.e
    >>> bounds = [(-5, 5), (-5, 5)]
    >>> result = differential_evolution(ackley, bounds)
    >>> result.x, result.fun
    (array([ 0.,  0.]), 4.4408920985006262e-16)

    References
    ----------
    .. [1] Storn, R and Price, K, Differential Evolution - a Simple and
           Efficient Heuristic for Global Optimization over Continuous Spaces,
           Journal of Global Optimization, 1997, 11, 341 - 359.
    .. [2] http://www1.icsi.berkeley.edu/~storn/code.html
    .. [3] http://en.wikipedia.org/wiki/Differential_evolution
    """

    solver = DifferentialEvolutionSolver(func, bounds, args=args,
                                         strategy=strategy, maxiter=maxiter,
                                         popsize=popsize, tol=tol,
                                         mutation=mutation,
                                         recombination=recombination,
                                         seed=seed, polish=polish,
                                         callback=callback,
                                         disp=disp,
                                         init=init)
    return solver.solve()


class DifferentialEvolutionSolver(object):

    """This class implements the differential evolution solver

    Parameters
    ----------
    func : callable
        The objective function to be minimized.  Must be in the form
        ``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array
        and ``args`` is a  tuple of any additional fixed parameters needed to
        completely specify the function.
    bounds : sequence
        Bounds for variables.  ``(min, max)`` pairs for each element in ``x``,
        defining the lower and upper bounds for the optimizing argument of
        `func`. It is required to have ``len(bounds) == len(x)``.
        ``len(bounds)`` is used to determine the number of parameters in ``x``.
    args : tuple, optional
        Any additional fixed parameters needed to
        completely specify the objective function.
    strategy : str, optional
        The differential evolution strategy to use. Should be one of:

            - 'best1bin'
            - 'best1exp'
            - 'rand1exp'
            - 'randtobest1exp'
            - 'best2exp'
            - 'rand2exp'
            - 'randtobest1bin'
            - 'best2bin'
            - 'rand2bin'
            - 'rand1bin'

        The default is 'best1bin'

    maxiter : int, optional
        The maximum number of times the entire population is evolved. The
        maximum number of function evaluations is:
        ``maxiter * popsize * len(x)``
    popsize : int, optional
        A multiplier for setting the total population size.  The population has
        ``popsize * len(x)`` individuals.
    tol : float, optional
        When the mean of the population energies, multiplied by tol,
        divided by the standard deviation of the population energies
        is greater than 1 the solving process terminates:
        ``convergence = mean(pop) * tol / stdev(pop) > 1``
    mutation : float or tuple(float, float), optional
        The mutation constant.
        If specified as a float it should be in the range [0, 2].
        If specified as a tuple ``(min, max)`` dithering is employed. Dithering
        randomly changes the mutation constant on a generation by generation
        basis. The mutation constant for that generation is taken from
        U[min, max). Dithering can help speed convergence significantly.
        Increasing the mutation constant increases the search radius, but will
        slow down convergence.
    recombination : float, optional
        The recombination constant, should be in the range [0, 1]. Increasing
        this value allows a larger number of mutants to progress into the next
        generation, but at the risk of population stability.
    seed : int or `np.random.RandomState`, optional
        If `seed` is not specified the `np.random.RandomState` singleton is
        used.
        If `seed` is an int, a new `np.random.RandomState` instance is used,
        seeded with `seed`.
        If `seed` is already a `np.random.RandomState` instance, then that
        `np.random.RandomState` instance is used.
        Specify `seed` for repeatable minimizations.
    disp : bool, optional
        Display status messages
    callback : callable, `callback(xk, convergence=val)`, optional
        A function to follow the progress of the minimization. ``xk`` is
        the current value of ``x0``. ``val`` represents the fractional
        value of the population convergence.  When ``val`` is greater than one
        the function halts. If callback returns `True`, then the minimization
        is halted (any polishing is still carried out).
    polish : bool, optional
        If True, then `scipy.optimize.minimize` with the `L-BFGS-B` method
        is used to polish the best population member at the end. This requires
        a few more function evaluations.
    maxfun : int, optional
        Set the maximum number of function evaluations. However, it probably
        makes more sense to set `maxiter` instead.
    init : string, optional
        Specify which type of population initialization is performed. Should be
        one of:

            - 'latinhypercube'
            - 'random'
    """

    # Dispatch of mutation strategy method (binomial or exponential).
    _binomial = {'best1bin': '_best1',
                 'randtobest1bin': '_randtobest1',
                 'best2bin': '_best2',
                 'rand2bin': '_rand2',
                 'rand1bin': '_rand1'}
    _exponential = {'best1exp': '_best1',
                    'rand1exp': '_rand1',
                    'randtobest1exp': '_randtobest1',
                    'best2exp': '_best2',
                    'rand2exp': '_rand2'}

    def __init__(self, func, bounds, args=(),
                 strategy='best1bin', maxiter=None, popsize=15,
                 tol=0.01, mutation=(0.5, 1), recombination=0.7, seed=None,
                 maxfun=None, callback=None, disp=False, polish=True,
                 init='latinhypercube'):

        if strategy in self._binomial:
            self.mutation_func = getattr(self, self._binomial[strategy])
        elif strategy in self._exponential:
            self.mutation_func = getattr(self, self._exponential[strategy])
        else:
            raise ValueError("Please select a valid mutation strategy")
        self.strategy = strategy

        self.callback = callback
        self.polish = polish
        self.tol = tol

        #Mutation constant should be in [0, 2). If specified as a sequence
        #then dithering is performed.
        self.scale = mutation
        if (not np.all(np.isfinite(mutation)) or
                np.any(np.array(mutation) >= 2) or
                np.any(np.array(mutation) < 0)):
            raise ValueError('The mutation constant must be a float in '
                             'U[0, 2), or specified as a tuple(min, max)'
                             ' where min < max and min, max are in U[0, 2).')

        self.dither = None
        if hasattr(mutation, '__iter__') and len(mutation) > 1:
            self.dither = [mutation[0], mutation[1]]
            self.dither.sort()

        self.cross_over_probability = recombination

        self.func = func
        self.args = args

        # convert tuple of lower and upper bounds to limits
        # [(low_0, high_0), ..., (low_n, high_n]
        #     -> [[low_0, ..., low_n], [high_0, ..., high_n]]
        self.limits = np.array(bounds, dtype='float').T
        if (np.size(self.limits, 0) != 2
                or not np.all(np.isfinite(self.limits))):
            raise ValueError('bounds should be a sequence containing '
                             'real valued (min, max) pairs for each value'
                             ' in x')

        self.maxiter = maxiter or 1000
        self.maxfun = (maxfun or ((self.maxiter + 1) * popsize *
                                  np.size(self.limits, 1)))

        # population is scaled to between [0, 1].
        # We have to scale between parameter <-> population
        # save these arguments for _scale_parameter and
        # _unscale_parameter. This is an optimization
        self.__scale_arg1 = 0.5 * (self.limits[0] + self.limits[1])
        self.__scale_arg2 = np.fabs(self.limits[0] - self.limits[1])

        parameter_count = np.size(self.limits, 1)
        self.random_number_generator = _make_random_gen(seed)

        #default initialization is a latin hypercube design, but there
        #are other population initializations possible.
        self.population = np.zeros((popsize * parameter_count,
                                    parameter_count))
        if init == 'latinhypercube':
            self.init_population_lhs()
        elif init == 'random':
            self.init_population_random()
        else:
            raise ValueError("The population initialization method must be one"
                             "of 'latinhypercube' or 'random'")

        self.population_energies = np.ones(
            popsize * parameter_count) * np.inf

        self.disp = disp

    def init_population_lhs(self):
        """
        Initializes the population with Latin Hypercube Sampling
        Latin Hypercube Sampling ensures that the sampling of parameter space
        is maximised.
        """
        samples = np.size(self.population, 0)
        N = np.size(self.population, 1)
        rng = self.random_number_generator

        # Generate the intervals
        segsize = 1.0 / samples

        # Fill points uniformly in each interval
        rdrange = rng.rand(samples, N) * segsize
        rdrange += np.atleast_2d(np.arange(0., 1., segsize)).T

        # Make the random pairings
        self.population = np.zeros_like(rdrange)

        for j in range(N):
            order = rng.permutation(range(samples))
            self.population[:, j] = rdrange[order, j]

    def init_population_random(self):
        """
        Initialises the population at random.  This type of initialization
        can possess clustering, Latin Hypercube sampling is generally better.
        """
        rng = self.random_number_generator
        self.population = rng.random_sample(self.population.shape)

    @property
    def x(self):
        """
        The best solution from the solver

        Returns
        -------
        x - ndarray
            The best solution from the solver.
        """
        return self._scale_parameters(self.population[0])

    def solve(self):
        """
        Runs the DifferentialEvolutionSolver.

        Returns
        -------
        res : OptimizeResult
            The optimization result represented as a ``OptimizeResult`` object.
            Important attributes are: ``x`` the solution array, ``success`` a
            Boolean flag indicating if the optimizer exited successfully and
            ``message`` which describes the cause of the termination. See
            `OptimizeResult` for a description of other attributes. If polish
            was employed, then OptimizeResult also contains the ``hess_inv`` and
            ``jac`` attributes.
        """

        nfev, nit, warning_flag = 0, 0, False
        status_message = _status_message['success']

        # calculate energies to start with
        for index, candidate in enumerate(self.population):
            parameters = self._scale_parameters(candidate)
            self.population_energies[index] = self.func(parameters,
                                                        *self.args)
            nfev += 1

            if nfev > self.maxfun:
                warning_flag = True
                status_message = _status_message['maxfev']
                break

        minval = np.argmin(self.population_energies)

        # put the lowest energy into the best solution position.
        lowest_energy = self.population_energies[minval]
        self.population_energies[minval] = self.population_energies[0]
        self.population_energies[0] = lowest_energy

        self.population[[0, minval], :] = self.population[[minval, 0], :]

        if warning_flag:
            return OptimizeResult(
                           x=self.x,
                           fun=self.population_energies[0],
                           nfev=nfev,
                           nit=nit,
                           message=status_message,
                           success=(warning_flag != True))

        # do the optimisation.
        for nit in range(1, self.maxiter + 1):
            if self.dither is not None:
                self.scale = self.random_number_generator.rand(
                ) * (self.dither[1] - self.dither[0]) + self.dither[0]
            for candidate in range(np.size(self.population, 0)):
                if nfev > self.maxfun:
                    warning_flag = True
                    status_message = _status_message['maxfev']
                    break

                trial = self._mutate(candidate)
                self._ensure_constraint(trial)
                parameters = self._scale_parameters(trial)

                energy = self.func(parameters, *self.args)
                nfev += 1

                if energy < self.population_energies[candidate]:
                    self.population[candidate] = trial
                    self.population_energies[candidate] = energy

                    if energy < self.population_energies[0]:
                        self.population_energies[0] = energy
                        self.population[0] = trial

            # stop when the fractional s.d. of the population is less than tol
            # of the mean energy
            convergence = (np.std(self.population_energies) /
                           np.abs(np.mean(self.population_energies) +
                                  _MACHEPS))

            if self.disp:
                print("differential_evolution step %d: f(x)= %g"
                      % (nit,
                         self.population_energies[0]))

            if (self.callback and
                    self.callback(self._scale_parameters(self.population[0]),
                                  convergence=self.tol / convergence) is True):

                warning_flag = True
                status_message = ('callback function requested stop early '
                                  'by returning True')
                break

            if convergence < self.tol or warning_flag:
                break

        else:
            status_message = _status_message['maxiter']
            warning_flag = True

        DE_result = OptimizeResult(
            x=self.x,
            fun=self.population_energies[0],
            nfev=nfev,
            nit=nit,
            message=status_message,
            success=(warning_flag != True))

        if self.polish:
            result = minimize(self.func,
                              np.copy(DE_result.x),
                              method='L-BFGS-B',
                              bounds=self.limits.T,
                              args=self.args)

            nfev += result.nfev
            DE_result.nfev = nfev

            if result.fun < DE_result.fun:
                DE_result.fun = result.fun
                DE_result.x = result.x
                DE_result.jac = result.jac
                # to keep internal state consistent
                self.population_energies[0] = result.fun
                self.population[0] = self._unscale_parameters(result.x)

        return DE_result

    def _scale_parameters(self, trial):
        """
        scale from a number between 0 and 1 to parameters
        """
        return self.__scale_arg1 + (trial - 0.5) * self.__scale_arg2

    def _unscale_parameters(self, parameters):
        """
        scale from parameters to a number between 0 and 1.
        """
        return (parameters - self.__scale_arg1) / self.__scale_arg2 + 0.5

    def _ensure_constraint(self, trial):
        """
        make sure the parameters lie between the limits
        """
        for index, param in enumerate(trial):
            if param > 1 or param < 0:
                trial[index] = self.random_number_generator.rand()

    def _mutate(self, candidate):
        """
        create a trial vector based on a mutation strategy
        """
        trial = np.copy(self.population[candidate])
        parameter_count = np.size(trial, 0)

        fill_point = self.random_number_generator.randint(0, parameter_count)

        if (self.strategy == 'randtobest1exp'
                or self.strategy == 'randtobest1bin'):
            bprime = self.mutation_func(candidate,
                                        self._select_samples(candidate, 5))
        else:
            bprime = self.mutation_func(self._select_samples(candidate, 5))

        if self.strategy in self._binomial:
            crossovers = self.random_number_generator.rand(parameter_count)
            crossovers = crossovers < self.cross_over_probability
            # the last one is always from the bprime vector for binomial
            # If you fill in modulo with a loop you have to set the last one to
            # true. If you don't use a loop then you can have any random entry
            # be True.
            crossovers[fill_point] = True
            trial = np.where(crossovers, bprime, trial)
            return trial

        elif self.strategy in self._exponential:
            i = 0
            while (i < parameter_count and
                   self.random_number_generator.rand() <
                   self.cross_over_probability):

                trial[fill_point] = bprime[fill_point]
                fill_point = (fill_point + 1) % parameter_count
                i += 1

            return trial

    def _best1(self, samples):
        """
        best1bin, best1exp
        """
        r0, r1 = samples[:2]
        return (self.population[0] + self.scale *
                (self.population[r0] - self.population[r1]))

    def _rand1(self, samples):
        """
        rand1bin, rand1exp
        """
        r0, r1, r2 = samples[:3]
        return (self.population[r0] + self.scale *
                (self.population[r1] - self.population[r2]))

    def _randtobest1(self, candidate, samples):
        """
        randtobest1bin, randtobest1exp
        """
        r0, r1 = samples[:2]
        bprime = np.copy(self.population[candidate])
        bprime += self.scale * (self.population[0] - bprime)
        bprime += self.scale * (self.population[r0] -
                                self.population[r1])
        return bprime

    def _best2(self, samples):
        """
        best2bin, best2exp
        """
        r0, r1, r2, r3 = samples[:4]
        bprime = (self.population[0] + self.scale *
                            (self.population[r0] + self.population[r1]
                           - self.population[r2] - self.population[r3]))

        return bprime

    def _rand2(self, samples):
        """
        rand2bin, rand2exp
        """
        r0, r1, r2, r3, r4 = samples
        bprime = (self.population[r0] + self.scale *
                 (self.population[r1] + self.population[r2] -
                  self.population[r3] - self.population[r4]))

        return bprime

    def _select_samples(self, candidate, number_samples):
        """
        obtain random integers from range(np.size(self.population, 0)),
        without replacement.  You can't have the original candidate either.
        """
        idxs = list(range(np.size(self.population, 0)))
        idxs.remove(candidate)
        self.random_number_generator.shuffle(idxs)
        idxs = idxs[:number_samples]
        return idxs


def _make_random_gen(seed):
    """Turn seed into a np.random.RandomState instance

    If seed is None, return the RandomState singleton used by np.random.
    If seed is an int, return a new RandomState instance seeded with seed.
    If seed is already a RandomState instance, return it.
    Otherwise raise ValueError.
    """
    if seed is None or seed is np.random:
        return np.random.mtrand._rand
    if isinstance(seed, (numbers.Integral, np.integer)):
        return np.random.RandomState(seed)
    if isinstance(seed, np.random.RandomState):
        return seed
    raise ValueError('%r cannot be used to seed a numpy.random.RandomState'
                     ' instance' % seed)