summaryrefslogtreecommitdiff
path: root/tests/test_brute.py
blob: dbad75b2625fc927400ca31db1ab2157d3714e67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
"""Tests for the brute force algorithm (aka 'grid-search').

Use example problem described in the SciPy documentation:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brute.html

"""
import pickle

import numpy as np
from numpy.testing import assert_allclose, assert_equal
import pytest
from scipy import optimize

import lmfit


def func_scipy(z, *params):
    x, y = z
    a, b, c, d, e, f, g, h, i, j, k, l, scale = params

    f1 = a * x**2 + b*x*y + c * y**2 + d*x + e*y + f
    f2 = -g*np.exp(-((x-h)**2 + (y-i)**2) / scale)
    f3 = -j*np.exp(-((x-k)**2 + (y-l)**2) / scale)

    return f1 + f2 + f3


params = (2, 3, 7, 8, 9, 10, 44, -1, 2, 26, 1, -2, 0.5)


def func_lmfit(p):
    par = p.valuesdict()
    f1 = (par['a'] * par['x']**2 + par['b']*par['x']*par['y'] +
          par['c'] * par['y']**2 + par['d']*par['x'] + par['e']*par['y'] +
          par['f'])
    f2 = (-1.0*par['g']*np.exp(-((par['x']-par['h'])**2 +
                                 (par['y']-par['i'])**2) / par['scale']))
    f3 = (-1.0*par['j']*np.exp(-((par['x']-par['k'])**2 +
                                 (par['y']-par['l'])**2) / par['scale']))

    return f1 + f2 + f3


@pytest.fixture
def params_lmfit():
    """Return lmfit.Parameters class with initial values and bounds."""
    params = lmfit.Parameters()
    params.add_many(
        ('a', 2, False), ('b', 3, False), ('c', 7, False), ('d', 8, False),
        ('e', 9, False), ('f', 10, False), ('g', 44, False), ('h', -1, False),
        ('i', 2, False), ('j', 26, False), ('k', 1, False), ('l', -2, False),
        ('scale', 0.5, False), ('x', -4.0, True, -4.0, 4.0, None, None),
        ('y', -2.0, True, -2.0, 2.0, None, None))
    return params


def test_brute_lmfit_vs_scipy_default(params_lmfit):
    """TEST 1: using finite bounds with Ns=20, keep=50 and brute_step=None."""
    assert params_lmfit['x'].brute_step is None
    assert params_lmfit['y'].brute_step is None

    rranges = ((-4, 4), (-2, 2))
    ret = optimize.brute(func_scipy, rranges, args=params, full_output=True,
                         Ns=20, finish=None)
    mini = lmfit.Minimizer(func_lmfit, params_lmfit)
    out = mini.minimize(method='brute', Ns=20)

    assert out.method == 'brute'
    assert_equal(out.nfev, 20**len(out.var_names))  # Ns * nmb varying params
    assert_equal(len(out.candidates), 50)  # top-50 candidates are stored

    assert_equal(ret[2], out.brute_grid)  # grid identical
    assert_equal(ret[3], out.brute_Jout)  # function values on grid identical

    # best-fit values identical / stored correctly in MinimizerResult
    assert_equal(ret[0][0], out.brute_x0[0])
    assert_equal(ret[0][0], out.params['x'].value)

    assert_equal(ret[0][1], out.brute_x0[1])
    assert_equal(ret[0][1], out.params['y'].value)

    assert_equal(ret[1], out.brute_fval)
    assert_equal(ret[1], out.residual)


def test_brute_lmfit_vs_scipy_Ns(params_lmfit):
    """TEST 2: using finite bounds, with Ns=40 and brute_step=None."""
    rranges = ((-4, 4), (-2, 2))
    ret = optimize.brute(func_scipy, rranges, args=params, full_output=True,
                         Ns=40, finish=None)
    mini = lmfit.Minimizer(func_lmfit, params_lmfit)
    out = mini.minimize(method='brute', Ns=40)

    assert_equal(ret[2], out.brute_grid)  # grid identical
    assert_equal(ret[3], out.brute_Jout)  # function values on grid identical
    assert_equal(out.nfev, 40**len(out.var_names))  # Ns * nmb varying params

    # best-fit values and function value identical
    assert_equal(ret[0][0], out.brute_x0[0])
    assert_equal(ret[0][1], out.brute_x0[1])
    assert_equal(ret[1], out.brute_fval)


def test_brute_lmfit_vs_scipy_stepsize(params_lmfit):
    """TEST 3: using finite bounds and brute_step for both parameters."""
    # set brute_step for parameters and assert whether that worked correctly
    params_lmfit['x'].set(brute_step=0.25)
    params_lmfit['y'].set(brute_step=0.25)
    assert_equal(params_lmfit['x'].brute_step, 0.25)
    assert_equal(params_lmfit['y'].brute_step, 0.25)

    rranges = (slice(-4, 4, 0.25), slice(-2, 2, 0.25))
    ret = optimize.brute(func_scipy, rranges, args=params, full_output=True,
                         Ns=20, finish=None)
    mini = lmfit.Minimizer(func_lmfit, params_lmfit)
    out = mini.minimize(method='brute')

    assert_equal(ret[2], out.brute_grid)  # grid identical
    assert_equal(ret[3], out.brute_Jout)  # function values on grid identical

    # best-fit values and function value identical
    assert_equal(ret[0][0], out.brute_x0[0])
    assert_equal(ret[0][1], out.brute_x0[1])
    assert_equal(ret[1], out.brute_fval)

    points_x = np.arange(rranges[0].start, rranges[0].stop, rranges[0].step).size
    points_y = np.arange(rranges[1].start, rranges[1].stop, rranges[1].step).size
    nmb_evals = points_x * points_y
    assert_equal(out.nfev, nmb_evals)


def test_brute_lmfit_vs_scipy_Ns_stepsize(params_lmfit):
    """TEST 4: using finite bounds, using Ns, brute_step for 'x'."""
    # set brute_step for x to 0.15 and reset to None for y and assert result
    params_lmfit['x'].set(brute_step=0.15)
    assert_equal(params_lmfit['x'].brute_step, 0.15)

    rranges = (slice(-4, 4, 0.15), (-2, 2))
    ret = optimize.brute(func_scipy, rranges, args=params, full_output=True,
                         Ns=10, finish=None)
    mini = lmfit.Minimizer(func_lmfit, params_lmfit)
    out = mini.minimize(method='brute', Ns=10)

    assert_equal(ret[2], out.brute_grid)  # grid identical
    assert_equal(ret[3], out.brute_Jout)  # function values on grid identical

    points_x = np.arange(rranges[0].start, rranges[0].stop, rranges[0].step).size
    points_y = 10
    nmb_evals = points_x * points_y
    assert_equal(out.nfev, nmb_evals)

    # best-fit values and function value identical
    assert_equal(ret[0][0], out.brute_x0[0])
    assert_equal(ret[0][1], out.brute_x0[1])
    assert_equal(ret[1], out.brute_fval)


def test_brute_upper_bounds_and_brute_step(params_lmfit):
    """TEST 5: using finite upper bounds, Ns=20, and brute_step specified."""
    Ns = 20
    params_lmfit['x'].set(min=-np.inf)
    params_lmfit['x'].set(brute_step=0.25)

    mini = lmfit.Minimizer(func_lmfit, params_lmfit)
    out = mini.minimize(method='brute', Ns=Ns)

    assert_equal(out.params['x'].min, -np.inf)
    assert_equal(out.params['x'].brute_step, 0.25)

    grid_x_expected = np.linspace(params_lmfit['x'].max -
                                  Ns*params_lmfit['x'].brute_step,
                                  params_lmfit['x'].max, Ns, False)
    grid_x = np.unique([par.ravel() for par in out.brute_grid][0])
    assert_allclose(grid_x, grid_x_expected)

    grid_y_expected = np.linspace(params_lmfit['y'].min,
                                  params_lmfit['y'].max, Ns)
    grid_y = np.unique([par.ravel() for par in out.brute_grid][1])
    assert_allclose(grid_y, grid_y_expected)


def test_brute_lower_bounds_and_brute_step(params_lmfit):
    """TEST 6: using finite lower bounds, Ns=15, and brute_step specified."""
    Ns = 15
    params_lmfit['y'].set(max=np.inf)
    params_lmfit['y'].set(brute_step=0.1)

    mini = lmfit.Minimizer(func_lmfit, params_lmfit)
    out = mini.minimize(method='brute', Ns=Ns)

    grid_x_expected = np.linspace(params_lmfit['x'].min,
                                  params_lmfit['x'].max, Ns)
    grid_x = np.unique([par.ravel() for par in out.brute_grid][0])
    assert_allclose(grid_x, grid_x_expected)

    grid_y_expected = np.linspace(params_lmfit['y'].min,
                                  params_lmfit['y'].min +
                                  Ns*params_lmfit['y'].brute_step, Ns, False)
    grid_y = np.unique([par.ravel() for par in out.brute_grid][1])
    assert_allclose(grid_y, grid_y_expected)


def test_brute_no_bounds_with_brute_step(params_lmfit):
    """TEST 7: using no bounds, but brute_step specified (Ns=15)."""
    Ns = 15
    params_lmfit['x'].set(min=-np.inf, max=np.inf, brute_step=0.1)
    params_lmfit['y'].set(min=-np.inf, max=np.inf, brute_step=0.2)

    mini = lmfit.Minimizer(func_lmfit, params_lmfit)
    out = mini.minimize(method='brute', Ns=15)

    grid_x_expected = np.linspace(params_lmfit['x'].value -
                                  (Ns//2)*params_lmfit['x'].brute_step,
                                  params_lmfit['x'].value +
                                  (Ns//2)*params_lmfit['x'].brute_step, Ns)
    grid_x = np.unique([par.ravel() for par in out.brute_grid][0])
    assert_allclose(grid_x, grid_x_expected)

    grid_y_expected = np.linspace(params_lmfit['y'].value -
                                  (Ns//2)*params_lmfit['y'].brute_step,
                                  params_lmfit['y'].value +
                                  (Ns//2)*params_lmfit['y'].brute_step, Ns)
    grid_y = np.unique([par.ravel() for par in out.brute_grid][1])
    assert_allclose(grid_y, grid_y_expected)


def test_brute_no_bounds_no_brute_step(params_lmfit):
    """TEST 8: insufficient information provided."""
    params_lmfit['x'].set(min=-np.inf, max=np.inf)
    mini = lmfit.Minimizer(func_lmfit, params_lmfit)

    msg = r'Not enough information provided for the brute force method.'
    with pytest.raises(ValueError, match=msg):
        mini.minimize(method='brute')


def test_brute_one_parameter(params_lmfit):
    """TEST 9: only one varying parameter."""
    params_lmfit['x'].set(vary=False)
    mini = lmfit.Minimizer(func_lmfit, params_lmfit)
    out = mini.minimize(method='brute')
    assert out.candidates[0].score <= out.candidates[1].score
    assert isinstance(out.candidates[0], lmfit.minimizer.Candidate)
    assert isinstance(out.candidates[0].params, lmfit.Parameters)
    assert isinstance(out.candidates[0].score, float)


def test_brute_keep(params_lmfit, capsys):
    """TEST 10: using 'keep' argument and check candidates attribute."""
    mini = lmfit.Minimizer(func_lmfit, params_lmfit)
    out = mini.minimize(method='brute')
    assert_equal(len(out.candidates), 50)  # default

    out_keep_all = mini.minimize(method='brute', keep='all')
    assert_equal(len(out_keep_all.candidates),
                 len(out_keep_all.brute_Jout.ravel()))

    out_keep10 = mini.minimize(method='brute', keep=10)
    assert_equal(len(out_keep10.candidates), 10)

    assert isinstance(out.candidates[0], lmfit.minimizer.Candidate)
    assert isinstance(out.candidates[0].params, lmfit.Parameters)
    assert isinstance(out.candidates[0].score, float)

    with pytest.raises(ValueError, match=r"'candidate_nmb' should be between"):
        out_keep10.show_candidates(25)

    with pytest.raises(ValueError, match=r"'candidate_nmb' should be between"):
        out_keep10.show_candidates(0)

    out_keep10.show_candidates(5)
    captured = capsys.readouterr()
    assert 'Candidate #5' in captured.out

    # for coverage and to make sure the 'all' argument works; no assert...
    out_keep10.show_candidates('all')


def test_brute_pickle(params_lmfit):
    """TEST 11: make sure the MinimizerResult can be pickle'd."""
    mini = lmfit.Minimizer(func_lmfit, params_lmfit)
    out = mini.minimize(method='brute')
    pickle.dumps(out)


def test_nfev_workers(params_lmfit):
    """TEST 12: make sure the nfev is correct for workers != 1."""
    mini = lmfit.Minimizer(func_lmfit, params_lmfit, workers=-1)
    out = mini.minimize(method='brute')
    assert_equal(out.nfev, 20**len(out.var_names))