summaryrefslogtreecommitdiff
path: root/lmfit/minimizer.py
blob: a4034a22d9569e70c84ac7ca102183e08e452bba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
"""Simple minimizer is a wrapper around scipy.leastsq, allowing a user to build
a fitting model as a function of general purpose Fit Parameters that can be
fixed or varied, bounded, and written as a simple expression of other Fit
Parameters.

The user sets up a model in terms of instance of Parameters and writes a
function-to-be-minimized (residual function) in terms of these Parameters.

Original copyright:
   Copyright (c) 2011 Matthew Newville, The University of Chicago

See LICENSE for more complete authorship information and license.

"""
from collections import namedtuple
from copy import deepcopy
import multiprocessing
import numbers
import warnings

import numpy as np
from numpy import ndarray, ones_like, sqrt
from numpy.dual import inv
from numpy.linalg import LinAlgError
from scipy.optimize import basinhopping as scipy_basinhopping
from scipy.optimize import brute as scipy_brute
from scipy.optimize import differential_evolution, least_squares
from scipy.optimize import leastsq as scipy_leastsq
from scipy.optimize import minimize as scipy_minimize
from scipy.stats import cauchy as cauchy_dist
from scipy.stats import norm as norm_dist
from scipy.version import version as scipy_version
import six
import uncertainties

from ._ampgo import ampgo
from .parameter import Parameter, Parameters
from .printfuncs import fitreport_html_table

# check for SHGO and dual_annealing algorithms
try:
    from scipy.optimize import shgo as scipy_shgo
    from scipy.optimize import dual_annealing as scipy_dual_annealing
    HAS_SHGO = True
    HAS_DUAL_ANNEALING = True
except ImportError:
    HAS_SHGO = False
    HAS_DUAL_ANNEALING = False

# check for EMCEE
try:
    import emcee
    HAS_EMCEE = True
    EMCEE_VERSION = int(emcee.__version__[0])
except ImportError:
    HAS_EMCEE = False

# check for pandas
try:
    import pandas as pd
    from pandas import isnull
    HAS_PANDAS = True
except ImportError:
    HAS_PANDAS = False
    isnull = np.isnan

# check for numdifftools
try:
    import numdifftools as ndt
    HAS_NUMDIFFTOOLS = True
except ImportError:
    HAS_NUMDIFFTOOLS = False

# define the namedtuple here so pickle will work with the MinimizerResult
Candidate = namedtuple('Candidate', ['params', 'score'])


def asteval_with_uncertainties(*vals, **kwargs):
    """Calculate object value, given values for variables.

    This is used by the uncertainties package to calculate the
    uncertainty in an object even with a complicated expression.

    """
    _obj = kwargs.get('_obj', None)
    _pars = kwargs.get('_pars', None)
    _names = kwargs.get('_names', None)
    _asteval = _pars._asteval
    if (_obj is None or _pars is None or _names is None or
            _asteval is None or _obj._expr_ast is None):
        return 0
    for val, name in zip(vals, _names):
        _asteval.symtable[name] = val
    return _asteval.eval(_obj._expr_ast)


wrap_ueval = uncertainties.wrap(asteval_with_uncertainties)


def eval_stderr(obj, uvars, _names, _pars):
    """Evaluate uncertainty and set .stderr for a parameter `obj`.

    Given the uncertain values `uvars` (a list of uncertainties.ufloats), a
    list of parameter names that matches uvars, and a dict of param objects,
    keyed by name.

    This uses the uncertainties package wrapped function to evaluate the
    uncertainty for an arbitrary expression (in obj._expr_ast) of parameters.

    """
    if not isinstance(obj, Parameter) or getattr(obj, '_expr_ast', None) is None:
        return
    uval = wrap_ueval(*uvars, _obj=obj, _names=_names, _pars=_pars)
    try:
        obj.stderr = uval.std_dev
    except Exception:
        obj.stderr = 0


class MinimizerException(Exception):
    """General Purpose Exception."""

    def __init__(self, msg):
        Exception.__init__(self)
        self.msg = msg

    def __str__(self):
        return "{}".format(self.msg)


class AbortFitException(MinimizerException):
    """Raised when a fit is aborted by the user."""

    pass


SCALAR_METHODS = {'nelder': 'Nelder-Mead',
                  'powell': 'Powell',
                  'cg': 'CG',
                  'bfgs': 'BFGS',
                  'newton': 'Newton-CG',
                  'lbfgsb': 'L-BFGS-B',
                  'l-bfgsb': 'L-BFGS-B',
                  'tnc': 'TNC',
                  'cobyla': 'COBYLA',
                  'slsqp': 'SLSQP',
                  'dogleg': 'dogleg',
                  'trust-ncg': 'trust-ncg',
                  'differential_evolution': 'differential_evolution'}

# FIXME: update this when incresing the minimum scipy version
major, minor, micro = scipy_version.split('.', 2)
if (int(major) >= 1 and int(minor) >= 1):
    SCALAR_METHODS.update({'trust-constr': 'trust-constr'})
if int(major) >= 1:
    SCALAR_METHODS.update({'trust-exact': 'trust-exact',
                           'trust-krylov': 'trust-krylov'})


def reduce_chisquare(r):
    """Reduce residual array to scalar (chi-square).

    Calculate the chi-square value from the residual array `r`: (r*r).sum()

    Parameters
    ----------
    r : numpy.ndarray
        Residual array.

    Returns
    -------
    float
        Chi-square calculated from the residual array

    """
    return (r*r).sum()


def reduce_negentropy(r):
    """Reduce residual array to scalar (negentropy).

    Reduce residual array `r` to scalar using negative entropy and the normal
    (Gaussian) probability distribution of `r` as pdf:

       (norm.pdf(r)*norm.logpdf(r)).sum()

    since pdf(r) = exp(-r*r/2)/sqrt(2*pi), this is
       ((r*r/2 - log(sqrt(2*pi))) * exp(-r*r/2)).sum()

    Parameters
    ----------
    r : numpy.ndarray
        Residual array.

    Returns
    -------
    float
        Negative entropy value calculated from the residual array

    """
    return (norm_dist.pdf(r)*norm_dist.logpdf(r)).sum()


def reduce_cauchylogpdf(r):
    """Reduce residual array to scalar (cauchylogpdf).

    Reduce residual array `r` to scalar using negative log-likelihood and a
    Cauchy (Lorentzian) distribution of `r`:

       -scipy.stats.cauchy.logpdf(r)

    (where the Cauchy pdf = 1/(pi*(1+r*r))). This gives greater
    suppression of outliers compared to normal sum-of-squares.

    Parameters
    ----------
    r : numpy.ndarray
        Residual array.

    Returns
    -------
    float
        Negative entropy value calculated from the residual array

    """
    return -cauchy_dist.logpdf(r).sum()


class MinimizerResult(object):
    r"""The results of a minimization.

    Minimization results include data such as status and error messages,
    fit statistics, and the updated (i.e., best-fit) parameters themselves
    in the :attr:`params` attribute.

    The list of (possible) `MinimizerResult` attributes is given below:

    Attributes
    ----------
    params : :class:`~lmfit.parameter.Parameters`
        The best-fit parameters resulting from the fit.
    status : int
        Termination status of the optimizer. Its value depends on the
        underlying solver. Refer to `message` for details.
    var_names : list
        Ordered list of variable parameter names used in optimization, and
        useful for understanding the values in :attr:`init_vals` and
        :attr:`covar`.
    covar : numpy.ndarray
        Covariance matrix from minimization, with rows and columns
        corresponding to :attr:`var_names`.
    init_vals : list
        List of initial values for variable parameters using :attr:`var_names`.
    init_values : dict
        Dictionary of initial values for variable parameters.
    nfev : int
        Number of function evaluations.
    success : bool
        True if the fit succeeded, otherwise False.
    errorbars : bool
        True if uncertainties were estimated, otherwise False.
    message : str
        Message about fit success.
    ier : int
        Integer error value from :scipydoc:`optimize.leastsq` (`leastsq` only).
    lmdif_message : str
        Message from :scipydoc:`optimize.leastsq` (`leastsq` only).
    nvarys : int
        Number of variables in fit: :math:`N_{\rm varys}`.
    ndata : int
        Number of data points: :math:`N`.
    nfree : int
        Degrees of freedom in fit: :math:`N - N_{\rm varys}`.
    residual : numpy.ndarray
        Residual array :math:`{\rm Resid_i}`. Return value of the objective
        function when using the best-fit values of the parameters.
    chisqr : float
        Chi-square: :math:`\chi^2 = \sum_i^N [{\rm Resid}_i]^2`.
    redchi : float
        Reduced chi-square:
        :math:`\chi^2_{\nu}= {\chi^2} / {(N - N_{\rm varys})}`.
    aic : float
        Akaike Information Criterion statistic:
        :math:`N \ln(\chi^2/N) + 2 N_{\rm varys}`.
    bic : float
        Bayesian Information Criterion statistic:
        :math:`N \ln(\chi^2/N) + \ln(N) N_{\rm varys}`.
    flatchain : pandas.DataFrame
        A flatchain view of the sampling chain from the `emcee` method.

    Methods
    -------
    show_candidates
        Pretty_print() representation of candidates from the `brute` method.

    """

    def __init__(self, **kws):
        for key, val in kws.items():
            setattr(self, key, val)

    @property
    def flatchain(self):
        """Show flatchain view of the sampling chain from `emcee` method."""
        if hasattr(self, 'chain'):
            if HAS_PANDAS:
                if len(self.chain.shape) == 4:
                    return pd.DataFrame(self.chain[0, ...].reshape((-1, self.nvarys)),
                                        columns=self.var_names)
                elif len(self.chain.shape) == 3:
                    return pd.DataFrame(self.chain.reshape((-1, self.nvarys)),
                                        columns=self.var_names)
            else:
                raise NotImplementedError('Please install Pandas to see the '
                                          'flattened chain')
        else:
            return None

    def show_candidates(self, candidate_nmb='all'):
        """Show pretty_print() representation of candidates from `brute` method.

        Showing all stored candidates (default) or the specified candidate-#
        from the `brute` method.

        Parameters
        ----------
        candidate_nmb : int or 'all'
            The candidate-number to show using the :meth:`pretty_print` method.

        """
        if hasattr(self, 'candidates'):
            if candidate_nmb == 'all':
                for i, candidate in enumerate(self.candidates):
                    print("\nCandidate #{}, chisqr = "
                          "{:.3f}".format(i+1, candidate.score))
                    candidate.params.pretty_print()
            elif (candidate_nmb < 1 or candidate_nmb > len(self.candidates)):
                raise ValueError("'candidate_nmb' should be between 1 and {}."
                                 .format(len(self.candidates)))
            else:
                candidate = self.candidates[candidate_nmb-1]
                print("\nCandidate #{}, chisqr = "
                      "{:.3f}".format(candidate_nmb, candidate.score))
                candidate.params.pretty_print()

    def _calculate_statistics(self):
        """Calculate the fitting statistics."""
        self.nvarys = len(self.init_vals)
        if isinstance(self.residual, ndarray):
            self.chisqr = (self.residual**2).sum()
            self.ndata = len(self.residual)
            self.nfree = self.ndata - self.nvarys
        else:
            self.chisqr = self.residual
            self.ndata = 1
            self.nfree = 1
        self.redchi = self.chisqr / max(1, self.nfree)
        # this is -2*loglikelihood
        _neg2_log_likel = self.ndata * np.log(self.chisqr / self.ndata)
        self.aic = _neg2_log_likel + 2 * self.nvarys
        self.bic = _neg2_log_likel + np.log(self.ndata) * self.nvarys

    def _repr_html_(self, show_correl=True, min_correl=0.1):
        """Returns a HTML representation of parameters data."""
        return fitreport_html_table(self, show_correl=show_correl,
                                    min_correl=min_correl)


class Minimizer(object):
    """A general minimizer for curve fitting and optimization."""

    _err_nonparam = ("params must be a minimizer.Parameters() instance or list "
                     "of Parameters()")
    _err_maxfev = ("Too many function calls (max set to %i)!  Use:"
                   " minimize(func, params, ..., maxfev=NNN)"
                   "or set leastsq_kws['maxfev']  to increase this maximum.")

    def __init__(self, userfcn, params, fcn_args=None, fcn_kws=None,
                 iter_cb=None, scale_covar=True, nan_policy='raise',
                 reduce_fcn=None, calc_covar=True, **kws):
        """
        Parameters
        ----------
        userfcn : callable
            Objective function that returns the residual (difference between
            model and data) to be minimized in a least-squares sense.  This
            function must have the signature::

                userfcn(params, *fcn_args, **fcn_kws)

        params : :class:`~lmfit.parameter.Parameters`
            Contains the Parameters for the model.
        fcn_args : tuple, optional
            Positional arguments to pass to `userfcn`.
        fcn_kws : dict, optional
            Keyword arguments to pass to `userfcn`.
        iter_cb : callable, optional
            Function to be called at each fit iteration. This function should
            have the signature::

                iter_cb(params, iter, resid, *fcn_args, **fcn_kws)

            where `params` will have the current parameter values, `iter`
            the iteration number, `resid` the current residual array, and `*fcn_args`
            and `**fcn_kws` are passed to the objective function.
        scale_covar : bool, optional
            Whether to automatically scale the covariance matrix (default is True).
        nan_policy : str, optional
            Specifies action if `userfcn` (or a Jacobian) returns NaN
            values. One of:

            - 'raise' : a `ValueError` is raised
            - 'propagate' : the values returned from `userfcn` are un-altered
            - 'omit' : non-finite values are filtered

        reduce_fcn : str or callable, optional
            Function to convert a residual array to a scalar value for the scalar
            minimizers. Optional values are (where `r` is the residual array):

            - None : sum of squares of residual [default]

               = (r*r).sum()

            - 'negentropy' : neg entropy, using normal distribution

               = rho*log(rho).sum()`, where  rho = exp(-r*r/2)/(sqrt(2*pi))

            - 'neglogcauchy': neg log likelihood, using Cauchy distribution

               = -log(1/(pi*(1+r*r))).sum()

            - callable : must take one argument (`r`) and return a float.

        calc_covar : bool, optional
            Whether to calculate the covariance matrix (default is True) for
            solvers other than `leastsq` and `least_squares`. Requires the
            `numdifftools` package to be installed.
        **kws : dict, optional
            Options to pass to the minimizer being used.

        Notes
        -----
        The objective function should return the value to be minimized. For
        the Levenberg-Marquardt algorithm from :meth:`leastsq` or
        :meth:`least_squares`, this returned value must be an array, with a
        length greater than or equal to the number of fitting variables in
        the model. For the other methods, the return value can either be a
        scalar or an array. If an array is returned, the sum of squares of
        the array will be sent to the underlying fitting method, effectively
        doing a least-squares optimization of the return values. If the
        objective function returns non-finite values then a `ValueError`
        will be raised because the underlying solvers cannot deal with them.

        A common use for the `fcn_args` and `fcn_kws` would be to pass in
        other data needed to calculate the residual, including such things
        as the data array, dependent variable, uncertainties in the data,
        and other data structures for the model calculation.

        """
        self.userfcn = userfcn
        self.userargs = fcn_args
        if self.userargs is None:
            self.userargs = []

        self.userkws = fcn_kws
        if self.userkws is None:
            self.userkws = {}
        self.kws = kws
        self.iter_cb = iter_cb
        self.calc_covar = calc_covar
        self.scale_covar = scale_covar
        self.nfev = 0
        self.nfree = 0
        self.ndata = 0
        self.ier = 0
        self._abort = False
        self.success = True
        self.errorbars = False
        self.message = None
        self.lmdif_message = None
        self.chisqr = None
        self.redchi = None
        self.covar = None
        self.residual = None
        self.reduce_fcn = reduce_fcn
        self.params = params
        self.jacfcn = None
        self.nan_policy = nan_policy

    @property
    def values(self):
        """Return Parameter values in a simple dictionary."""
        return {name: p.value for name, p in self.result.params.items()}

    def __residual(self, fvars, apply_bounds_transformation=True):
        """Residual function used for least-squares fit.

        With the new, candidate values of `fvars` (the fitting variables),
        this evaluates all parameters, including setting bounds and
        evaluating constraints, and then passes those to the user-supplied
        function to calculate the residual.

        Parameters
        ----------
        fvars : numpy.ndarray
            Array of new parameter values suggested by the minimizer.
        apply_bounds_transformation : bool, optional
            Whether to apply lmfits parameter transformation to constrain
            parameters (default is True). This is needed for solvers without
            inbuilt support for bounds.

        Returns
        -------
        residual : numpy.ndarray
             The evaluated function values for given `fvars`.

        """
        params = self.result.params

        if fvars.shape == ():
            fvars = fvars.reshape((1,))

        if apply_bounds_transformation:
            for name, val in zip(self.result.var_names, fvars):
                params[name].value = params[name].from_internal(val)
        else:
            for name, val in zip(self.result.var_names, fvars):
                params[name].value = val
        params.update_constraints()

        self.result.nfev += 1

        out = self.userfcn(params, *self.userargs, **self.userkws)

        if callable(self.iter_cb):
            abort = self.iter_cb(params, self.result.nfev, out,
                                 *self.userargs, **self.userkws)
            self._abort = self._abort or abort

        if self._abort:
            self.result.residual = out
            self.result.aborted = True
            self.result.message = "Fit aborted by user callback. Could not estimate error-bars."
            self.result.success = False
            raise AbortFitException("fit aborted by user.")
        else:
            return _nan_policy(np.asarray(out).ravel(),
                               nan_policy=self.nan_policy)

    def __jacobian(self, fvars):
        """Return analytical jacobian to be used with Levenberg-Marquardt.

        modified 02-01-2012 by Glenn Jones, Aberystwyth University
        modified 06-29-2015 M Newville to apply gradient scaling for
        bounded variables (thanks to JJ Helmus, N Mayorov)

        """
        pars = self.result.params
        grad_scale = ones_like(fvars)
        for ivar, name in enumerate(self.result.var_names):
            val = fvars[ivar]
            pars[name].value = pars[name].from_internal(val)
            grad_scale[ivar] = pars[name].scale_gradient(val)

        pars.update_constraints()

        # compute the jacobian for "internal" unbounded variables,
        # then rescale for bounded "external" variables.
        jac = self.jacfcn(pars, *self.userargs, **self.userkws)
        jac = _nan_policy(jac, nan_policy=self.nan_policy)

        if self.col_deriv:
            jac = (jac.transpose()*grad_scale).transpose()
        else:
            jac *= grad_scale
        return jac

    def penalty(self, fvars):
        """Penalty function for scalar minimizers.

        Parameters
        ----------
        fvars : numpy.ndarray
            Array of values for the variable parameters.

        Returns
        -------
        r : float
            The evaluated user-supplied objective function.

            If the objective function is an array of size greater than 1,
            use the scalar returned by `self.reduce_fcn`.  This defaults
            to sum-of-squares, but can be replaced by other options.

        """
        if self.result.method in ['brute', 'shgo', 'dual_annealing']:
            apply_bounds_transformation = False
        else:
            apply_bounds_transformation = True

        r = self.__residual(fvars, apply_bounds_transformation)
        if isinstance(r, ndarray) and r.size > 1:
            r = self.reduce_fcn(r)
            if isinstance(r, ndarray) and r.size > 1:
                r = r.sum()
        return r

    def prepare_fit(self, params=None):
        """Prepare parameters for fitting.

        Prepares and initializes model and Parameters for subsequent
        fitting. This routine prepares the conversion of :class:`Parameters`
        into fit variables, organizes parameter bounds, and parses, "compiles"
        and checks constrain expressions.   The method also creates and returns
        a new instance of a :class:`MinimizerResult` object that contains the
        copy of the Parameters that will actually be varied in the fit.

        Parameters
        ----------
        params : :class:`~lmfit.parameter.Parameters`, optional
            Contains the Parameters for the model; if None, then the
            Parameters used to initialize the Minimizer object are used.

        Returns
        -------
        :class:`MinimizerResult`

        Notes
        -----
        This method is called directly by the fitting methods, and it is
        generally not necessary to call this function explicitly.

        .. versionchanged:: 0.9.0
            Return value changed to :class:`MinimizerResult`.

        """
        # determine which parameters are actually variables
        # and which are defined expressions.
        self.result = MinimizerResult()
        result = self.result
        if params is not None:
            self.params = params
        if isinstance(self.params, Parameters):
            result.params = deepcopy(self.params)
        elif isinstance(self.params, (list, tuple)):
            result.params = Parameters()
            for par in self.params:
                if not isinstance(par, Parameter):
                    raise MinimizerException(self._err_nonparam)
                else:
                    result.params[par.name] = par
        elif self.params is None:
            raise MinimizerException(self._err_nonparam)

        # determine which parameters are actually variables
        # and which are defined expressions.
        result.var_names = []  # note that this *does* belong to self...
        result.init_vals = []
        result.params.update_constraints()
        result.nfev = 0
        result.errorbars = False
        result.aborted = False
        for name, par in self.result.params.items():
            par.stderr = None
            par.correl = None
            if par.expr is not None:
                par.vary = False
            if par.vary:
                result.var_names.append(name)
                result.init_vals.append(par.setup_bounds())

            par.init_value = par.value
            if par.name is None:
                par.name = name
        result.nvarys = len(result.var_names)
        result.init_values = {n: v for n, v in zip(result.var_names,
                                                   result.init_vals)}

        # set up reduce function for scalar minimizers
        #    1. user supplied callable
        #    2. string starting with 'neglogc' or 'negent'
        #    3. sum of squares
        if not callable(self.reduce_fcn):
            if isinstance(self.reduce_fcn, six.string_types):
                if self.reduce_fcn.lower().startswith('neglogc'):
                    self.reduce_fcn = reduce_cauchylogpdf
                elif self.reduce_fcn.lower().startswith('negent'):
                    self.reduce_fcn = reduce_negentropy
            if self.reduce_fcn is None:
                self.reduce_fcn = reduce_chisquare
        return result

    def unprepare_fit(self):
        """Clean fit state, so that subsequent fits need to call prepare_fit().

        removes AST compilations of constraint expressions.

        """
        pass

    def _calculate_covariance_matrix(self, fvars):
        """Calculate the covariance matrix.

        The `numdiftoools` package is used to estimate the Hessian matrix, and
        the covariance matrix is calculated as:

        .. math::

            cov_x = inverse(Hessian) * 2.0

        Parameters
        ----------
        fvars : numpy.ndarray
            Array of the optimal internal, freely variable parameters.

        Returns
        -------
        cov_x : numpy.ndarray or None
            Covariance matrix if successful, otherwise None.

        """
        warnings.filterwarnings(action="ignore", module="scipy",
                                message="^internal gelsd")

        nfev = deepcopy(self.result.nfev)
        try:
            Hfun = ndt.Hessian(self.penalty)
            hessian_ndt = Hfun(fvars)
            cov_x = inv(hessian_ndt) * 2.0
        except (LinAlgError, ValueError):
            return None
        finally:
            self.result.nfev = nfev

        return cov_x

    def _int2ext_cov_x(self, cov_int, fvars):
        """Transform covariance matrix to external parameter space.

        It makes use of the gradient scaling according to the MINUIT recipe:

            cov_ext = np.dot(grad.T, grad) * cov_int

        Parameters
        ----------
        cov_int : numpy.ndarray
            Covariance matrix in the internal parameter space.
        fvars : numpy.ndarray
            Array of the optimal internal, freely variable, parameter values.

        Returns
        -------
        cov_ext : numpy.ndarray
            Covariance matrix, transformed to external parameter space.

        """
        g = [self.result.params[name].scale_gradient(fvars[i]) for i, name in
             enumerate(self.result.var_names)]
        grad2d = np.atleast_2d(g)
        grad = np.dot(grad2d.T, grad2d)

        cov_ext = cov_int * grad
        return cov_ext

    def _calculate_uncertainties_correlations(self):
        """Calculate parameter uncertainties and correlations."""
        self.result.errorbars = True

        if self.scale_covar:
            self.result.covar *= self.result.redchi

        vbest = np.atleast_1d([self.result.params[name].value for name in
                               self.result.var_names])

        has_expr = False
        for par in self.result.params.values():
            par.stderr, par.correl = 0, None
            has_expr = has_expr or par.expr is not None

        for ivar, name in enumerate(self.result.var_names):
            par = self.result.params[name]
            par.stderr = sqrt(self.result.covar[ivar, ivar])
            par.correl = {}
            try:
                self.result.errorbars = self.result.errorbars and (par.stderr > 0.0)
                for jvar, varn2 in enumerate(self.result.var_names):
                    if jvar != ivar:
                        par.correl[varn2] = (self.result.covar[ivar, jvar] /
                                             (par.stderr * sqrt(self.result.covar[jvar, jvar])))
            except ZeroDivisionError:
                self.result.errorbars = False

        if has_expr:
            try:
                uvars = uncertainties.correlated_values(vbest, self.result.covar)
            except (LinAlgError, ValueError):
                uvars = None

            # for uncertainties on constrained parameters, use the calculated
            # "correlated_values", evaluate the uncertainties on the constrained
            # parameters and reset the Parameters to best-fit value
            if uvars is not None:
                for par in self.result.params.values():
                    eval_stderr(par, uvars, self.result.var_names, self.result.params)
                # restore nominal values
                for v, nam in zip(uvars, self.result.var_names):
                    self.result.params[nam].value = v.nominal_value

    def scalar_minimize(self, method='Nelder-Mead', params=None, **kws):
        """Scalar minimization using :scipydoc:`optimize.minimize`.

        Perform fit with any of the scalar minimization algorithms supported by
        :scipydoc:`optimize.minimize`. Default argument values are:

        +-------------------------+-----------------+-----------------------------------------------------+
        | :meth:`scalar_minimize` | Default Value   | Description                                         |
        | arg                     |                 |                                                     |
        +=========================+=================+=====================================================+
        |   method                | ``Nelder-Mead`` | fitting method                                      |
        +-------------------------+-----------------+-----------------------------------------------------+
        |   tol                   | 1.e-7           | fitting and parameter tolerance                     |
        +-------------------------+-----------------+-----------------------------------------------------+
        |   hess                  | None            | Hessian of objective function                       |
        +-------------------------+-----------------+-----------------------------------------------------+


        Parameters
        ----------
        method : str, optional
            Name of the fitting method to use. One of:

            - 'Nelder-Mead' (default)
            - 'L-BFGS-B'
            - 'Powell'
            - 'CG'
            - 'Newton-CG'
            - 'COBYLA'
            - 'BFGS'
            - 'TNC'
            - 'trust-ncg'
            - 'trust-exact' (SciPy >= 1.0)
            - 'trust-krylov' (SciPy >= 1.0)
            - 'trust-constr' (SciPy >= 1.1)
            - 'dogleg'
            - 'SLSQP'
            - 'differential_evolution'

        params : :class:`~lmfit.parameter.Parameters`, optional
           Parameters to use as starting point.
        **kws : dict, optional
            Minimizer options pass to :scipydoc:`optimize.minimize`.

        Returns
        -------
        :class:`MinimizerResult`
            Object containing the optimized parameter and several
            goodness-of-fit statistics.


        .. versionchanged:: 0.9.0
           Return value changed to :class:`MinimizerResult`.

        Notes
        -----
        If the objective function returns a NumPy array instead
        of the expected scalar, the sum of squares of the array
        will be used.

        Note that bounds and constraints can be set on Parameters
        for any of these methods, so are not supported separately
        for those designed to use bounds. However, if you use the
        differential_evolution method you must specify finite
        (min, max) for each varying Parameter.

        """
        result = self.prepare_fit(params=params)
        result.method = method
        variables = result.init_vals
        params = result.params

        fmin_kws = dict(method=method,
                        options={'maxiter': 1000 * (len(variables) + 1)})
        fmin_kws.update(self.kws)
        fmin_kws.update(kws)

        # hess supported only in some methods
        if 'hess' in fmin_kws and method not in ('Newton-CG', 'dogleg',
                                                 'trust-constr', 'trust-ncg',
                                                 'trust-krylov', 'trust-exact'):
            fmin_kws.pop('hess')

        # jac supported only in some methods (and Dfun could be used...)
        if 'jac' not in fmin_kws and fmin_kws.get('Dfun', None) is not None:
            self.jacfcn = fmin_kws.pop('jac')
            fmin_kws['jac'] = self.__jacobian

        if 'jac' in fmin_kws and method not in ('CG', 'BFGS', 'Newton-CG',
                                                'L-BFGS-B', 'TNC', 'SLSQP',
                                                'dogleg', 'trust-ncg',
                                                'trust-krylov', 'trust-exact'):
            self.jacfcn = None
            fmin_kws.pop('jac')

        # workers / updating keywords only supported in differential_evolution
        for kwd in ('workers', 'updating'):
            if kwd in fmin_kws and method != 'differential_evolution':
                fmin_kws.pop(kwd)

        if method == 'differential_evolution':
            for par in params.values():
                if (par.vary and
                        not (np.isfinite(par.min) and np.isfinite(par.max))):
                    raise ValueError('differential_evolution requires finite '
                                     'bound for all varying parameters')

            _bounds = [(-np.pi / 2., np.pi / 2.)] * len(variables)
            kwargs = dict(args=(), strategy='best1bin', maxiter=None,
                          popsize=15, tol=0.01, mutation=(0.5, 1),
                          recombination=0.7, seed=None, callback=None,
                          disp=False, polish=True, init='latinhypercube',
                          atol=0, updating='immediate', workers=1)

            for k, v in fmin_kws.items():
                if k in kwargs:
                    kwargs[k] = v

            # keywords 'updating' and 'workers' are introduced in SciPy v1.2
            # FIXME: remove after updating the requirement >= 1.2
            if int(major) == 0 or (int(major) == 1 and int(minor) < 2):
                kwargs.pop('updating')
                kwargs.pop('workers')

            try:
                ret = differential_evolution(self.penalty, _bounds, **kwargs)
            except AbortFitException:
                pass

        else:
            try:
                ret = scipy_minimize(self.penalty, variables, **fmin_kws)
            except AbortFitException:
                pass

        if not result.aborted:
            if isinstance(ret, dict):
                for attr, value in ret.items():
                    setattr(result, attr, value)
            else:
                for attr in dir(ret):
                    if not attr.startswith('_'):
                        setattr(result, attr, getattr(ret, attr))

            result.x = np.atleast_1d(result.x)
            result.residual = self.__residual(result.x)
            result.nfev -= 1

        result._calculate_statistics()

        # calculate the cov_x and estimate uncertanties/correlations
        if (not result.aborted and self.calc_covar and HAS_NUMDIFFTOOLS and
                len(result.residual) > len(result.var_names)):
            _covar_ndt = self._calculate_covariance_matrix(result.x)
            if _covar_ndt is not None:
                result.covar = self._int2ext_cov_x(_covar_ndt, result.x)
                self._calculate_uncertainties_correlations()

        return result

    def emcee(self, params=None, steps=1000, nwalkers=100, burn=0, thin=1,
              ntemps=1, pos=None, reuse_sampler=False, workers=1,
              float_behavior='posterior', is_weighted=True, seed=None, progress=True):
        r"""Bayesian sampling of the posterior distribution using `emcee`.

        Bayesian sampling of the posterior distribution for the parameters
        using the `emcee` Markov Chain Monte Carlo package. The method assumes
        that the prior is Uniform. You need to have `emcee` installed to use
        this method.

        Parameters
        ----------
        params : :class:`~lmfit.parameter.Parameters`, optional
            Parameters to use as starting point. If this is not specified
            then the Parameters used to initialize the Minimizer object are
            used.
        steps : int, optional
            How many samples you would like to draw from the posterior
            distribution for each of the walkers?
        nwalkers : int, optional
            Should be set so :math:`nwalkers >> nvarys`, where `nvarys` are
            the number of parameters being varied during the fit.
            "Walkers are the members of the ensemble. They are almost like
            separate Metropolis-Hastings chains but, of course, the proposal
            distribution for a given walker depends on the positions of all
            the other walkers in the ensemble." - from the `emcee` webpage.
        burn : int, optional
            Discard this many samples from the start of the sampling regime.
        thin : int, optional
            Only accept 1 in every `thin` samples.
        ntemps : int, optional
            If `ntemps > 1` perform a Parallel Tempering.
        pos : numpy.ndarray, optional
            Specify the initial positions for the sampler.  If `ntemps == 1`
            then `pos.shape` should be `(nwalkers, nvarys)`. Otherwise,
            `(ntemps, nwalkers, nvarys)`. You can also initialise using a
            previous chain that had the same `ntemps`, `nwalkers` and
            `nvarys`. Note that `nvarys` may be one larger than you expect it
            to be if your `userfcn` returns an array and `is_weighted is
            False`.
        reuse_sampler : bool, optional
            If you have already run `emcee` on a given `Minimizer` object then
            it possesses an internal ``sampler`` attribute. You can continue to
            draw from the same sampler (retaining the chain history) if you set
            this option to True. Otherwise a new sampler is created. The
            `nwalkers`, `ntemps`, `pos`, and `params` keywords are ignored with
            this option.
            **Important**: the Parameters used to create the sampler must not
            change in-between calls to `emcee`. Alteration of Parameters
            would include changed ``min``, ``max``, ``vary`` and ``expr``
            attributes. This may happen, for example, if you use an altered
            Parameters object and call the `minimize` method in-between calls
            to `emcee`.
        workers : Pool-like or int, optional
            For parallelization of sampling.  It can be any Pool-like object
            with a map method that follows the same calling sequence as the
            built-in `map` function. If int is given as the argument, then a
            multiprocessing-based pool is spawned internally with the
            corresponding number of parallel processes. 'mpi4py'-based
            parallelization and 'joblib'-based parallelization pools can also
            be used here. **Note**: because of multiprocessing overhead it may
            only be worth parallelising if the objective function is expensive
            to calculate, or if there are a large number of objective
            evaluations per step (`ntemps * nwalkers * nvarys`).
        float_behavior : str, optional
            Specifies meaning of the objective function output if it returns a
            float. One of:

            - 'posterior' - objective function returns a log-posterior
              probability
            - 'chi2' - objective function returns :math:`\chi^2`

            See Notes for further details.
        is_weighted : bool, optional
            Has your objective function been weighted by measurement
            uncertainties? If `is_weighted is True` then your objective
            function is assumed to return residuals that have been divided by
            the true measurement uncertainty `(data - model) / sigma`. If
            `is_weighted is False` then the objective function is assumed to
            return unweighted residuals, `data - model`. In this case `emcee`
            will employ a positive measurement uncertainty during the sampling.
            This measurement uncertainty will be present in the output params
            and output chain with the name `__lnsigma`. A side effect of this
            is that you cannot use this parameter name yourself.
            **Important** this parameter only has any effect if your objective
            function returns an array. If your objective function returns a
            float, then this parameter is ignored. See Notes for more details.
        seed : int or `numpy.random.RandomState`, optional
            If `seed` is an int, a new `numpy.random.RandomState` instance is
            used, seeded with `seed`.
            If `seed` is already a `numpy.random.RandomState` instance, then
            that `numpy.random.RandomState` instance is used.
            Specify `seed` for repeatable minimizations.

        Returns
        -------
        :class:`MinimizerResult`
            MinimizerResult object containing updated params, statistics,
            etc. The updated params represent the median (50th percentile) of
            all the samples, whilst the parameter uncertainties are half of the
            difference between the 15.87 and 84.13 percentiles.
            The `MinimizerResult` also contains the ``chain``, ``flatchain``
            and ``lnprob`` attributes. The ``chain`` and ``flatchain``
            attributes contain the samples and have the shape
            `(nwalkers, (steps - burn) // thin, nvarys)` or
            `(ntemps, nwalkers, (steps - burn) // thin, nvarys)`,
            depending on whether Parallel tempering was used or not.
            `nvarys` is the number of parameters that are allowed to vary.
            The ``flatchain`` attribute is a `pandas.DataFrame` of the
            flattened chain, `chain.reshape(-1, nvarys)`. To access flattened
            chain values for a particular parameter use
            `result.flatchain[parname]`. The ``lnprob`` attribute contains the
            log probability for each sample in ``chain``. The sample with the
            highest probability corresponds to the maximum likelihood estimate.


        Notes
        -----
        This method samples the posterior distribution of the parameters using
        Markov Chain Monte Carlo.  To do so it needs to calculate the
        log-posterior probability of the model parameters, `F`, given the data,
        `D`, :math:`\ln p(F_{true} | D)`. This 'posterior probability' is
        calculated as:

        .. math::

            \ln p(F_{true} | D) \propto \ln p(D | F_{true}) + \ln p(F_{true})

        where :math:`\ln p(D | F_{true})` is the 'log-likelihood' and
        :math:`\ln p(F_{true})` is the 'log-prior'. The default log-prior
        encodes prior information already known about the model. This method
        assumes that the log-prior probability is `-numpy.inf` (impossible) if
        the one of the parameters is outside its limits. The log-prior probability
        term is zero if all the parameters are inside their bounds (known as a
        uniform prior). The log-likelihood function is given by [1]_:

        .. math::

            \ln p(D|F_{true}) = -\frac{1}{2}\sum_n \left[\frac{(g_n(F_{true}) - D_n)^2}{s_n^2}+\ln (2\pi s_n^2)\right]

        The first summand in the square brackets represents the residual for a
        given datapoint (:math:`g` being the generative model, :math:`D_n` the
        data and :math:`s_n` the standard deviation, or measurement
        uncertainty, of the datapoint). This term represents :math:`\chi^2`
        when summed over all data points.
        Ideally the objective function used to create `lmfit.Minimizer` should
        return the log-posterior probability, :math:`\ln p(F_{true} | D)`.
        However, since the in-built log-prior term is zero, the objective
        function can also just return the log-likelihood, unless you wish to
        create a non-uniform prior.

        If a float value is returned by the objective function then this value
        is assumed by default to be the log-posterior probability, i.e.
        `float_behavior is 'posterior'`. If your objective function returns
        :math:`\chi^2`, then you should use a value of `'chi2'` for
        `float_behavior`. `emcee` will then multiply your :math:`\chi^2` value
        by -0.5 to obtain the posterior probability.

        However, the default behaviour of many objective functions is to return
        a vector of (possibly weighted) residuals. Therefore, if your objective
        function returns a vector, `res`, then the vector is assumed to contain
        the residuals. If `is_weighted is True` then your residuals are assumed
        to be correctly weighted by the standard deviation (measurement
        uncertainty) of the data points (`res = (data - model) / sigma`) and
        the log-likelihood (and log-posterior probability) is calculated as:
        `-0.5 * numpy.sum(res**2)`.
        This ignores the second summand in the square brackets. Consequently,
        in order to calculate a fully correct log-posterior probability value
        your objective function should return a single value. If
        `is_weighted is False` then the data uncertainty, `s_n`, will be
        treated as a nuisance parameter and will be marginalized out. This is
        achieved by employing a strictly positive uncertainty
        (homoscedasticity) for each data point, :math:`s_n = \exp(\_\_lnsigma)`.
        `__lnsigma` will be present in `MinimizerResult.params`, as well as
        `Minimizer.chain`, `nvarys` will also be increased by one.

        References
        ----------
        .. [1] http://dan.iel.fm/emcee/current/user/line/

        """
        if not HAS_EMCEE:
            raise NotImplementedError('You must have emcee to use'
                                      ' the emcee method')
        tparams = params
        # if you're reusing the sampler then ntemps, nwalkers have to be
        # determined from the previous sampling
        if reuse_sampler:
            if not hasattr(self, 'sampler') or not hasattr(self, '_lastpos'):
                raise ValueError("You wanted to use an existing sampler, but"
                                 "it hasn't been created yet")
            if len(self._lastpos.shape) == 2:
                ntemps = 1
                nwalkers = self._lastpos.shape[0]
            elif len(self._lastpos.shape) == 3:
                ntemps = self._lastpos.shape[0]
                nwalkers = self._lastpos.shape[1]
            tparams = None

        result = self.prepare_fit(params=tparams)
        params = result.params

        # check if the userfcn returns a vector of residuals
        out = self.userfcn(params, *self.userargs, **self.userkws)
        out = np.asarray(out).ravel()
        if out.size > 1 and is_weighted is False:
            # we need to marginalise over a constant data uncertainty
            if '__lnsigma' not in params:
                # __lnsigma should already be in params if is_weighted was
                # previously set to True.
                params.add('__lnsigma', value=0.01, min=-np.inf, max=np.inf, vary=True)
                # have to re-prepare the fit
                result = self.prepare_fit(params)
                params = result.params

        result.method = 'emcee'

        # Removing internal parameter scaling. We could possibly keep it,
        # but I don't know how this affects the emcee sampling.
        bounds = []
        var_arr = np.zeros(len(result.var_names))
        i = 0
        for par in params:
            param = params[par]
            if param.expr is not None:
                param.vary = False
            if param.vary:
                var_arr[i] = param.value
                i += 1
            else:
                # don't want to append bounds if they're not being varied.
                continue

            param.from_internal = lambda val: val
            lb, ub = param.min, param.max
            if lb is None or lb is np.nan:
                lb = -np.inf
            if ub is None or ub is np.nan:
                ub = np.inf
            bounds.append((lb, ub))
        bounds = np.array(bounds)

        self.nvarys = len(result.var_names)

        # set up multiprocessing options for the samplers
        auto_pool = None
        sampler_kwargs = {}
        if isinstance(workers, int) and workers > 1:
            auto_pool = multiprocessing.Pool(workers)
            sampler_kwargs['pool'] = auto_pool
        elif hasattr(workers, 'map'):
            sampler_kwargs['pool'] = workers

        # function arguments for the log-probability functions
        # these values are sent to the log-probability functions by the sampler.
        lnprob_args = (self.userfcn, params, result.var_names, bounds)
        lnprob_kwargs = {'is_weighted': is_weighted,
                         'float_behavior': float_behavior,
                         'userargs': self.userargs,
                         'userkws': self.userkws,
                         'nan_policy': self.nan_policy}

        if ntemps > 1:
            # the prior and likelihood function args and kwargs are the same
            sampler_kwargs['loglargs'] = lnprob_args
            sampler_kwargs['loglkwargs'] = lnprob_kwargs
            sampler_kwargs['logpargs'] = (bounds,)
        else:
            sampler_kwargs['args'] = lnprob_args
            sampler_kwargs['kwargs'] = lnprob_kwargs

        # set up the random number generator
        rng = _make_random_gen(seed)

        # now initialise the samplers
        if reuse_sampler:
            if auto_pool is not None:
                self.sampler.pool = auto_pool

            p0 = self._lastpos
            if p0.shape[-1] != self.nvarys:
                raise ValueError("You cannot reuse the sampler if the number"
                                 "of varying parameters has changed")
        elif ntemps > 1:
            # Parallel Tempering
            # jitter the starting position by scaled Gaussian noise
            p0 = 1 + rng.randn(ntemps, nwalkers, self.nvarys) * 1.e-4
            p0 *= var_arr
            self.sampler = emcee.PTSampler(ntemps, nwalkers, self.nvarys,
                                           _lnpost, _lnprior, **sampler_kwargs)
        else:
            p0 = 1 + rng.randn(nwalkers, self.nvarys) * 1.e-4
            p0 *= var_arr
            self.sampler = emcee.EnsembleSampler(nwalkers, self.nvarys,
                                                 _lnpost, **sampler_kwargs)

        # user supplies an initialisation position for the chain
        # If you try to run the sampler with p0 of a wrong size then you'll get
        # a ValueError. Note, you can't initialise with a position if you are
        # reusing the sampler.
        if pos is not None and not reuse_sampler:
            tpos = np.asfarray(pos)
            if p0.shape == tpos.shape:
                pass
            # trying to initialise with a previous chain
            elif tpos.shape[0::2] == (nwalkers, self.nvarys):
                tpos = tpos[:, -1, :]
            # initialising with a PTsampler chain.
            elif ntemps > 1 and tpos.ndim == 4:
                tpos_shape = list(tpos.shape)
                tpos_shape.pop(2)
                if tpos_shape == (ntemps, nwalkers, self.nvarys):
                    tpos = tpos[..., -1, :]
            else:
                raise ValueError('pos should have shape (nwalkers, nvarys)'
                                 'or (ntemps, nwalkers, nvarys) if ntemps > 1')
            p0 = tpos

        # if you specified a seed then you also need to seed the sampler
        if seed is not None:
            self.sampler.random_state = rng.get_state()

        # now do a production run, sampling all the time
        if EMCEE_VERSION >= 3:
            output = self.sampler.run_mcmc(p0, steps, progress=progress)
            self._lastpos = output.coords
        else:
            output = self.sampler.run_mcmc(p0, steps)
            self._lastpos = output[0]

        # discard the burn samples and thin
        chain = self.sampler.chain[..., burn::thin, :]
        lnprobability = self.sampler.lnprobability[..., burn::thin]

        # take the zero'th PTsampler temperature for the parameter estimators
        if ntemps > 1:
            flatchain = chain[0, ...].reshape((-1, self.nvarys))
        else:
            flatchain = chain.reshape((-1, self.nvarys))

        quantiles = np.percentile(flatchain, [15.87, 50, 84.13], axis=0)

        for i, var_name in enumerate(result.var_names):
            std_l, median, std_u = quantiles[:, i]
            params[var_name].value = median
            params[var_name].stderr = 0.5 * (std_u - std_l)
            params[var_name].correl = {}

        params.update_constraints()

        # work out correlation coefficients
        corrcoefs = np.corrcoef(flatchain.T)

        for i, var_name in enumerate(result.var_names):
            for j, var_name2 in enumerate(result.var_names):
                if i != j:
                    result.params[var_name].correl[var_name2] = corrcoefs[i, j]

        result.chain = np.copy(chain)
        result.lnprob = np.copy(lnprobability)
        result.errorbars = True
        result.nvarys = len(result.var_names)
        result.nfev = ntemps*nwalkers*steps

        # Calculate the residual with the "best fit" parameters
        out = self.userfcn(params, *self.userargs, **self.userkws)
        result.residual = _nan_policy(out, nan_policy=self.nan_policy, handle_inf=False)

        # If uncertainty was automatically estimated, weight the residual properly
        if (not is_weighted) and (result.residual.size > 1):
            if '__lnsigma' in params:
                result.residual = result.residual/np.exp(params['__lnsigma'].value)

        # Calculate statistics for the two standard cases:
        if isinstance(result.residual, ndarray) or (float_behavior == 'chi2'):
            result._calculate_statistics()

        # Handle special case unique to emcee:
        # This should eventually be moved into result._calculate_statistics.
        elif float_behavior == 'posterior':
            result.ndata = 1
            result.nfree = 1

            # assuming prior prob = 1, this is true
            _neg2_log_likel = -2*result.residual

            # assumes that residual is properly weighted
            result.chisqr = np.exp(_neg2_log_likel)

            result.redchi = result.chisqr / result.nfree
            result.aic = _neg2_log_likel + 2 * result.nvarys
            result.bic = _neg2_log_likel + np.log(result.ndata) * result.nvarys

        if auto_pool is not None:
            auto_pool.terminate()

        return result

    def least_squares(self, params=None, **kws):
        """Least-squares minimization using :scipydoc:`optimize.least_squares`.

        This method wraps :scipydoc:`optimize.least_squares`, which has inbuilt
        support for bounds and robust loss functions. By default it uses the
        Trust Region Reflective algorithm with a linear loss function (i.e.,
        the standard least-squares problem).

        Parameters
        ----------
        params : :class:`~lmfit.parameter.Parameters`, optional
           Parameters to use as starting point.
        **kws : dict, optional
            Minimizer options to pass to :scipydoc:`optimize.least_squares`.

        Returns
        -------
        :class:`MinimizerResult`
            Object containing the optimized parameter and several
            goodness-of-fit statistics.


        .. versionchanged:: 0.9.0
           Return value changed to :class:`MinimizerResult`.

        """
        result = self.prepare_fit(params)
        result.method = 'least_squares'

        replace_none = lambda x, sign: sign*np.inf if x is None else x

        start_vals, lower_bounds, upper_bounds = [], [], []
        for vname in result.var_names:
            par = self.params[vname]
            start_vals.append(par.value)
            lower_bounds.append(replace_none(par.min, -1))
            upper_bounds.append(replace_none(par.max, 1))

        try:
            ret = least_squares(self.__residual, start_vals,
                                bounds=(lower_bounds, upper_bounds),
                                kwargs=dict(apply_bounds_transformation=False),
                                **kws)
            result.residual = ret.fun
        except AbortFitException:
            pass

        # note: upstream least_squares is actually returning
        # "last evaluation", not "best result", but we do this
        # here for consistency, and assuming it will be fixed.
        if not result.aborted:
            result.residual = self.__residual(ret.x, False)
            result.nfev -= 1
        result._calculate_statistics()

        if not result.aborted:
            for attr in ret:
                setattr(result, attr, ret[attr])

            result.x = np.atleast_1d(result.x)

            # calculate the cov_x and estimate uncertainties/correlations
            try:
                hess = np.matmul(ret.jac.T, ret.jac)
                result.covar = np.linalg.inv(hess)
                self._calculate_uncertainties_correlations()
            except LinAlgError:
                pass

        return result

    def leastsq(self, params=None, **kws):
        """Use Levenberg-Marquardt minimization to perform a fit.

        It assumes that the input Parameters have been initialized, and
        a function to minimize has been properly set up.
        When possible, this calculates the estimated uncertainties and
        variable correlations from the covariance matrix.

        This method calls :scipydoc:`optimize.leastsq`.
        By default, numerical derivatives are used, and the following
        arguments are set:

        +------------------+----------------+------------------------------------------------------------+
        | :meth:`leastsq`  |  Default Value | Description                                                |
        | arg              |                |                                                            |
        +==================+================+============================================================+
        |   xtol           |  1.e-7         | Relative error in the approximate solution                 |
        +------------------+----------------+------------------------------------------------------------+
        |   ftol           |  1.e-7         | Relative error in the desired sum of squares               |
        +------------------+----------------+------------------------------------------------------------+
        |   maxfev         | 2000*(nvar+1)  | Maximum number of function calls (nvar= # of variables)    |
        +------------------+----------------+------------------------------------------------------------+
        |   Dfun           | None           | Function to call for Jacobian calculation                  |
        +------------------+----------------+------------------------------------------------------------+

        Parameters
        ----------
        params : :class:`~lmfit.parameter.Parameters`, optional
           Parameters to use as starting point.
        **kws : dict, optional
            Minimizer options to pass to :scipydoc:`optimize.leastsq`.

        Returns
        -------
        :class:`MinimizerResult`
            Object containing the optimized parameter
            and several goodness-of-fit statistics.


        .. versionchanged:: 0.9.0
           Return value changed to :class:`MinimizerResult`.

        """
        result = self.prepare_fit(params=params)
        result.method = 'leastsq'
        result.nfev -= 2  # correct for "pre-fit" initialization/checks
        variables = result.init_vals
        nvars = len(variables)
        lskws = dict(full_output=1, xtol=1.e-7, ftol=1.e-7, col_deriv=False,
                     gtol=1.e-7, maxfev=2000*(nvars+1), Dfun=None)

        lskws.update(self.kws)
        lskws.update(kws)

        self.col_deriv = False
        if lskws['Dfun'] is not None:
            self.jacfcn = lskws['Dfun']
            self.col_deriv = lskws['col_deriv']
            lskws['Dfun'] = self.__jacobian

        # suppress runtime warnings during fit and error analysis
        orig_warn_settings = np.geterr()
        np.seterr(all='ignore')

        try:
            lsout = scipy_leastsq(self.__residual, variables, **lskws)
        except AbortFitException:
            pass

        if not result.aborted:
            _best, _cov, infodict, errmsg, ier = lsout
            result.residual = self.__residual(_best)
            result.nfev -= 1
        result._calculate_statistics()

        if result.aborted:
            return result

        result.ier = ier
        result.lmdif_message = errmsg
        result.success = ier in [1, 2, 3, 4]
        if ier in {1, 2, 3}:
            result.message = 'Fit succeeded.'
        elif ier == 0:
            result.message = ('Invalid Input Parameters. I.e. more variables '
                              'than data points given, tolerance < 0.0, or '
                              'no data provided.')
        elif ier == 4:
            result.message = 'One or more variable did not affect the fit.'
        elif ier == 5:
            result.message = self._err_maxfev % lskws['maxfev']
        else:
            result.message = 'Tolerance seems to be too small.'

        # self.errorbars = error bars were successfully estimated
        result.errorbars = (_cov is not None)
        if result.errorbars:
            # transform the covariance matrix to "external" parameter space
            result.covar = self._int2ext_cov_x(_cov, _best)
            # calculate parameter uncertainties and correlations
            self._calculate_uncertainties_correlations()
        else:
            result.message = '%s Could not estimate error-bars.' % result.message

        np.seterr(**orig_warn_settings)

        return result

    def basinhopping(self, params=None, **kws):
        """Use the `basinhopping` algorithm to find the global minimum of a function.

        This method calls :scipydoc:`optimize.basinhopping` using the default
        arguments. The default minimizer is `BFGS`, but since lmfit supports
        parameter bounds for all minimizers, the user can choose any of the
        solvers present in :scipydoc:`optimize.minimize`.

        Parameters
        ----------
        params : :class:`~lmfit.parameter.Parameters` object, optional
            Contains the Parameters for the model. If None, then the
            Parameters used to initialize the Minimizer object are used.

        Returns
        -------
        :class:`MinimizerResult`
            Object containing the optimization results from the basinhopping
            algorithm.


        .. versionadded:: 0.9.10

        """
        result = self.prepare_fit(params=params)
        result.method = 'basinhopping'

        basinhopping_kws = dict(niter=100, T=1.0, stepsize=0.5,
                                minimizer_kwargs={}, take_step=None,
                                accept_test=None, callback=None, interval=50,
                                disp=False, niter_success=None, seed=None)

        basinhopping_kws.update(self.kws)
        basinhopping_kws.update(kws)

        x0 = result.init_vals

        try:
            ret = scipy_basinhopping(self.penalty, x0, **basinhopping_kws)
        except AbortFitException:
            pass

        if not result.aborted:
            result.message = ret.message
            result.residual = self.__residual(ret.x)
            result.nfev -= 1

        result._calculate_statistics()

        # calculate the cov_x and estimate uncertanties/correlations
        if (not result.aborted and self.calc_covar and HAS_NUMDIFFTOOLS and
                len(result.residual) > len(result.var_names)):
            _covar_ndt = self._calculate_covariance_matrix(ret.x)
            if _covar_ndt is not None:
                result.covar = self._int2ext_cov_x(_covar_ndt, ret.x)
                self._calculate_uncertainties_correlations()

        return result

    def brute(self, params=None, Ns=20, keep=50, workers=1):
        """Use the `brute` method to find the global minimum of a function.

        The following parameters are passed to :scipydoc:`optimize.brute`
        and cannot be changed:

        +-------------------+-------+----------------------------------------+
        | :meth:`brute` arg | Value | Description                            |
        +===================+=======+========================================+
        |   full_output     | 1     | Return the evaluation grid and         |
        |                   |       | the objective function's values on it. |
        +-------------------+-------+----------------------------------------+
        |   finish          | None  | No "polishing" function is to be used  |
        |                   |       | after the grid search.                 |
        +-------------------+-------+----------------------------------------+
        |   disp            | False | Do not print convergence messages      |
        |                   |       | (when finish is not None).             |
        +-------------------+-------+----------------------------------------+

        It assumes that the input Parameters have been initialized, and a
        function to minimize has been properly set up.

        Parameters
        ----------
        params : :class:`~lmfit.parameter.Parameters`, optional
            Contains the Parameters for the model. If None, then the
            Parameters used to initialize the Minimizer object are used.
        Ns : int, optional
            Number of grid points along the axes, if not otherwise specified
            (see Notes).
        keep : int, optional
            Number of best candidates from the brute force method that are
            stored in the :attr:`candidates` attribute. If 'all', then all grid
            points from :scipydoc:`optimize.brute` are stored as candidates.
        workers : int or map-like callable, optional
            For parallel evaluation of the grid, added in SciPy v1.3 (see
            :scipydoc:`optimize.brute` for more details).

        Returns
        -------
        :class:`MinimizerResult`
            Object containing the parameters from the brute force method.
            The return values (`x0`, `fval`, `grid`, `Jout`) from
            :scipydoc:`optimize.brute` are stored as `brute_<parname>` attributes.
            The `MinimizerResult` also contains the `candidates` attribute and
            `show_candidates()` method. The `candidates` attribute contains the
            parameters and chisqr from the brute force method as a namedtuple,
            ('Candidate', ['params', 'score']), sorted on the (lowest) chisqr
            value. To access the values for a particular candidate one can use
            `result.candidate[#].params` or `result.candidate[#].score`, where
            a lower # represents a better candidate. The `show_candidates(#)`
            uses the :meth:`pretty_print` method to show a specific candidate-#
            or all candidates when no number is specified.


        .. versionadded:: 0.9.6


        Notes
        -----
        The :meth:`brute` method evalutes the function at each point of a
        multidimensional grid of points. The grid points are generated from the
        parameter ranges using `Ns` and (optional) `brute_step`.
        The implementation in :scipydoc:`optimize.brute` requires finite bounds
        and the `range` is specified as a two-tuple `(min, max)` or slice-object
        `(min, max, brute_step)`. A slice-object is used directly, whereas a
        two-tuple is converted to a slice object that interpolates `Ns` points
        from `min` to `max`, inclusive.

        In addition, the :meth:`brute` method in lmfit, handles three other
        scenarios given below with their respective slice-object:

            - lower bound (:attr:`min`) and :attr:`brute_step` are specified:
                range = (`min`, `min` + `Ns` * `brute_step`, `brute_step`).
            - upper bound (:attr:`max`) and :attr:`brute_step` are specified:
                range = (`max` - `Ns` * `brute_step`, `max`, `brute_step`).
            - numerical value (:attr:`value`) and :attr:`brute_step` are specified:
                range = (`value` - (`Ns`//2) * `brute_step`, `value` +
                (`Ns`//2) * `brute_step`, `brute_step`).

        """
        result = self.prepare_fit(params=params)
        result.method = 'brute'

        brute_kws = dict(full_output=1, finish=None, disp=False)
        # keyword 'workers' is introduced in SciPy v1.3
        # FIXME: remove this check after updating the requirement >= 1.3
        if int(major) == 1 and int(minor) >= 3:
            brute_kws.update({'workers': workers})

        varying = np.asarray([par.vary for par in self.params.values()])
        replace_none = lambda x, sign: sign*np.inf if x is None else x
        lower_bounds = np.asarray([replace_none(i.min, -1) for i in
                                   self.params.values()])[varying]
        upper_bounds = np.asarray([replace_none(i.max, 1) for i in
                                   self.params.values()])[varying]
        value = np.asarray([i.value for i in self.params.values()])[varying]
        stepsize = np.asarray([i.brute_step for i in self.params.values()])[varying]

        ranges = []
        for i, step in enumerate(stepsize):
            if np.all(np.isfinite([lower_bounds[i], upper_bounds[i]])):
                # lower AND upper bounds are specified (brute_step optional)
                par_range = ((lower_bounds[i], upper_bounds[i], step)
                             if step else (lower_bounds[i], upper_bounds[i]))
            elif np.isfinite(lower_bounds[i]) and step:
                # lower bound AND brute_step are specified
                par_range = (lower_bounds[i], lower_bounds[i] + Ns*step, step)
            elif np.isfinite(upper_bounds[i]) and step:
                # upper bound AND brute_step are specified
                par_range = (upper_bounds[i] - Ns*step, upper_bounds[i], step)
            elif np.isfinite(value[i]) and step:
                # no bounds, but an initial value is specified
                par_range = (value[i] - (Ns//2)*step, value[i] + (Ns//2)*step,
                             step)
            else:
                raise ValueError('Not enough information provided for the brute '
                                 'force method. Please specify bounds or at '
                                 'least an initial value and brute_step for '
                                 'parameter "{}".'.format(result.var_names[i]))
            ranges.append(par_range)

        try:
            ret = scipy_brute(self.penalty, tuple(ranges), Ns=Ns, **brute_kws)
        except AbortFitException:
            pass

        if not result.aborted:
            result.brute_x0 = ret[0]
            result.brute_fval = ret[1]
            result.brute_grid = ret[2]
            result.brute_Jout = ret[3]

            # sort the results of brute and populate .candidates attribute
            grid_score = ret[3].ravel()  # chisqr
            grid_points = [par.ravel() for par in ret[2]]

            if len(result.var_names) == 1:
                grid_result = np.array([res for res in zip(zip(grid_points), grid_score)],
                                       dtype=[('par', 'O'), ('score', 'float64')])
            else:
                grid_result = np.array([res for res in zip(zip(*grid_points), grid_score)],
                                       dtype=[('par', 'O'), ('score', 'float64')])
            grid_result_sorted = grid_result[grid_result.argsort(order='score')]

            result.candidates = []

            if keep == 'all':
                keep_candidates = len(grid_result_sorted)
            else:
                keep_candidates = min(len(grid_result_sorted), keep)

            for data in grid_result_sorted[:keep_candidates]:
                pars = deepcopy(self.params)
                for i, par in enumerate(result.var_names):
                    pars[par].value = data[0][i]
                result.candidates.append(Candidate(params=pars, score=data[1]))

            result.params = result.candidates[0].params
            result.residual = self.__residual(result.brute_x0, apply_bounds_transformation=False)
            result.nfev = len(result.brute_Jout.ravel())

        result._calculate_statistics()

        return result

    def ampgo(self, params=None, **kws):
        """Find the global minimum of a multivariate function using AMPGO.

        AMPGO stands for 'Adaptive Memory Programming for Global Optimization'
        and is an efficient algorithm to find the global minimum.

        Parameters
        ----------
        params : :class:`~lmfit.parameter.Parameters`, optional
            Contains the Parameters for the model. If None, then the
            Parameters used to initialize the Minimizer object are used.
        **kws : dict, optional
            Minimizer options to pass to the ampgo algorithm, the options are
            listed below::

                local: str (default is 'L-BFGS-B')
                    Name of the local minimization method. Valid options are:
                    - 'L-BFGS-B'
                    - 'Nelder-Mead'
                    - 'Powell'
                    - 'TNC'
                    - 'SLSQP'
                local_opts: dict (default is None)
                    Options to pass to the local minimizer.
                maxfunevals: int (default is None)
                    Maximum number of function evaluations. If None, the optimization will stop
                    after `totaliter` number of iterations.
                totaliter: int (default is 20)
                    Maximum number of global iterations.
                maxiter: int (default is 5)
                    Maximum number of `Tabu Tunneling` iterations during each global iteration.
                glbtol: float (default is 1e-5)
                    Tolerance whether or not to accept a solution after a tunneling phase.
                eps1: float (default is 0.02)
                    Constant used to define an aspiration value for the objective function during
                    the Tunneling phase.
                eps2: float (default is 0.1)
                    Perturbation factor used to move away from the latest local minimum at the
                    start of a Tunneling phase.
                tabulistsize: int (default is 5)
                    Size of the (circular) tabu search list.
                tabustrategy: str (default is 'farthest')
                    Strategy to use when the size of the tabu list exceeds `tabulistsize`. It
                    can be 'oldest' to drop the oldest point from the tabu list or 'farthest'
                    to drop the element farthest from the last local minimum found.
                disp: bool (default is False)
                    Set to True to print convergence messages.

        Returns
        -------
        :class:`MinimizerResult`
            Object containing the parameters from the ampgo method, with fit
            parameters, statistics and such. The return values (`x0`, `fval`,
            `eval`, `msg`, `tunnel`) are stored as `ampgo_<parname>` attributes.


        .. versionadded:: 0.9.10


        Notes
        ----
        The Python implementation was written by Andrea Gavana in 2014
        (http://infinity77.net/global_optimization/index.html).

        The details of the AMPGO algorithm are described in the paper
        "Adaptive Memory Programming for Constrained Global Optimization"
        located here:

        http://leeds-faculty.colorado.edu/glover/fred%20pubs/416%20-%20AMP%20(TS)%20for%20Constrained%20Global%20Opt%20w%20Lasdon%20et%20al%20.pdf

        """
        result = self.prepare_fit(params=params)

        ampgo_kws = dict(local='L-BFGS-B', local_opts=None, maxfunevals=None,
                         totaliter=20, maxiter=5, glbtol=1e-5, eps1=0.02,
                         eps2=0.1, tabulistsize=5, tabustrategy='farthest',
                         disp=False)
        ampgo_kws.update(self.kws)
        ampgo_kws.update(kws)

        values = result.init_vals
        result.method = "ampgo, with {} as local solver".format(ampgo_kws['local'])

        try:
            ret = ampgo(self.penalty, values, **ampgo_kws)
        except AbortFitException:
            pass

        if not result.aborted:
            result.ampgo_x0 = ret[0]
            result.ampgo_fval = ret[1]
            result.ampgo_eval = ret[2]
            result.ampgo_msg = ret[3]
            result.ampgo_tunnel = ret[4]

            for i, par in enumerate(result.var_names):
                result.params[par].value = result.ampgo_x0[i]

            result.residual = self.__residual(result.ampgo_x0)
            result.nfev -= 1

        result._calculate_statistics()

        # calculate the cov_x and estimate uncertanties/correlations
        if (not result.aborted and self.calc_covar and HAS_NUMDIFFTOOLS and
                len(result.residual) > len(result.var_names)):
            _covar_ndt = self._calculate_covariance_matrix(result.ampgo_x0)
            if _covar_ndt is not None:
                result.covar = self._int2ext_cov_x(_covar_ndt, result.ampgo_x0)
                self._calculate_uncertainties_correlations()

        return result

    def shgo(self, params=None, **kws):
        """Use the `SHGO` algorithm to find the global minimum.

        SHGO stands for "simplicial homology global optimization" and calls
        :scipydoc:`optimize.shgo` using its default arguments.

        Parameters
        ----------
        params : :class:`~lmfit.parameter.Parameters`, optional
            Contains the Parameters for the model. If None, then the
            Parameters used to initialize the Minimizer object are used.
        **kws : dict, optional
            Minimizer options to pass to the SHGO algorithm.

        Returns
        -------
        :class:`MinimizerResult`
            Object containing the parameters from the SHGO method.
            The return values specific to :scipydoc:`optimize.shgo` (`x`,
            `xl`, `fun`, `funl`, `nfev`, `nit`, `nlfev`, `nlhev`, and
            `nljev`) are stored as `shgo_<parname>` attributes.


        .. versionadded:: 0.9.14

        """
        if not HAS_SHGO:
            raise NotImplementedError('You must have SciPy >= 1.2 to use the '
                                      'shgo method.')

        result = self.prepare_fit(params=params)
        result.method = 'shgo'

        shgo_kws = dict(constraints=None, n=100, iters=1, callback=None,
                        minimizer_kwargs=None, options=None,
                        sampling_method='simplicial')

        shgo_kws.update(self.kws)
        shgo_kws.update(kws)

        varying = np.asarray([par.vary for par in self.params.values()])
        bounds = np.asarray([(par.min, par.max) for par in
                             self.params.values()])[varying]

        try:
            ret = scipy_shgo(self.penalty, bounds, **shgo_kws)
        except AbortFitException:
            pass

        if not result.aborted:
            for attr, value in ret.items():
                if attr in ['success', 'message']:
                    setattr(result, attr, value)
                else:
                    setattr(result, 'shgo_{}'.format(attr), value)

            result.residual = self.__residual(result.shgo_x, False)
            result.nfev -= 1

        result._calculate_statistics()

        # calculate the cov_x and estimate uncertanties/correlations
        if (not result.aborted and self.calc_covar and HAS_NUMDIFFTOOLS and
                len(result.residual) > len(result.var_names)):
            result.covar = self._calculate_covariance_matrix(result.shgo_x)
            if result.covar is not None:
                self._calculate_uncertainties_correlations()

        return result

    def dual_annealing(self, params=None, **kws):
        """Use the `dual_annealing` algorithm to find the global minimum.

        This method calls :scipydoc:`optimize.dual_annealing` using its
        default arguments.

        Parameters
        ----------
        params : :class:`~lmfit.parameter.Parameters`, optional
            Contains the Parameters for the model. If None, then the
            Parameters used to initialize the Minimizer object are used.
        **kws : dict, optional
            Minimizer options to pass to the dual_annealing algorithm.

        Returns
        -------
        :class:`MinimizerResult`
            Object containing the parameters from the dual_annealing method.
            The return values specific to :scipydoc:`optimize.dual_annealing`
            (`x`, `fun`, `nfev`, `nhev`, `njev`, and `nit`) are stored as
            `da_<parname>` attributes.


        .. versionadded:: 0.9.14

        """
        if not HAS_DUAL_ANNEALING:
            raise NotImplementedError('You must have SciPy >= 1.2 to use the'
                                      ' dual_annealing method')

        result = self.prepare_fit(params=params)
        result.method = 'dual_annealing'

        da_kws = dict(maxiter=1000, local_search_options={},
                      initial_temp=5230.0, restart_temp_ratio=2e-05,
                      visit=2.62, accept=-5.0, maxfun=10000000.0, seed=None,
                      no_local_search=False, callback=None, x0=None)

        da_kws.update(self.kws)
        da_kws.update(kws)

        varying = np.asarray([par.vary for par in self.params.values()])
        bounds = np.asarray([(par.min, par.max) for par in
                             self.params.values()])[varying]

        if not np.all(np.isfinite(bounds)):
            raise ValueError('dual_annealing requires finite bounds for all'
                             ' varying parameters')

        try:
            ret = scipy_dual_annealing(self.penalty, bounds, **da_kws)
        except AbortFitException:
            pass

        if not result.aborted:
            for attr, value in ret.items():
                if attr in ['success', 'message']:
                    setattr(result, attr, value)
                else:
                    setattr(result, 'da_{}'.format(attr), value)

            result.residual = self.__residual(result.da_x, False)
            result.nfev -= 1

        result._calculate_statistics()

        # calculate the cov_x and estimate uncertanties/correlations
        if (not result.aborted and self.calc_covar and HAS_NUMDIFFTOOLS and
                len(result.residual) > len(result.var_names)):
            result.covar = self._calculate_covariance_matrix(result.da_x)
            if result.covar is not None:
                self._calculate_uncertainties_correlations()

        return result

    def minimize(self, method='leastsq', params=None, **kws):
        """Perform the minimization.

        Parameters
        ----------
        method : str, optional
            Name of the fitting method to use. Valid values are:

            - `'leastsq'`: Levenberg-Marquardt (default)
            - `'least_squares'`: Least-Squares minimization, using Trust Region Reflective method
            - `'differential_evolution'`: differential evolution
            - `'brute'`: brute force method
            - `'basinhopping'`: basinhopping
            - `'ampgo'`: Adaptive Memory Programming for Global Optimization
            - '`nelder`': Nelder-Mead
            - `'lbfgsb'`: L-BFGS-B
            - `'powell'`: Powell
            - `'cg'`: Conjugate-Gradient
            - `'newton'`: Newton-CG
            - `'cobyla'`: Cobyla
            - `'bfgs'`: BFGS
            - `'tnc'`: Truncated Newton
            - `'trust-ncg'`: Newton-CG trust-region
            - `'trust-exact'`: nearly exact trust-region (SciPy >= 1.0)
            - `'trust-krylov'`: Newton GLTR trust-region (SciPy >= 1.0)
            - `'trust-constr'`: trust-region for constrained optimization (SciPy >= 1.1)
            - `'dogleg'`: Dog-leg trust-region
            - `'slsqp'`: Sequential Linear Squares Programming
            - `'emcee'`: Maximum likelihood via Monte-Carlo Markov Chain
            - `'shgo'`: Simplicial Homology Global Optimization (SciPy >= 1.2)
            - `'dual_annealing'`: Dual Annealing optimization (SciPy >= 1.2)

            In most cases, these methods wrap and use the method with the
            same name from `scipy.optimize`, or use
            `scipy.optimize.minimize` with the same `method` argument.
            Thus '`leastsq`' will use `scipy.optimize.leastsq`, while
            '`powell`' will use `scipy.optimize.minimizer(...,
            method='powell')`

            For more details on the fitting methods please refer to the
            `SciPy docs <https://docs.scipy.org/doc/scipy/reference/optimize.html>`__.

        params : :class:`~lmfit.parameter.Parameters`, optional
            Parameters of the model to use as starting values.

        **kws : optional
            Additional arguments are passed to the underlying minimization
            method.

        Returns
        -------
        :class:`MinimizerResult`
            Object containing the optimized parameter and several
            goodness-of-fit statistics.


        .. versionchanged:: 0.9.0
           Return value changed to :class:`MinimizerResult`.

        """
        function = self.leastsq
        kwargs = {'params': params}
        kwargs.update(self.kws)
        kwargs.update(kws)

        user_method = method.lower()
        if user_method.startswith('leasts'):
            function = self.leastsq
        elif user_method.startswith('least_s'):
            function = self.least_squares
        elif user_method == 'brute':
            function = self.brute
        elif user_method == 'basinhopping':
            function = self.basinhopping
        elif user_method == 'ampgo':
            function = self.ampgo
        elif user_method == 'emcee':
            function = self.emcee
        elif user_method == 'shgo':
            function = self.shgo
        elif user_method == 'dual_annealing':
            function = self.dual_annealing
        else:
            function = self.scalar_minimize
            for key, val in SCALAR_METHODS.items():
                if (key.lower().startswith(user_method) or
                        val.lower().startswith(user_method)):
                    kwargs['method'] = val
        return function(**kwargs)


def _lnprior(theta, bounds):
    """Calculate an improper uniform log-prior probability.

    Parameters
    ----------
    theta : sequence
        Float parameter values (only those being varied).
    bounds : np.ndarray
        Lower and upper bounds of parameters that are varying.
        Has shape (nvarys, 2).

    Returns
    -------
    lnprob : float
        Log prior probability.

    """
    if np.any(theta > bounds[:, 1]) or np.any(theta < bounds[:, 0]):
        return -np.inf
    return 0


def _lnpost(theta, userfcn, params, var_names, bounds, userargs=(),
            userkws=None, float_behavior='posterior', is_weighted=True,
            nan_policy='raise'):
    """Calculate the log-posterior probability.

    See the `Minimizer.emcee` method for more details.

    Parameters
    ----------
    theta : sequence
        Float parameter values (only those being varied).
    userfcn : callable
        User objective function.
    params : :class:`~lmfit.parameters.Parameters`
        The entire set of Parameters.
    var_names : list
        The names of the parameters that are varying.
    bounds : numpy.ndarray
        Lower and upper bounds of parameters. Has shape (nvarys, 2).
    userargs : tuple, optional
        Extra positional arguments required for user objective function.
    userkws : dict, optional
        Extra keyword arguments required for user objective function.
    float_behavior : str, optional
        Specifies meaning of objective when it returns a float. One of:

        'posterior' - objective function returnins a log-posterior
                      probability
        'chi2' - objective function returns a chi2 value

    is_weighted : bool
        If `userfcn` returns a vector of residuals then `is_weighted`
        specifies if the residuals have been weighted by data uncertainties.
    nan_policy : str, optional
        Specifies action if `userfcn` returns NaN values. One of:

            'raise' - a `ValueError` is raised
            'propagate' - the values returned from `userfcn` are un-altered
            'omit' - the non-finite values are filtered


    Returns
    -------
    lnprob : float
        Log posterior probability.

    """
    # the comparison has to be done on theta and bounds. DO NOT inject theta
    # values into Parameters, then compare Parameters values to the bounds.
    # Parameters values are clipped to stay within bounds.
    if np.any(theta > bounds[:, 1]) or np.any(theta < bounds[:, 0]):
        return -np.inf

    for name, val in zip(var_names, theta):
        params[name].value = val

    userkwargs = {}
    if userkws is not None:
        userkwargs = userkws

    # update the constraints
    params.update_constraints()

    # now calculate the log-likelihood
    out = userfcn(params, *userargs, **userkwargs)
    out = _nan_policy(out, nan_policy=nan_policy, handle_inf=False)

    lnprob = np.asarray(out).ravel()

    if lnprob.size > 1:
        # objective function returns a vector of residuals
        if '__lnsigma' in params and not is_weighted:
            # marginalise over a constant data uncertainty
            __lnsigma = params['__lnsigma'].value
            c = np.log(2 * np.pi) + 2 * __lnsigma
            lnprob = -0.5 * np.sum((lnprob / np.exp(__lnsigma)) ** 2 + c)
        else:
            lnprob = -0.5 * (lnprob * lnprob).sum()
    else:
        # objective function returns a single value.
        # use float_behaviour to figure out if the value is posterior or chi2
        if float_behavior == 'posterior':
            pass
        elif float_behavior == 'chi2':
            lnprob *= -0.5
        else:
            raise ValueError("float_behaviour must be either 'posterior' or"
                             " 'chi2' " + float_behavior)

    return lnprob


def _make_random_gen(seed):
    """Turn seed into a numpy.random.RandomState instance.

    If seed is None, return the RandomState singleton used by
    numpy.random. If seed is an int, return a new RandomState instance
    seeded with seed. If seed is already a RandomState instance, return
    it. Otherwise raise ValueError.

    """
    if seed is None or seed is np.random:
        return np.random.mtrand._rand
    if isinstance(seed, (numbers.Integral, np.integer)):
        return np.random.RandomState(seed)
    if isinstance(seed, np.random.RandomState):
        return seed
    raise ValueError('%r cannot be used to seed a numpy.random.RandomState'
                     ' instance' % seed)


def _nan_policy(arr, nan_policy='raise', handle_inf=True):
    """Specify behaviour when an array contains numpy.nan or numpy.inf.

    Parameters
    ----------
    arr : array_like
        Input array to consider.
    nan_policy : str, optional
        One of:

        'raise' - raise a `ValueError` if `arr` contains NaN (default)
        'propagate' - propagate NaN
        'omit' - filter NaN from input array
    handle_inf : bool, optional
        As well as NaN consider +/- inf.

    Returns
    -------
    filtered_array : array_like

    Note
    ----
    This function is copied, then modified, from
    scipy/stats/stats.py/_contains_nan

    """
    if nan_policy not in ('propagate', 'omit', 'raise'):
        raise ValueError("nan_policy must be 'propagate', 'omit', or 'raise'.")

    if handle_inf:
        handler_func = lambda x: ~np.isfinite(x)
    else:
        handler_func = isnull

    if nan_policy == 'omit':
        # mask locates any values to remove
        mask = ~handler_func(arr)
        if not np.all(mask):  # there are some NaNs/infs/missing values
            return arr[mask]

    if nan_policy == 'raise':
        try:
            # Calling np.sum to avoid creating a huge array into memory
            # e.g. np.isnan(a).any()
            with np.errstate(invalid='ignore'):
                contains_nan = handler_func(np.sum(arr))
        except TypeError:
            # If the check cannot be properly performed we fallback to omiting
            # nan values and raising a warning. This can happen when attempting to
            # sum things that are not numbers (e.g. as in the function `mode`).
            contains_nan = False
            warnings.warn("The input array could not be checked for NaNs. "
                          "NaNs will be ignored.", RuntimeWarning)

        if contains_nan:
            msg = ('NaN values detected in your input data or the output of '
                   'your objective/model function - fitting algorithms cannot '
                   'handle this! Please read https://lmfit.github.io/lmfit-py/faq.html#i-get-errors-from-nan-in-my-fit-what-can-i-do '
                   'for more information.')
            raise ValueError(msg)
    return arr


def minimize(fcn, params, method='leastsq', args=None, kws=None, iter_cb=None,
             scale_covar=True, nan_policy='raise', reduce_fcn=None,
             calc_covar=True, **fit_kws):
    """Perform a fit of a set of parameters by minimizing an objective (or
    cost) function using one of the several available methods.

    The minimize function takes an objective function to be minimized,
    a dictionary (:class:`~lmfit.parameter.Parameters`) containing the model
    parameters, and several optional arguments.

    Parameters
    ----------
    fcn : callable
        Objective function to be minimized. When method is `leastsq` or
        `least_squares`, the objective function should return an array
        of residuals (difference between model and data) to be minimized
        in a least-squares sense. With the scalar methods the objective
        function can either return the residuals array or a single scalar
        value. The function must have the signature:
        `fcn(params, *args, **kws)`
    params : :class:`~lmfit.parameter.Parameters`
        Contains the Parameters for the model.
    method : str, optional
        Name of the fitting method to use. Valid values are:

        - `'leastsq'`: Levenberg-Marquardt (default)
        - `'least_squares'`: Least-Squares minimization, using Trust Region Reflective method
        - `'differential_evolution'`: differential evolution
        - `'brute'`: brute force method
        - `'basinhopping'`: basinhopping
        - `'ampgo'`: Adaptive Memory Programming for Global Optimization
        - '`nelder`': Nelder-Mead
        - `'lbfgsb'`: L-BFGS-B
        - `'powell'`: Powell
        - `'cg'`: Conjugate-Gradient
        - `'newton'`: Newton-CG
        - `'cobyla'`: Cobyla
        - `'bfgs'`: BFGS
        - `'tnc'`: Truncated Newton
        - `'trust-ncg'`: Newton-CG trust-region
        - `'trust-exact'`: nearly exact trust-region (SciPy >= 1.0)
        - `'trust-krylov'`: Newton GLTR trust-region (SciPy >= 1.0)
        - `'trust-constr'`: trust-region for constrained optimization (SciPy >= 1.1)
        - `'dogleg'`: Dog-leg trust-region
        - `'slsqp'`: Sequential Linear Squares Programming
        - `'emcee'`: Maximum likelihood via Monte-Carlo Markov Chain
        - `'shgo'`: Simplicial Homology Global Optimization (SciPy >= 1.2)
        - `'dual_annealing'`: Dual Annealing optimization (SciPy >= 1.2)

        In most cases, these methods wrap and use the method of the same
        name from `scipy.optimize`, or use `scipy.optimize.minimize` with
        the same `method` argument.  Thus '`leastsq`' will use
        `scipy.optimize.leastsq`, while '`powell`' will use
        `scipy.optimize.minimizer(..., method='powell')`

        For more details on the fitting methods please refer to the
        `SciPy docs <https://docs.scipy.org/doc/scipy/reference/optimize.html>`__.

    args : tuple, optional
        Positional arguments to pass to `fcn`.
    kws : dict, optional
        Keyword arguments to pass to `fcn`.
    iter_cb : callable, optional
        Function to be called at each fit iteration. This function should
        have the signature `iter_cb(params, iter, resid, *args, **kws)`,
        where `params` will have the current parameter values, `iter`
        the iteration number, `resid` the current residual array, and `*args`
        and `**kws` as passed to the objective function.
    scale_covar : bool, optional
        Whether to automatically scale the covariance matrix (default is True).
    nan_policy : str, optional
        Specifies action if `userfcn` (or a Jacobian) returns NaN
        values. One of:

        - 'raise' : a `ValueError` is raised
        - 'propagate' : the values returned from `userfcn` are un-altered
        - 'omit' : non-finite values are filtered

    reduce_fcn : str or callable, optional
        Function to convert a residual array to a scalar value for the scalar
        minimizers. See notes in `Minimizer`.
    calc_covar : bool, optional
        Whether to calculate the covariance matrix (default is True) for
        solvers other than `leastsq` and `least_squares`. Requires the
        `numdifftools` package to be installed.
    **fit_kws : dict, optional
        Options to pass to the minimizer being used.

    Returns
    -------
    :class:`MinimizerResult`
        Object containing the optimized parameter and several
        goodness-of-fit statistics.


    .. versionchanged:: 0.9.0
        Return value changed to :class:`MinimizerResult`.

    Notes
    -----
    The objective function should return the value to be minimized. For the
    Levenberg-Marquardt algorithm from leastsq(), this returned value must
    be an array, with a length greater than or equal to the number of
    fitting variables in the model. For the other methods, the return value
    can either be a scalar or an array. If an array is returned, the sum of
    squares of the array will be sent to the underlying fitting method,
    effectively doing a least-squares optimization of the return values.

    A common use for `args` and `kws` would be to pass in other
    data needed to calculate the residual, including such things as the
    data array, dependent variable, uncertainties in the data, and other
    data structures for the model calculation.

    On output, `params` will be unchanged.  The best-fit values and, where
    appropriate, estimated uncertainties and correlations, will all be
    contained in the returned :class:`MinimizerResult`.  See
    :ref:`fit-results-label` for further details.

    This function is simply a wrapper around :class:`Minimizer`
    and is equivalent to::

        fitter = Minimizer(fcn, params, fcn_args=args, fcn_kws=kws,
                           iter_cb=iter_cb, scale_covar=scale_covar,
                           nan_policy=nan_policy, reduce_fcn=reduce_fcn,
                           calc_covar=calc_covar, **fit_kws)
        fitter.minimize(method=method)

    """
    fitter = Minimizer(fcn, params, fcn_args=args, fcn_kws=kws,
                       iter_cb=iter_cb, scale_covar=scale_covar,
                       nan_policy=nan_policy, reduce_fcn=reduce_fcn,
                       calc_covar=calc_covar, **fit_kws)
    return fitter.minimize(method=method)