summaryrefslogtreecommitdiff
path: root/mmdb2/mmdb_math_fft.cpp
blob: bf449b3d5c3d418a98b3c9a30ab1b04fce1a8a78 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
//  $Id: mmdb_math_fft.cpp $
//  =================================================================
//
//   CCP4 Coordinate Library: support of coordinate-related
//   functionality in protein crystallography applications.
//
//   Copyright (C) Eugene Krissinel 2005-2013.
//
//    This library is free software: you can redistribute it and/or
//    modify it under the terms of the GNU Lesser General Public
//    License version 3, modified in accordance with the provisions
//    of the license to address the requirements of UK law.
//
//    You should have received a copy of the modified GNU Lesser
//    General Public License along with this library. If not, copies
//    may be downloaded from http://www.ccp4.ac.uk/ccp4license.php
//
//    This program is distributed in the hope that it will be useful,
//    but WITHOUT ANY WARRANTY; without even the implied warranty of
//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//    GNU Lesser General Public License for more details.
//
//  =================================================================
//
//    12.09.13   <--  Date of Last Modification.
//                   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//  -----------------------------------------------------------------
//
//  **** Module  :   FFT <implementation>
//       ~~~~~~~~~
//  **** Functions:  mmdb::math::FFT
//       ~~~~~~~~~   mmdb::math::RealFFT
//                   mmdb::math::TwoFFT
//                   mmdb::math::Convolve
//                   mmdb::math::mConvolve
//
//  (C) E.Krissinel  2005-2013
//
//  =================================================================
//

#include <math.h>

#include "mmdb_math_fft.h"

namespace mmdb  {

  namespace math  {

    void  FFT ( rvector data, int nn, bool Forward )  {
    //  Replaces data[1:2*nn] by its discrete Fourier transform,
    //  if Forward is true; or replaces data[1:2*nn] by nn times its
    //  inverse discrete Fourier transform if Forward is false.
    //    On call,
    //  data[i], i=1,3,5 ... nn-1 are real parts of function,
    //  data[i], i=2,4,6 ... nn   are imaginary parts.
    //    nn MUST be an integer power of 2 (this is not checked for!).
    //    User should allocate data with GetVectorMemory and deallocate
    //  it with FreeVectorMemory to assure correct managing of indices
    //  1..2*nn (not 0..2*nn-1).
    //    On return,
    //  data[i], i=1,3,5 ... nn-1 are real parts, and
    //  data[i], i=2,4,6 ... nn   are imaginary parts of positive part
    //           of spectra, with frequences
    //            0,1/(nn*D),2/(nn*D) ... (nn/2-1)/(nn*D);
    //  data[nn+1] and data[nn+2] are real and imaginary parts for
    //           the frequances +/-1/(2*D)
    //  data[i], i=nn+3,nn+5,nn+7 ... 2*nn-1  are real parts, and
    //  data[i], i=nn+4,nn+6,nn+8 ... 2*nn    are imaginary parts of
    //           negative part of the spectra with frequences
    //            -(nn/2-1)/(nn*D), -(nn/2-2)/(nn*D), -1/(nn*D)
    //
    int         i,istep,j,m,mmax,n;
    realtype    tempi,tempr;
    long double theta,wi,wpi,wpr,wr,wtemp;  // this should be of
                                            // maximal precision
      n = 2*nn;
      j = 1;
      for (i=1;i<=n;i+=2)  {
        if (j>i)  {
          tempr     = data[j];
          tempi     = data[j+1];
          data[j]   = data[i];
          data[j+1] = data[i+1];
          data[i]   = tempr;
          data[i+1] = tempi;
        }
        m = n/2;
        while ((m>=2) && (j>m)) {
          j -= m;
          m /= 2;
        }
        j += m;
      }
      mmax = 2;
      while (n>mmax)  {
        istep = 2*mmax;
        theta = 2.0*Pi/mmax;
        if (!Forward)  theta = -theta;
        wpr = sin(0.5*theta);
        wpr = -2.0*wpr*wpr;
        wpi = sin(theta);
        wr  = 1.0;
        wi  = 0.0;
        for (m=1;m<=mmax;m+=2)  {
          for (i=m;i<=n;i+=istep)  {
            j     = i + mmax;
            tempr = wr*data[j]   - wi*data[j+1];
            tempi = wr*data[j+1] + wi*data[j];
            data[j]   = data[i]   - tempr;
            data[j+1] = data[i+1] - tempi;
            data[i]   = data[i]   + tempr;
            data[i+1] = data[i+1] + tempi;
          }
          wtemp = wr;
          wr    = wr*wpr - wi*wpi + wr;
          wi    = wi*wpr + wtemp*wpi + wi;
        }
        mmax = istep;
      }
    }

    void  RealFFT ( rvector data, int n, bool Forward )  {
    //    Calculates the Fourier transform of a set of n real-valued data
    //  points. Replaces this data (which is stored in array data[1:n])
    //  by the positive frequency half of its complex Fourier transform.
    //  The real-valued first and last components of the complex transform
    //  are returned as elements data[1] and data[2], respectively.
    //  n MUST be a power of 2. This routine also calculates the
    //  inverse transform of a complex data array if it is the transform
    //  of real data (Result in this case must be multiplied by 2/n).
    //    Array data should be allocated with GetVectorMemory.
    //
    int         i,i1,i2,i3,i4,n2p3;
    realtype    c1,c2,h1i,h1r,h2i,h2r;
    long double theta,wi,wpi,wpr,wr,wtemp;

      theta = 2.0*Pi/n;
      c1    = 0.5;
      if (Forward) {
        c2 = -0.5;
        FFT ( data,n/2,true );
      } else  {
        c2    = 0.5;
        theta = -theta;
      }
      wpr  = sin(0.5*theta);
      wpr  = -2.0*wpr*wpr;
      wpi  = sin(theta);
      wr   = 1.0 + wpr;
      wi   = wpi;
      n2p3 = n + 3;
      for (i=2;i<=n/4;i++)  {
        i1 = 2*i - 1;
        i2 = i1  + 1;
        i3 = n2p3 - i2;
        i4 = i3 + 1;
        h1r = c1*(data[i1] + data[i3]);
        h1i = c1*(data[i2] - data[i4]);
        h2r = -c2*(data[i2] + data[i4]);
        h2i = c2*(data[i1] - data[i3]);
        data[i1] = h1r + wr*h2r - wi*h2i;
        data[i2] = h1i + wr*h2i + wi*h2r;
        data[i3] = h1r - wr*h2r + wi*h2i;
        data[i4] = -h1i + wr*h2i + wi*h2r;
        wtemp = wr;
        wr = wr*wpr - wi*wpi + wr;
        wi = wi*wpr + wtemp*wpi + wi;
      }
      if (Forward)  {
        h1r = data[1];
        data[1] = h1r + data[2];
        data[2] = h1r - data[2];
      } else  {
        h1r = data[1];
        data[1] = c1*(h1r+data[2]);
        data[2] = c1*(h1r-data[2]);
        FFT ( data,n/2,false );
      }
    }

    void TwoFFT ( rvector data1, rvector data2,
                  rvector fft1,  rvector fft2, int n )  {
    //  Given two real input arrays data1[1:n] and data2[1:n],
    // this routine calls FFT and returns two "complex" output
    // arrays fft1[1:2*n] and fft2[1:2*n] (2*i-1 ith real,
    // 2*i ith imaginary), which contain the discrete Fourier
    // transforms of the respective data arrays.  n MUST be
    // an integer power of 2.
    int      i,j,n2, bj,bn;
    realtype h1r,h1i,h2r,h2i;
      i = 1;
      for (j=1;j<=n;j++)  {
        fft1[i++] = data1[j];
        fft1[i++] = data2[j];
      }
      FFT ( fft1,n,true );
      fft2[1] = fft1[2];    fft2[2] = 0.0;
      fft1[2] = 0.0;
      n2 = n + 2;
      for (j=2;j<=n/2+1;j++)  {
        bj = 2*j-1;    bn = 2*(n2-j)-1;
        h1r = 0.5*(fft1[bj]   + fft1[bn]);
        h1i = 0.5*(fft1[bj+1] - fft1[bn+1]);
        h2r = 0.5*(fft1[bj+1] + fft1[bn+1]);
        h2i = 0.5*(fft1[bn]   - fft1[bj]);
        fft1[bj] = h1r;    fft1[bj+1] = h1i;
        fft1[bn] = h1r;    fft1[bn+1] = -h1i;
        fft2[bj] = h2r;    fft2[bj+1] = h2i;
        fft2[bn] = h2r;    fft2[bn+1] = -h2i;
      }
    }

    void Convolve ( rvector data, int n, rvector respns, int m,
                    rvector ans,  bool Conv )  {
    //  Convolves or Deconvolves a real data set data[1:n] (including
    // any user-supplied zero padding) with a response function
    // respns[1..n], stored in wrap-around order in a real array of
    // length m<n (m should be an odd (3,5,7...) integer).  Wrap-around
    // order means that the first half of the array contains the impulse
    // response function at positive times, while the second half of
    // the array contains the impulse response function at negative
    // times, counting down from the highest element respns[m]. On
    // input Conv=true for convolution, false for deconvolution.
    // The answer is returned in the first n component of ans.
    // However, ans must be supplied in the calling program with
    // length at least 2*n, for consistency with TwoFFT.  n MUST
    // be an integer power of 2.
    //
    int      i,no2,rp,ip;
    rvector  fft;
    realtype B,D;

      GetVectorMemory ( fft,2*n,1 );
      for (i=1;i<=(m-1)/2;i++)
        respns[n+1-i] = respns[m+1-i];
      for (i=(m+3)/2;i<=n-(m-1)/2;i++)
        respns[i] = 0.0;

      TwoFFT ( data,respns,fft,ans,n );

      no2 = n/2;
      rp  = 1;   // pointer to real part
      ip  = 2;   // pointer to imaginary part
      for (i=1;i<=no2+1;i++)  {
        if (Conv) {
          B       = (fft[rp]*ans[rp] - fft[ip]*ans[ip])/no2;
          ans[ip] = (fft[ip]*ans[rp] + fft[rp]*ans[ip])/no2;
          ans[rp] = B;
        } else  {
          D = (ans[rp]*ans[rp] + ans[ip]*ans[ip])*no2;
          if (D==0.0)  {
            //  poor deconvolve at zero response
            ans[rp] = 0.0;
            ans[ip] = 0.0;
          } else  {
            B       = (fft[rp]*ans[rp] + fft[ip]*ans[ip])/D;
            ans[ip] = (fft[ip]*ans[rp] - fft[rp]*ans[ip])/D;
            ans[rp] = B;
          }
        }
        rp += 2;
        ip += 2;
      }

      ans[2] = ans[2*no2+1];
      FreeVectorMemory ( fft,1 );

      RealFFT ( ans,n,false );

    }


    void mConvolve ( rvector data, int n, int m )  {
    //
    //   Replaces array data[0..n-1] with the result of m recursive
    // convolutions (m>1) defined as
    //
    //      data_m = data (*) data_{m-1}
    //
    // where data_m is the result of mth convolution, data_0=data.
    // The definition of the convolution is
    //
    //      [a (*) b]_i = Sum_j { a_j * b_{i-j} }
    //
    //   On input, data[] is considered as containing the signal
    // sampled at both positive and negative times in the wrap-around
    // order, that is
    //
    //    data[i], 0<=i<n/2   signal sampled at times  dt*i
    //    data[i], n/2<=i<n   signal sampled at times -dt*(n-i)
    //
    // and the same wrap-around order is used to interprete the output
    // data. This means that if only m positive sampling times are
    // used, the length of data must be at least n=2*m, the rest being
    // padded with zeroes.
    //
    //   The number of sampling nodes n *must* be an integer power of
    // two, i.e. 2,4,8,16 ... .
    //
    realtype R,G,phi,B,m2,n2,d1;
    int      i,m1;

      if (m<1)  return;

      RealFFT ( data-1,n,true );

      m1 = m+1;
      m2 = m1/2.0;
      n2 = 2.0/n;
      d1 = data[1];
      for (i=0;i<=n;i+=2)  {
        if (i<n)  {
          R = data[i];
          if (i>1) G = data[i+1];
              else G = 0.0;
        } else  {
          R = d1;
          G = 0.0;
        }
        phi = atan2(G,R) * m1;
        B   = pow(R*R+G*G,m2);
        R   = B*cos(phi);
        G   = B*sin(phi);
        if (i<n)  {
          data[i]   = R*n2;
          data[i+1] = G*n2;
        } else
          data[1] = R*n2;
      }

      RealFFT ( data-1,n,false );

    }

  }  // namespace math

}  // namespace mmdb