summaryrefslogtreecommitdiff
path: root/tests/test_covariance_matrix.py
blob: c9d581ac649e0bc07333de3f876f0ddffa28e5da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# -*- coding: utf-8 -*-
import os

import numpy as np
from numpy import pi
from numpy.testing import assert_allclose, assert_almost_equal
import pytest

from lmfit import Parameters, minimize
from lmfit.lineshapes import exponential
from lmfit.models import ExponentialModel, VoigtModel


def check(para, real_val, sig=3):
    err = abs(para.value - real_val)
    assert(err < sig * para.stderr)


def test_bounded_parameters():
    # create data to be fitted
    np.random.seed(1)
    x = np.linspace(0, 15, 301)
    data = (5. * np.sin(2 * x - 0.1) * np.exp(-x*x*0.025) +
            np.random.normal(size=len(x), scale=0.2))

    # define objective function: returns the array to be minimized
    def fcn2min(params, x, data):
        """ model decaying sine wave, subtract data"""
        amp = params['amp']
        shift = params['shift']
        omega = params['omega']
        decay = params['decay']

        model = amp * np.sin(x * omega + shift) * np.exp(-x*x*decay)
        return model - data

    # create a set of Parameters
    params = Parameters()
    params.add('amp', value=10, min=0, max=50)
    params.add('decay', value=0.1, min=0, max=10)
    params.add('shift', value=0.0, min=-pi/2., max=pi/2.)
    params.add('omega', value=3.0, min=0, max=np.inf)

    # do fit, here with leastsq model
    result = minimize(fcn2min, params, args=(x, data))

    # assert that the real parameters are found
    for para, val in zip(result.params.values(), [5, 0.025, -.1, 2]):
        check(para, val)

    # assert that the covariance matrix is correct [cf. lmfit v0.9.10]
    cov_x = np.array([
        [1.42428250e-03, 9.45395985e-06, -4.33997922e-05, 1.07362106e-05],
        [9.45395985e-06, 1.84110424e-07, -2.90588963e-07, 7.19107184e-08],
        [-4.33997922e-05, -2.90588963e-07, 9.53427031e-05, -2.37750362e-05],
        [1.07362106e-05, 7.19107184e-08, -2.37750362e-05, 9.60952336e-06]])
    assert_allclose(result.covar, cov_x, rtol=1e-6)

    # assert that stderr and correlations are correct [cf. lmfit v0.9.10]
    assert_almost_equal(result.params['amp'].stderr, 0.03773967, decimal=6)
    assert_almost_equal(result.params['decay'].stderr, 4.2908e-04, decimal=6)
    assert_almost_equal(result.params['shift'].stderr, 0.00976436, decimal=6)
    assert_almost_equal(result.params['omega'].stderr, 0.00309992, decimal=6)

    assert_almost_equal(result.params['amp'].correl['decay'],
                        0.5838166760743324, decimal=6)
    assert_almost_equal(result.params['amp'].correl['shift'],
                        -0.11777303073961824, decimal=6)
    assert_almost_equal(result.params['amp'].correl['omega'],
                        0.09177027400788784, decimal=6)
    assert_almost_equal(result.params['decay'].correl['shift'],
                        -0.0693579417651835, decimal=6)
    assert_almost_equal(result.params['decay'].correl['omega'],
                        0.05406342001021014, decimal=6)
    assert_almost_equal(result.params['shift'].correl['omega'],
                        -0.7854644476455469, decimal=6)


def test_bounds_expression():
    # load data to be fitted
    data = np.loadtxt(os.path.join(os.path.dirname(__file__), '..', 'examples',
                                   'test_peak.dat'))
    x = data[:, 0]
    y = data[:, 1]

    # define the model and initialize parameters
    mod = VoigtModel()
    params = mod.guess(y, x=x)
    params['amplitude'].set(min=0, max=100)
    params['center'].set(min=5, max=10)

    # do fit, here with leastsq model
    result = mod.fit(y, params, x=x)

    # assert that stderr and correlations are correct [cf. lmfit v0.9.10]
    assert_almost_equal(result.params['sigma'].stderr, 0.00368468, decimal=6)
    assert_almost_equal(result.params['center'].stderr, 0.00505496, decimal=6)
    assert_almost_equal(result.params['amplitude'].stderr, 0.13861506,
                        decimal=6)
    assert_almost_equal(result.params['gamma'].stderr, 0.00368468, decimal=6)
    assert_almost_equal(result.params['fwhm'].stderr, 0.00806917, decimal=6)
    assert_almost_equal(result.params['height'].stderr, 0.03009459, decimal=6)

    assert_almost_equal(result.params['sigma'].correl['center'],
                        -4.6623973788006615e-05, decimal=6)
    assert_almost_equal(result.params['sigma'].correl['amplitude'],
                        0.651304091954038, decimal=6)
    assert_almost_equal(result.params['center'].correl['amplitude'],
                        -4.390334984618851e-05, decimal=6)


@pytest.mark.parametrize("fit_method", ['nelder', 'lbfgs'])
def test_numdifftools_no_bounds(fit_method):
    pytest.importorskip("numdifftools")

    np.random.seed(7)
    x = np.linspace(0, 100, num=50)
    noise = np.random.normal(scale=0.25, size=x.size)
    y = exponential(x, amplitude=5, decay=15) + noise

    mod = ExponentialModel()
    params = mod.guess(y, x=x)

    # do fit, here with leastsq model
    result = mod.fit(y, params, x=x, method='leastsq')

    result_ndt = mod.fit(y, params, x=x, method=fit_method)

    # assert that fit converged to the same result
    vals = [result.params[p].value for p in result.params.valuesdict()]
    vals_ndt = [result_ndt.params[p].value for p in result_ndt.params.valuesdict()]
    assert_allclose(vals_ndt, vals, rtol=0.1)
    assert_allclose(result_ndt.chisqr, result.chisqr, rtol=1e-5)

    # assert that parameter uncertaintes from leastsq and calculated from
    # the covariance matrix using numdifftools are very similar
    stderr = [result.params[p].stderr for p in result.params.valuesdict()]
    stderr_ndt = [result_ndt.params[p].stderr for p in result_ndt.params.valuesdict()]

    perr = np.array(stderr) / np.array(vals)
    perr_ndt = np.array(stderr_ndt) / np.array(vals_ndt)
    assert_almost_equal(perr_ndt, perr, decimal=3)

    # assert that parameter correlatations from leastsq and calculated from
    # the covariance matrix using numdifftools are very similar
    for par1 in result.var_names:
        cor = [result.params[par1].correl[par2] for par2 in
               result.params[par1].correl.keys()]
        cor_ndt = [result_ndt.params[par1].correl[par2] for par2 in
                   result_ndt.params[par1].correl.keys()]
        assert_almost_equal(cor_ndt, cor, decimal=2)


@pytest.mark.parametrize("fit_method", ['nelder', 'basinhopping', 'ampgo',
                                        'shgo', 'dual_annealing'])
def test_numdifftools_with_bounds(fit_method):
    pytest.importorskip("numdifftools")
    if fit_method in ['shgo', 'dual_annealing']:
        pytest.importorskip("scipy", minversion="1.2")

    # load data to be fitted
    data = np.loadtxt(os.path.join(os.path.dirname(__file__), '..', 'examples',
                                   'test_peak.dat'))
    x = data[:, 0]
    y = data[:, 1]

    # define the model and initialize parameters
    mod = VoigtModel()
    params = mod.guess(y, x=x)
    params['amplitude'].set(min=25, max=70)
    params['sigma'].set(max=1)
    params['center'].set(min=5, max=15)

    # do fit, here with leastsq model
    result = mod.fit(y, params, x=x, method='leastsq')

    result_ndt = mod.fit(y, params, x=x, method=fit_method)

    # assert that fit converged to the same result
    vals = [result.params[p].value for p in result.params.valuesdict()]
    vals_ndt = [result_ndt.params[p].value for p in result_ndt.params.valuesdict()]
    assert_allclose(vals_ndt, vals, rtol=0.1)
    assert_allclose(result_ndt.chisqr, result.chisqr, rtol=1e-5)

    # assert that parameter uncertaintes from leastsq and calculated from
    # the covariance matrix using numdifftools are very similar
    stderr = [result.params[p].stderr for p in result.params.valuesdict()]
    stderr_ndt = [result_ndt.params[p].stderr for p in result_ndt.params.valuesdict()]

    perr = np.array(stderr) / np.array(vals)
    perr_ndt = np.array(stderr_ndt) / np.array(vals_ndt)
    assert_almost_equal(perr_ndt, perr, decimal=3)

    # assert that parameter correlatations from leastsq and calculated from
    # the covariance matrix using numdifftools are very similar
    for par1 in result.var_names:
        cor = [result.params[par1].correl[par2] for par2 in
               result.params[par1].correl.keys()]
        cor_ndt = [result_ndt.params[par1].correl[par2] for par2 in
                   result_ndt.params[par1].correl.keys()]
        assert_almost_equal(cor_ndt, cor, decimal=2)


def test_numdifftools_calc_covar_false():
    pytest.importorskip("numdifftools")
    # load data to be fitted
    data = np.loadtxt(os.path.join(os.path.dirname(__file__), '..', 'examples',
                                   'test_peak.dat'))
    x = data[:, 0]
    y = data[:, 1]

    # define the model and initialize parameters
    mod = VoigtModel()
    params = mod.guess(y, x=x)
    params['sigma'].set(min=-np.inf)

    # do fit, with leastsq and nelder
    result = mod.fit(y, params, x=x, method='leastsq')
    result_ndt = mod.fit(y, params, x=x, method='nelder', calc_covar=False)

    # assert that fit converged to the same result
    vals = [result.params[p].value for p in result.params.valuesdict()]
    vals_ndt = [result_ndt.params[p].value for p in result_ndt.params.valuesdict()]
    assert_allclose(vals_ndt, vals, rtol=5e-3)
    assert_allclose(result_ndt.chisqr, result.chisqr)

    assert result_ndt.covar is None
    assert result_ndt.errorbars is False