summaryrefslogtreecommitdiff
path: root/runtime/nyquist.lsp
blob: 1e00d4e6707b0352358c1672a36ba69b6126075c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
;;;
;;;   ###########################################################
;;;   ### NYQUIST-- A Language for Composition and Synthesis. ###
;;;   ###                                                     ###
;;;   ### Copyright (c) 1994-2006 by Roger B. Dannenberg      ###
;;;   ###########################################################
;;;
(load "fileio.lsp" :verbose NIL)

(prog ()
   (setq lppp -12.0) (setq lpp -9.0)  (setq lp -6.0)    (setq lmp -3.0)
   (setq lfff 12.0) (setq lff 9.0)  (setq lf 6.0)    (setq lmf 3.0)
   (setq dB0 1.00)  (setq dB1 1.122) (setq dB10 3.1623)

   (setq s 0.25) (setq sd 0.375) (setq st (/ 0.5 3.0))
   (setq i 0.5)  (setq id 0.75)  (setq it (* st 2.0))
   (setq q 1.0)  (setq qd 1.5)   (setq qt (* st 4.0))
   (setq h 2.0)  (setq hd 3.0)   (setq ht (* st 8.0))
   (setq w 4.0)  (setq wd 6.0)   (setq wt (* st 16.0))
)

(init-global *A4-Hertz* 440.0)

; next pitch, for initializations below
; 
(defun np () (incf nyq:next-pitch))

(defun set-pitch-names ()
   (setq no-pitch 116.0)
   ; note: 58.0 is A4 - (C0 - 1) = 69 - (12 - 1)
   (setf nyq:next-pitch (- (hz-to-step *A4-Hertz*) 58.0))

   (setf nyq:pitch-names
    '(c0 (cs0 df0) d0 (ds0 ef0) e0 f0 (fs0 gf0) g0 (gs0 af0) a0
      (as0 bf0) b0
      c1 (cs1 df1) d1 (ds1 ef1) e1 f1 (fs1 gf1) g1 (gs1 af1) a1
      (as1 bf1) b1
      c2 (cs2 df2) d2 (ds2 ef2) e2 f2 (fs2 gf2) g2 (gs2 af2) a2
      (as2 bf2) b2
      c3 (cs3 df3) d3 (ds3 ef3) e3 f3 (fs3 gf3) g3 (gs3 af3) a3
      (as3 bf3) b3
      c4 (cs4 df4) d4 (ds4 ef4) e4 f4 (fs4 gf4) g4 (gs4 af4) a4
      (as4 bf4) b4
      c5 (cs5 df5) d5 (ds5 ef5) e5 f5 (fs5 gf5) g5 (gs5 af5) a5
      (as5 bf5) b5
      c6 (cs6 df6) d6 (ds6 ef6) e6 f6 (fs6 gf6) g6 (gs6 af6) a6
      (as6 bf6) b6
      c7 (cs7 df7) d7 (ds7 ef7) e7 f7 (fs7 gf7) g7 (gs7 af7) a7
      (as7 bf7) b7))

   (dolist (p nyq:pitch-names)
     (cond ((atom p) (set p (np)))
       (t (let ((pitch (np)))
        (dolist (s p) (set s pitch)))))))


(set-pitch-names)

(init-global *default-sound-srate* 44100.0)
(init-global *default-control-srate* 2205.0)

(setf *environment-variables*
      '(*WARP* *SUSTAIN* *START* *LOUD* *TRANSPOSE* 
    *STOP* *CONTROL-SRATE* *SOUND-SRATE*))

(setfn environment-time car)
(setfn environment-stretch cadr)

; ENVIRONMENT-MAP - map virtual time using an environment
;
;(defun environment-map (env tim)
;  (+ (environment-time env)
;     (* (environment-stretch env) tim)))


(defun nyq:the-environment () (mapcar 'eval *environment-variables*))


;; GLOBAL ENVIRONMENT VARIABLES and their startup values:
(defun nyq:environment-init ()
  (setq *WARP*		'(0.0 1.0 nil))
  (setq *LOUD*	0.0)   ; now in dB
  (setq *TRANSPOSE*	0.0)
  (setq *SUSTAIN*	        1.0)
  (setq *START*       MIN-START-TIME)
  (setq *STOP*        MAX-STOP-TIME)
  (setq *CONTROL-SRATE*  *DEFAULT-CONTROL-SRATE*)
  (setq *SOUND-SRATE* *DEFAULT-SOUND-SRATE*)
  t)				; return nothing in particular

(nyq:environment-init)

(defun get-duration (dur)
  (let ((duration 
         (- (local-to-global (* (get-sustain) dur))
            (setf *rslt* (local-to-global 0)))))
     (cond ((minusp duration)
            (error
"duration is less than zero: perhaps a warp or stretch
is ill-formed. Nyquist cannot continue because synthesis
functions assume durations are always positive.")))
     duration))


(defun get-loud ()
  (cond ((numberp *loud*) *loud*)
    ((soundp *loud*)
     (sref *loud* 0))
    (t
     (error (format t "*LOUD* should be a number or sound: ~A" *LOUD*)))))


(defun get-sustain ()
  (cond ((numberp *SUSTAIN*) *SUSTAIN*)
    ((soundp *SUSTAIN*)
     ;(display "get-sustain: lookup " (local-to-global 0) 0))
     (sref *SUSTAIN* 0))
    (t
     (error (format t "*SUSTAIN* should be a number or sound: ~A" *SUSTAIN*)))))


(defun get-tempo ()
  (slope (snd-inverse (get-warp) (local-to-global 0)
              *control-srate*)))

(defun get-transpose ()
  (cond ((numberp *TRANSPOSE*) *TRANSPOSE*)
    ((soundp *TRANSPOSE*)
     ; (display "get-transpose: lookup " 0)
     ; (format t "samples: ~A~%" (snd-samples *TRANSPOSE* 100))
     (sref *TRANSPOSE* 0))
    (t
     (error (format t "*TRANSPOSE* should be a number or sound: ~A" *TRANSPOSE*)))))


(defun get-warp ()
  (let ((f (warp-function *WARP*)))
    (cond ((null f) (error "Null warp function"))
    (t
     (shift-time (scale-srate f (/ (warp-stretch *WARP*)))
             (- (warp-time *WARP*)))))))


;;;;;;;;;;;;;;;;;;;;;;
;; OSCILATORS
;;;;;;;;;;;;;;;;;;;;;;

(defun build-harmonic (n table-size) (snd-sine 0 n table-size 1))

(setf *SINE-TABLE* (list (build-harmonic 1 2048)
             (hz-to-step 1.0)
             T))
(setf *TABLE* *SINE-TABLE*)


;; AMOSC
;;
(defun amosc (pitch modulation &optional (sound *table*) (phase 0.0))
  (let ((modulation-srate (snd-srate modulation))
    (hz (step-to-hz (+ pitch (get-transpose)))))
    (cond ((> *SOUND-SRATE* modulation-srate)
       (setf modulation (snd-up *SOUND-SRATE* modulation)))
      ((< *SOUND-SRATE* modulation-srate)
       (format t "Warning: down-sampling AM modulation in amosc~%")
       (setf modulation (snd-down *SOUND-SRATE* modulation))))
    (cond ((> hz (/ *SOUND-SRATE* 2))
       (format t "Warning: amosc frequency (~A hz) will alias at current sample rate (~A hz).\n"
           hz *SOUND-SRATE*)))
    (scale-db (get-loud)
      (snd-amosc
    (car sound)	; samples for table
    (cadr sound)	; step represented by table
    *SOUND-SRATE*	; output sample rate
    hz		;  output hz
    (local-to-global 0)	; starting time
    modulation	; modulation
    phase))))	; phase


;; FMOSC
;;
;; modulation rate must be less than or equal to sound-srate, so
;; force resampling and issue a warning if necessary. snd-fmosc can
;; handle upsampling cases internally.
;;
(defun fmosc (pitch modulation &optional (sound *table*) (phase 0.0))
  (let ((modulation-srate (snd-srate modulation))
        (hz (step-to-hz (+ pitch (get-transpose)))))
    (cond ((< *SOUND-SRATE* modulation-srate)
       (format t "Warning: down-sampling FM modulation in fmosc~%")
       (setf modulation (snd-down *SOUND-SRATE* modulation))))
    (cond ((> hz (/ *SOUND-SRATE* 2))
       (format t "Warning: fmosc nominal frequency (~A hz) will alias at current sample rate (~A hz).\n"
           hz *SOUND-SRATE*)))
    (scale-db (get-loud)
      (snd-fmosc 
        (car sound)		; samples for table
        (cadr sound)		; step represented by table
        *SOUND-SRATE*		; output sample rate
        hz			;  output hz
        (local-to-global 0)	; starting time
        modulation		; modulation
        phase))))		; phase


;; FMFB
;;
;; this code is based on FMOSC above
;;
(defun fmfb (pitch index &optional dur)
 (let ((hz (step-to-hz (+ pitch (get-transpose)))))
   (cond ((> hz (/ *SOUND-SRATE* 2))
          (format "Warning: fmfb nominal frequency (~A hz) will alias at current sample rate (~A hz).~%"
                  hz *SOUND-SRATE*)))
   (setf dur (get-duration dur))
   (cond ((soundp index) (ny:fmfbv hz index))
          (t
           (scale-db (get-loud)
                     (snd-fmfb (local-to-global 0) 
                               hz *SOUND-SRATE* index dur))))))

;; private variable index version of fmfb
(defun ny:fmfbv (hz index)
  (let ((modulation-srate (snd-srate index)))
    (cond ((< *SOUND-SRATE* modulation-srate)
           (format t "Warning: down-sampling FM modulation in fmfb~%")
           (setf index (snd-down *SOUND-SRATE* index))))
    (scale-db (get-loud)
              (snd-fmfbv (local-to-global 0) hz *SOUND-SRATE* index))))


;; BUZZ
;;
;; (ARGUMENTS ("long" "n") ("rate_type" "sr") ("double" "hz")
;;            ("time_type" "t0") ("sound_type" "s_fm"))
;; 
(defun buzz (n pitch modulation)
  (let ((modulation-srate (snd-srate modulation))
        (hz (step-to-hz (+ pitch (get-transpose)))))
    (cond ((< *SOUND-SRATE* modulation-srate)
           (format t "Warning: down-sampling modulation in buzz~%")
           (setf modulation (snd-down *SOUND-SRATE* modulation))))
    (cond ((> hz (/ *SOUND-SRATE* 2))
           (format t "Warning: buzz nominal frequency (~A hz) will alias at current sample rate (~A hz).\n"
                   hz *SOUND-SRATE*)))
    (setf n (max n 1)) ; avoid divide by zero problem
    (scale-db (get-loud)
              (snd-buzz n                   ; number of harmonics
                        *SOUND-SRATE*       ; output sample rate
                        hz                  ; output hz
                        (local-to-global 0) ; starting time
                        modulation))))      ; freq. modulation
                        

;; (HZOSC hz [table [phase]])
;;
;; similar to FMOSC, but without "carrier" frequency parameter
;; also, hz may be a scalar or a sound
;;
(defun hzosc (hz &optional (sound *table*) (phase 0.0))
  (let (hz-srate)
    (cond ((numberp hz)
           (osc (hz-to-step hz) 1.0 sound phase))
          (t
           (setf hz-srate (snd-srate hz))
           (cond ((< *SOUND-SRATE* hz-srate)
                  (format t "Warning: down-sampling hz in hzosc~%")
                  (setf hz (snd-down *SOUND-SRATE* hz))))
           (scale-db (get-loud)
                     (snd-fmosc (car sound) ; samples for table
                                (cadr sound) ; step repr. by table
                                *SOUND-SRATE* ; output sample rate
                                0.0 ; dummy carrier
                                (local-to-global 0) ; starting time
                                hz phase))))))


;; (SIOSC-BREAKPOINTS tab0 t1 tab1 ... tn tabn)
;;   converts times to sample numbers
;; NOTE: time-warping the spectral envelope seems
;; like the wrong thing to do (wouldn't it be better
;; to warp the parameters that control the spectra,
;; or don't warp at all?). Nominally, a note should
;; have a "score" or local time duration equal to the
;; SUSTAIN environment variable. (When sustain is 1.0
;; and no time-warping is in effect, the duration is 1).
;; So, scale all times by
;;		(local-to-global (get-sustain))
;; so that if the final time tn = 1.0, we get a nominal
;; length note.

(defun siosc-breakpoints (breakpoints)
  (display "siosc-breakpoints" breakpoints)
  (prog (sample-count result (last-count 0) time-factor)
    (setf time-factor
      (- (local-to-global (get-sustain))
         (local-to-global 0.0)))
    (setf time-factor (* time-factor *SOUND-SRATE*))
    (cond ((and (listp breakpoints)
        (cdr breakpoints)
        (cddr breakpoints)))
      (t (error "SIOSC table list must have at least 3 elements")))
loop
    (cond ((and (listp breakpoints)
           (soundp (car breakpoints)))
       (push (car breakpoints) result)
       (setf breakpoints (cdr breakpoints)))
      (t
       (error "SIOSC expecting SOUND in table list")))
    (cond ((and breakpoints
        (listp breakpoints)
        (numberp (car breakpoints)))
       (setf sample-count (truncate
        (+ 0.5 (* time-factor (car breakpoints)))))
       (cond ((< sample-count last-count)
          (setf sample-count (1+ last-count))))
       (push sample-count result)
       (setf last-count sample-count)
       (setf breakpoints (cdr breakpoints))
       (cond (breakpoints
          (go loop))))
      (breakpoints
       (error "SIOSC expecting number (time) in table list")))
    (setf result (reverse result))
    (display "siosc-breakpoints" result)
    (return result)))

;; SIOSC -- spectral interpolation oscillator
;;
;; modulation rate must be less than or equal to sound-srate, so
;; force resampling and issue a warning if necessary. snd-fmosc can
;; handle upsampling cases internally.
;;
(defun siosc (pitch modulation breakpoints)
  (let ((modulation-srate (snd-srate modulation))
    (hz (step-to-hz (+ pitch (get-transpose)))))
    (cond ((< *SOUND-SRATE* modulation-srate)
       (format t "Warning: down-sampling FM modulation in siosc~%")
       (setf modulation (snd-down *SOUND-SRATE* modulation))))
    (cond ((> hz (/ *SOUND-SRATE* 2))
       (format t "Warning: siosc nominal frequency (~A hz) will alias at current sample rate (~A hz).\n"
           hz *SOUND-SRATE*)))
     (scale-db (get-loud)
      (snd-siosc 
    (siosc-breakpoints breakpoints)	; tables
    *SOUND-SRATE*		; output sample rate
    hz			;  output hz
    (local-to-global 0)	; starting time
    modulation))))		; modulation


;; LFO -- freq &optional duration sound phase)
;;
;; Default duration is 1.0 sec, default sound is *TABLE*, 
;; default phase is 0.0.
;;
(defun lfo (freq &optional (duration 1.0)
         (sound *SINE-TABLE*) (phase 0.0))
  (let ((d (get-duration duration)))
    (if (minusp d) (setf d 0))
    (cond ((> freq (/ *CONTROL-SRATE* 2))
           (format t "Warning: lfo frequency (~A hz) will alias at current control rate (~A hz).\n"
                     freq *CONTROL-SRATE*)))
    (set-logical-stop
      (snd-osc
        (car sound)		; samples for table
        (cadr sound)		; step represented by table
        *CONTROL-SRATE*		; output sample rate
        freq			; output hz
        *rslt*			; starting time
        d			; duration
        phase)		        ; phase
      duration)))


;; FMLFO -- like LFO but uses frequency modulation
;;
(defun fmlfo (freq &optional (sound *SINE-TABLE*) (phase 0.0))
  (let ()
    (cond ((numberp freq)
           (lfo freq 1.0 sound phase))
          ((soundp freq)
           (cond ((> (snd-srate freq) *CONTROL-SRATE*)
                  (setf freq (force-srate *CONTROL-SRATE* freq))))
           (snd-fmosc (car sound) (cadr sound) *CONTROL-SRATE* 0.0 
                      (local-to-global 0) freq phase))
          (t
           (error "frequency must be a number or sound")))))


;; OSC - table lookup oscillator
;;
(defun osc (pitch &optional (duration 1.0) 
            (sound *TABLE*) (phase 0.0))
  (let ((d  (get-duration duration))
        (hz (step-to-hz (+ pitch (get-transpose)))))
    ;(display "osc" *warp* global-start global-stop actual-dur  
    ;         (get-transpose))
    (cond ((> hz (/ *SOUND-SRATE* 2))
           (format t "Warning: osc frequency (~A hz) will alias at current sample rate (~A hz).\n"
                     hz *SOUND-SRATE*)))
    (set-logical-stop
      (scale-db (get-loud)
        (snd-osc 
          (car sound)		; samples for table
          (cadr sound)		; step represented by table
          *SOUND-SRATE*		; output sample rate
          hz			;  output hz
          *rslt*		; starting time
          d			; duration
          phase))               ; phase
      duration)))


;; PARTIAL -- sine osc with built-in envelope scaling
;;
(defun partial (steps env)
  (let ((hz (step-to-hz (+ steps (get-transpose)))))
    (cond ((> hz (/ *sound-srate* 2))
           (format t "Warning: partial frequency (~A hz) will alias at current sample rate (~A hz).\n"
                     hz *sound-srate*)))
    (scale-db (get-loud)
      (snd-partial *sound-srate* hz
                   (force-srate *sound-srate* env)))))


;; SAMPLER -- simple attack + sustain sampler
;;
(defun sampler (pitch modulation 
                &optional (sample *table*) (npoints 2))
  (let ((samp (car sample))
    (samp-pitch (cadr sample))
    (samp-loop-start (caddr sample))
    (hz (step-to-hz (+ pitch (get-transpose)))))
    ; make a waveform table look like a sample with no attack:
    (cond ((not (numberp samp-loop-start))
           (setf samp-loop-start 0.0)))
    (cond ((> hz (/ *SOUND-SRATE* 2))
           (format t "Warning: sampler nominal frequency (~A hz) will alias at current sample rate (~A hz).\n"
                     hz *SOUND-SRATE*)))
    (scale-db (get-loud)
       (snd-sampler 
        samp		; samples for table
        samp-pitch	; step represented by table
        samp-loop-start ; time to start loop
        *SOUND-SRATE*	; output sample rate
        hz		;  output hz
        (local-to-global 0)	; starting time
        modulation	; modulation
        npoints))))    	; number of interpolation points


;; SINE -- simple sine oscillator
;;
(defun sine (steps &optional (duration 1.0))
  (let ((hz (step-to-hz (+ steps (get-transpose))))
        (d (get-duration duration)))
    (cond ((> hz (/ *SOUND-SRATE* 2))
           (format t "Warning: sine frequency (~A hz) will alias at current sample rate (~A hz).\n"
                     hz *SOUND-SRATE*)))
    (set-logical-stop
      (scale-db (get-loud)
        (snd-sine *rslt* hz *sound-srate* d))
      duration)))


;; PLUCK
;;
;; (ARGUMENTS ("double" "sr") ("double" "hz") ("time_type" "t0") 
;;            ("time_type" "d") ("double" "final_amp"))
;;
(defun pluck (steps &optional (duration 1.0) (final-amp 0.001))
  (let ((hz (step-to-hz (+ steps (get-transpose))))
        (d (get-duration duration)))
    (cond ((> hz (/ *SOUND-SRATE* 2))
           (format t "Warning: pluck frequency (~A hz) will alias at current sample rate (~A hz).\n"
                     hz *SOUND-SRATE*)))
    (set-logical-stop
      (scale-db (get-loud)
        (snd-pluck *SOUND-SRATE* hz *rslt* d final-amp))
      duration)))


;; abs-env -- restore the standard environment
;;
(defmacro abs-env (s)
  `(progv '(*WARP* *LOUD* *TRANSPOSE* *SUSTAIN* 
            *START* *STOP*
            *CONTROL-SRATE* *SOUND-SRATE*)
          (list '(0.0 1.0 NIL) 0.0 0.0 1.0
           MIN-START-TIME MAX-STOP-TIME
           *DEFAULT-CONTROL-SRATE* *DEFAULT-SOUND-SRATE*)
     ,s))


; nyq:add2 - add two arguments
; 
(defun nyq:add2 (s1 s2)
  (cond ((and (arrayp s1) (not (arrayp s2)))
         (setf s2 (vector s2)))
        ((and (arrayp s2) (not (arrayp s1)))
         (setf s1 (vector s1))))
  (cond ((arrayp s1)
         (sum-of-arrays s1 s2))
        (t
         (nyq:add-2-sounds s1 s2))))


; (NYQ:ADD-2-SOUNDS S1 S2) - add two sound (or number) arguments
; 
(defun nyq:add-2-sounds (s1 s2)
  (cond ((numberp s1)
         (cond ((numberp s2)
        (+ s1 s2))
          (t
           (snd-offset s2 s1))))
    ((numberp s2)
     (snd-offset s1 s2))
    (t
     (let ((s1sr (snd-srate s1))
           (s2sr (snd-srate s2)))
;    (display "nyq:add-2-sounds" s1sr s2sr)
       (cond ((> s1sr s2sr)
              (snd-add s1 (snd-up s1sr s2)))
             ((< s1sr s2sr)
              (snd-add (snd-up s2sr s1) s2))
             (t
              (snd-add s1 s2)))))))


(defmacro at (x s)
 `(progv '(*WARP*) (list (list (+ (warp-time *WARP*) 
                  (* (warp-stretch *WARP*) ,x))
                   (warp-stretch *WARP*)
                   (warp-function *WARP*)))
      ,s))


;; (AT-ABS t behavior) evaluate behavior at global time t
;;
;; *WARP* is the triple (d s f) denoting the function f(st+d),
;; a mapping from local to global time.
;; We want (d' s f) such that f(s*0 + d') = t
;; (Note that we keep the same s and f, and only change the offset.
;; To eliminate the warp and stretch use "(abs-env (at t behavior))")
;; Applying the inverse of f, d' = f-1(t), or (sref (snd-inverse f ...) t)
;; Rather than invert the entire function just to evaluate at one point,
;; we use SREF-INVERSE to find d'.
;;
(defmacro at-abs (x s)
 `(progv '(*WARP*)
         (if (warp-function *WARP*)
             (list (list (sref-inverse (warp-function *WARP*) ,x)
                         (warp-stretch *WARP*)
                         (warp-function *WARP*)))
             (list (list ,x (warp-stretch *WARP*) NIL)))
    ;; issue warning if sound starts in the past
    (check-t0 ,s ',s)))

(defun check-t0 (s src)
  (let (flag t0 (now (local-to-global 0)))
    (cond ((arrayp s)
           (dotimes (i (length s))
             (setf t0 (snd-t0 (aref s i))))
             (if (< t0 now) (setf flag t0)))
          (t
           (setf t0 (snd-t0 s))
           (if (< t0 now) (setf flag t0))))
    (if flag
        (format t "Warning: cannot go back in time to ~A, sound came from ~A~%"
                  flag src))
    ; (display "check-t0" t0 now src)
    ; return s whether or not warning was reported
    s))

;; (CLIP S1 VALUE) - clip maximum amplitude to value
;
(defun clip (x v)
  (cond ((numberp x)
     (max (min x v) (- v)))
    ((arrayp x)
     (let* ((len (length x))
        (result (make-array len)))
        (dotimes (i len)
        (setf (aref result i) 
              (snd-clip (aref x i) v)))
        result))
    (t
     (snd-clip x v))))


;; (NYQ:COERCE-TO S1 S2) - expand sound s1 to type of s2
; 
(defun nyq:coerce-to (s1 s2)
  (cond ((or (soundp s1) (numberp s1))
         (cond ((arrayp s2)
                (nyq:sound-to-array s1 (length s2)))
               (t s1)))
         (t s1)))


(defmacro continuous-control-warp (beh)
  `(snd-compose (warp-abs nil ,beh)
        (snd-inverse (get-warp)
         (local-to-global 0) *control-srate*)))

(defmacro continuous-sound-warp (beh)
  `(snd-compose (warp-abs nil ,beh)
        (snd-inverse (get-warp)
         (local-to-global 0) *sound-srate*)))


(defmacro control-srate-abs (r s)
  `(progv '(*CONTROL-SRATE*) (list ,r)
      ,s))

; db = 20log(ratio)
; db = 20 ln(ratio)/ln(10)
; db/20 = ln(ratio)/ln(10)
; db ln(10)/20 = ln(ratio)
; e^(db ln(10)/20) = ratio
;
(setf ln10over20 (/ (log 10.0) 20))

(defun db-to-linear (x) 
  (cond ((numberp x)
     (exp (* ln10over20 x)))
    ((arrayp x)
     (let* ((len (length x))
        (result (make-array len)))
        (dotimes (i len)
        (setf (aref result i) 
              (snd-exp (snd-scale ln10over20 (aref x i)))))
        result))
    (t
     (snd-exp (snd-scale ln10over20 x)))))


(defun linear-to-db (x) 
  (cond ((numberp x)
     (/ (log (float x)) ln10over20))
    ((arrayp x)
     (let* ((len (length x))
        (result (make-array len)))
        (dotimes (i len)
        (setf (aref result i) 
              (snd-scale (/ 1.0 ln10over20) (snd-log (aref x i)))))
        result))
    (t
     (snd-scale (/ 1.0 ln10over20) (snd-log x)))))


(cond ((not (fboundp 'scalar-step-to-hz))
       (setfn scalar-step-to-hz step-to-hz)
       (setfn scalar-hz-to-step hz-to-step)))


(defun step-to-hz (x)
  (cond ((numberp x)
         (scalar-step-to-hz x))
        ((arrayp x)
         (let* ((len (length x))
                (result (make-array len)))
           (dotimes (i len)
             (setf (aref result i) (step-to-hz (aref x i))))
           result))
        (t
         (s-exp (snd-offset (snd-scale 0.0577622650466621 x) 
                            2.1011784386926213)))))

(defun hz-to-step (x)
  (cond ((numberp x)
         (scalar-hz-to-step x))
        ((arrayp x)
         (let* ((len (length x))
                (result (make-array len)))
           (dotimes (i len)
             (setf (aref result i) (hz-to-step (aref x i))))
           result))
        (t
         (snd-scale 17.312340490667565
                    (snd-offset (s-log x) -2.1011784386926213))))) 


; sref - access a sound at a given time point
;    note that the time is transformed to global
(defun sref (sound point)
  (snd-sref sound (local-to-global point)))


; extract - start is stretched and shifted as is stop
;  result is shifted to start at local time zero
(defun extract (start stop sound)
  (snd-xform sound (snd-srate sound) (local-to-global 0) 
         (local-to-global start) (local-to-global stop) 1.0))

(defun extract-abs (start stop sound)
  (snd-xform sound (snd-srate sound) 0 start stop 1.0))
     

(defun local-to-global (local-time)
  (let ((d (warp-time *WARP*))
    (s (warp-stretch *WARP*))
    (w (warp-function *WARP*))
    global-time)
    (setf global-time (+ (* s local-time) d))
    (if w (snd-sref w global-time) global-time)))


(defmacro loud (x s)
 `(progv '(*LOUD*) (list (sum *LOUD* ,x))
     ,s))


(defmacro loud-abs (x s)
 `(progv '(*LOUD*) (list ,x)
     ,s))

(defun must-be-sound (x)
 (cond ((soundp x) x)
       (t
    (error "SOUND type expected" x))))

;; SCALE-DB -- same as scale, but argument is in db
;;
(defun scale-db (factor sound)
  (scale (db-to-linear factor) sound))

(defun set-control-srate (rate)
  (setf *default-control-srate* (float rate))
  (nyq:environment-init))

(defun set-sound-srate (rate) 
  (setf *default-sound-srate* (float rate))
  (nyq:environment-init))


; s-plot -- compute and write n data points for plotting
;
; dur is how many seconds of sound to plot. If necessary, cut the
;     sample rate to allow plotting dur seconds
; n is the number of points to plot. If there are more than n points,
;     cut the sample rate. If there are fewer than n samples, just
;     plot the points that exist.
;
(defun s-plot (snd &optional (dur 2.0) (n 1000))
  (prog* ((sr (snd-srate snd))
          (t0 (snd-t0 snd))
          (filename (soundfilename *default-plot-file*))
          (s snd) ;; s is either snd or resampled copy of snd
          (outf (open filename :direction :output)) ;; for plot data
          (maximum -1000000.0) ;; maximum amplitude
          (minimum  1000000.0) ;; minimum amplitude
          actual-dur ;; is the actual-duration of snd
          sample-count ;; is how many samples to get from s
          period  ;; is the period of samples to be plotted
          truncation-flag     ;; true if we didn't get whole sound
          points) ;; is array of samples
     ;; If we need more than n samples to get dur seconds, resample
     (cond ((< n (* dur sr))
            (setf s (force-srate (/ (float n) dur) snd))))
     ;; Get samples from the signal
     (setf points (snd-samples s (1+ n)))
     ;; If we got fewer than n points, we can at least estimate the
     ;; actual duration (we might not know exactly if we use a lowered
     ;; sample rate). If the actual sample rate was lowered to avoid
     ;; getting more than n samples, we can now raise the sample rate
     ;; based on our estimate of the actual sample duration.
     (display "test" (length points) n)
     (cond ((< (length points) n)
            ;; sound is shorter than dur, estimate actual length
            (setf actual-dur (/ (length points) (snd-srate s)))
            (setf sample-count (round (min n (* actual-dur sr))))
            (cond ((< n (* actual-dur sr))
                   (setf s (force-srate (/ (float n) actual-dur) snd)))
                  (t ;; we can use original signal
                   (setf s snd)))
            (setf points (snd-samples s sample-count))
            ;; due to rounding, need to recalculate exact count
            (setf sample-count (length points)))
           ((= (length points) n)
            (setf actual-dur dur)
            (setf sample-count n))
           (t ;; greater than n points, so we must have truncated sound
            (setf actual-dur dur)
            (setf sample-count n)
            (setf truncation-flag t)))
     ;; actual-dur is the duration of the plot
     ;; sample-count is how many samples we have
     (setf period (/ 1.0 (snd-srate s)))
     (cond ((null outf)
            (format t "s-plot: could not open ~A!~%" filename)
            (return nil)))
    (format t "s-plot: writing ~A ... ~%" filename)
    (cond (truncation-flag
           (format t "        !!TRUNCATING SOUND TO ~As\n" actual-dur)))
    (cond ((/= (snd-srate s) (snd-srate snd))
           (format t "        !!RESAMPLING SOUND FROM ~A to ~Ahz\n"
                   (snd-srate snd) (snd-srate s))))
    (cond (truncation-flag
           (format t "        Plotting ~As, actual sound duration is greater\n"
                     actual-dur))
          (t
           (format t "        Sound duration is ~As~%" actual-dur)))
    (dotimes (i sample-count)
      (setf maximum (max maximum (aref points i)))
      (setf minimum (min minimum (aref points i)))
      (format outf "~A ~A~%" (+ t0 (* i period)) (aref points i)))
    (close outf)
    (format t "        Wrote ~A points from ~As to ~As~%" 
              sample-count t0 (+ t0 actual-dur))
    (format t "        Range of values ~A to ~A\n" minimum maximum)
    (cond ((or (< minimum -1) (> maximum 1))
           (format t "        !!SIGNAL EXCEEDS +/-1~%")))))


; run something like this to plot the points:
; graph < points.dat | plot -Ttek


(defmacro sound-srate-abs (r s)
  `(progv '(*SOUND-SRATE*) (list ,r)
      ,s))


(defmacro stretch (x s)
 `(progv '(*WARP*) (list (list (warp-time *WARP*) 
                   (* (warp-stretch *WARP*) ,x)
                   (warp-function *WARP*)))
     (if (minusp (warp-stretch *WARP*))
         (break "Negative stretch factor is not allowed"))
             ,s))

         
(defmacro stretch-abs (x s)
 `(progv '(*WARP*) (list (list (local-to-global 0)
                   ,x
                   nil))
     (if (minusp (warp-stretch *WARP*))
         (break "Negative stretch factor is not allowed"))
             ,s))


(defmacro sustain (x s)
 `(progv '(*SUSTAIN*) (list (prod *SUSTAIN* ,x))
      ,s))


(defmacro sustain-abs (x s)
 `(progv '(*SUSTAIN*) (list ,x)
      ,s))


;; (WARP-FUNCTION *WARP*) - extracts function field of warp triple
;;
(setfn warp-function caddr)


;; (WARP-STRETCH *WARP*) - extracts stretch field of warp triple
;;
(setfn warp-stretch cadr)


;; (WARP-TIME *WARP*) - extracts time field of warp triple
;;
(setfn warp-time car)


(defmacro transpose (x s)
 `(progv '(*TRANSPOSE*) (list (sum *TRANSPOSE* ,x))
      ,s))


(defmacro transpose-abs (x s)
 `(progv '(*TRANSPOSE*) (list ,x)
      ,s))


;; COMPUTE-DEFAULT-SOUND-FILE -- construct and set *default-sound-file*
;;
;; (this is harder than it might seem because the default place for
;;  sound files is in /tmp, which is shared by users, so we'd like to
;;  use a user-specific name to avoid collisions)
;;
(defun compute-default-sound-file () 
  (let (inf user extension)
      ; the reason for the user name is that if UserA creates a temp file,
      ; then UserB will not be able to overwrite it. The user name is a
      ; way to give each user a unique temp file name. Note that we don't
      ; want each session to generate a unique name because Nyquist doesn't
      ; delete the sound file at the end of the session.
   (setf user (get-user))
#|
   (cond ((null user)           
       (format t 
"Please type your user-id so that I can construct a default 
sound-file name.  To avoid this message in the future, add
this to your .login file:
    setenv USER <your id here>
or add this to your init.lsp file:
    (setf *default-sound-file* \"<your filename here>\")
    (setf *default-sf-dir* \"<full pathname of desired directory here>\")

Your id please: ")
       (setf user (read))))
|#
    ; now compute the extension based on *default-sf-format*
    (cond ((= *default-sf-format* snd-head-AIFF)
           (setf extension ".aif"))
          ((= *default-sf-format* snd-head-Wave)
           (setf extension ".wav"))
          (t
           (setf extension ".snd")))
    (setf *default-sound-file* 
      (strcat (string-downcase user) "-temp" extension))
    (format t "Default sound file is ~A.~%" *default-sound-file*)))


;; CONTROL-WARP -- apply a warp function to a control function
;; 
(defun control-warp (warp-fn control &optional wrate)
  (cond (wrate
     (snd-resamplev control *control-srate*
            (snd-inverse warp-fn (local-to-global 0) wrate)))
    (t
     (snd-compose control
              (snd-inverse warp-fn (local-to-global 0) *control-srate*)))))


;; (cue sound)
;;    Cues the given sound; that is, it applies the current *WARP*, *LOUD*,
;; *START*, and *STOP* values to the argument.  The logical start time is at
;; local time 0.
(defun cue (sound)
  (cond ((arrayp sound)
     (let* ((len (length sound))
        (result (make-array len)))
        (dotimes (i len)
        (setf (aref result i)
              (cue-sound (aref sound i))))
        result))
    (t
     (cue-sound sound))))

(defun cue-sound (sound)
  (snd-xform sound
         (snd-srate sound)
         (local-to-global 0) *START* *STOP* (db-to-linear (get-loud))))

;; (sound sound)
;;    Same as (cue sound), except also warps the sound.
;; Note that the *WARP* can change the pitch of the
;; sound as a result of resampling.
;; Here's the derivation for the warping code:
;; *WARP* is a triple: (d s f) which denotes that the warp from local to
;; global time is: f(st+d)
;; We need to compose sound with the inverse of this to get a function
;; of global time
;; Let f-1 be the inverse of f.  Then the inverse of f(st+d) is 
;; (f-1(t) - d)/s
;; The composition gives us: (snd-compose sound (f-1(t) - d)/s)
;; Eliminate the 1/s term by changing the sample rate of sound:
;;  = (snd-compose (snd-scale-srate sound s) (f-1(t) - d))
;; Eliminate the -d term by shifting f before taking the inverse:
;;  = (snd-compose (scale-srate sound s) ((inverse f) - d))
;;  = (snd-compose (scale-srate sound s) (inverse f(t + d)))
;;  = (snd-compose (scale-srate sound s) (inverse (shift f -d)))
;; snd-inverse takes a time and sample rate.  For time, use zero.
;; The sample rate of inverse determines the final sample rate of
;; this function, so use *SOUND-SRATE*:
;;  = (snd-compose (scale-srate sound s) (snd-inverse (shift-time f (- d))
;;                                              0 *SOUND-SRATE*))
;;
(defun nyq:sound (sound)
   (cond ((null (warp-function *WARP*))
      (snd-xform sound (/ (snd-srate sound) (warp-stretch *WARP*))
             (local-to-global 0)
             *START* *STOP* (db-to-linear (get-loud))))
     (t
      (snd-compose (scale-srate sound (warp-stretch *WARP*))
               (snd-inverse (shift-time (warp-function *WARP*)
                        (- (warp-time *WARP*)))
                    0 *SOUND-SRATE*)))))

(defun nyq:sound-of-array (sound)
  (let* ((n (length sound))
         (s (make-array n)))
    (dotimes (i n)
      (setf (aref s i) (nyq:sound (aref sound i))))
    s))


(defun sound (sound)
  (cond ((arrayp sound)
     (nyq:sound-of-array sound))
    (t
     (nyq:sound sound))))


;; (SCALE-SRATE SOUND SCALE)
;; multiplies the sample rate by scale
(defun scale-srate (sound scale)
  (let ((new-srate (* scale (snd-srate sound))))
    (snd-xform sound new-srate (snd-time sound) 
           MIN-START-TIME MAX-STOP-TIME 1.0)))


;; (SHIFT-TIME SOUND SHIFT)
;; shift the time of a function by SHIFT, i.e. if SOUND is f(t),
;; then (shift-time SOUND SHIFT) is f(t - SHIFT).  Note that if
;; you look at plots, the shifted sound will move *right* when SHIFT
;; is positive.  
(defun shift-time (sound shift)
  (snd-xform sound (snd-srate sound) (+ (snd-t0 sound) shift)
         MIN-START-TIME MAX-STOP-TIME 1.0))


;; (NYQ:SOUND-TO-ARRAY SOUND N) - duplicate SOUND to N channels
;;
(defun nyq:sound-to-array (sound n)
  (let ((result (make-array n)))
    (dotimes (i n)
      (setf (aref result i) sound))
    result))


;; (control sound)
;;    Same as (sound sound), except this is used for control signals.  
;;    This code is identical to sound.
(setfn control sound)


;; (cue-file string)
;;    Loads a sound file with the given name, returning a sound which is
;; transformed to the current environment.
(defun cue-file (name)
    (cue (force-srate *SOUND-SRATE* (s-read name))))


;; (env t1 t2 t4 l1 l2 l3 &optional duration)
;; Creates a 4-phase envelope.
;;	tN is the duration of phase N, and lN is the final level of
;;	phase N.  t3 is implied by the duration, and l4 is 0.0.
;;	If dur is not supplied, then 1.0 is assumed.  The envelope
;;	duration is the product of dur, *STRETCH*, and *SUSTAIN*.  If 
;;	t1 + t2 + 2ms + t4 > duration, then a two-phase envelope is
;;	substituted that has an attack/release time ratio = t1/t4.
;;	The sample rate of the returned sound is *CONTROL-SRATE*.
;;
;; Time transformation: the envelope is not warped; the start time and
;; stop times are warped to global time.  Then the value of *SUSTAIN* at
;; the begining of the envelope is used to determing absolute duration.
;; Since PWL is ultimately called to create the envelope, we must use
;; ABS-ENV to prevent any further transforms inside PWL.  We use
;; (AT global-start ...) inside ABS-ENV so that the final result has 
;; the proper starting time.
;;
(defun env (t1 t2 t4 l1 l2 l3 &optional (duration 1.0))
  (let (actual-dur min-dur ratio t3
    (actual-dur (get-duration duration)))
    (setf min-dur (+ t1 t2 t4 0.002))
    (cond ((< actual-dur min-dur)
       (setf ratio (/ t1 (float (+ t1 t4))))
       (setf t1 (* ratio actual-dur))
       (setf t2 (- actual-dur t1))
       (setf t3 0.0)
       (setf t4 0.0)
       (setf l2 0.0)
       (setf l3 0.0))
      (t
       (setf t3 (- actual-dur t1 t2 t4))))
    (set-logical-stop
      (abs-env (at *rslt*
                   (pwl t1 l1 (+ t1 t2) l2 (- actual-dur t4) l3 actual-dur)))
      duration)))


(defun gate (sound lookahead risetime falltime floor threshold)
    (cond ((< lookahead risetime)
           (break "lookahead must be greater than risetime in GATE function"))
          ((or (< risetime 0) (< falltime 0) (< floor 0))
           (break "risetime, falltime, and floor must all be positive in GATE function"))
          (t
           (let ((s
              (snd-gate (seq (cue sound) (abs-env (s-rest lookahead)))
                    lookahead risetime falltime floor threshold)))
             (snd-xform s (snd-srate s) (snd-t0 sound) 
            (+ (snd-t0 sound) lookahead) MAX-STOP-TIME 1.0)))))


;; (osc-note step &optional duration env sust volume sound)
;;   Creates a note using table-lookup osc, but with an envelope.
;; The ENV parameter may be a parameter list for the env function,
;; or it may be a sound.
;;
(defun osc-note (pitch &optional (duration 1.0) 
               (env-spec '(0.02 0.1 0.3 1.0 .8 .7))
               (volume 0.0)
               (table *TABLE*))
  (set-logical-stop
   (mult (loud volume (osc pitch duration table))
     (if (listp env-spec)
       (apply 'env env-spec)
       env-spec))
   duration))


;; force-srate -- resample snd if necessary to get sample rate
;
(defun force-srate (sr snd)
  (cond ((not (numberp sr))
     (error "force-srate: SR should be a number")))
  (cond ((arrayp snd)
     (let* ((len (length snd))
        (result (make-array len)))
       (dotimes (i len)
            (setf (aref result i) 
              (force-srate sr (aref snd i))))
       result))
    (t
     (let ((snd-sr (snd-srate snd)))
       (cond ((> sr snd-sr) (snd-up sr snd))
         ((< sr snd-sr) (snd-down sr snd))
         (t snd))))))


(defun force-srates (srs snd)
  (cond ((and (numberp srs) (soundp snd))
     (force-srate srs snd))
    ((and (arrayp srs) (arrayp snd))
     (let* ((len (length snd))
        (result (make-array len)))
       (dotimes (i len)
            (setf (aref result i) 
              (force-srate (aref srs i) (aref snd i))))
       result))
    (t (error "arguments not compatible"))))


;; (breakpoints-convert (t1 x1 t2 x2 ... tn) t0)
;;   converts times to sample numbers and scales amplitudes
;;   t0 is the global (after warping) start time
;;
;; NOTE: there were some stack overflow problems with the original
;; recursive version (in comments now), so it was rewritten as an
;; iteration.
;;
(defun breakpoints-convert (list t0)
  (prog (sample-count result sust (last-count 0))
    (setf sust (get-sustain))
 loop
    (setf sample-count 
      (truncate (+ 0.5 (* (- (local-to-global (* (car list) sust)) t0)
                 *control-srate*))))
    ; now we have a new sample count to put into result list
    ; make sure result is non-decreasing
    (cond ((< sample-count last-count)
       (setf sample-count last-count)))
    (setf last-count sample-count)
    (push sample-count result)
    (cond ((cdr list)
       (setf list (cdr list))
       (push (float (car list)) result)))
    (setf list (cdr list))
    (cond (list
       (go loop)))
    (return (reverse result))))

      
 
;; (pwl t1 l1 t2 l2 ... tn)
;;   Creates a piece-wise linear envelope from breakpoint data.
;;
(defun pwl (&rest breakpoints) (pwl-list breakpoints))

(defun pwlr (&rest breakpoints) (pwlr-list breakpoints))

;; (breakpoints-relative list)
;;  converts list, which has the form (value dur value dur value ...)
;;  into the form (value time value time value ...)
;;  the list may have an even or odd length
;;
(defun breakpoints-relative (breakpoints)
  (prog (result (sum 0.0))
 loop
     (cond (breakpoints
        (push (car breakpoints) result)
        (setf breakpoints (cdr breakpoints))
        (cond (breakpoints
           (setf sum (+ sum (car breakpoints)))
           (push sum result)
           (setf breakpoints (cdr breakpoints))
           (go loop)))))
     (return (reverse result))))


(defun breakpoints-relative (breakpoints)
  (prog (result (sum 0.0))
 loop
    (setf sum (+ sum (car breakpoints)))
    (push sum result)
    (cond ((cdr breakpoints)
       (setf breakpoints (cdr breakpoints))
       (push (car breakpoints) result)))
    (setf breakpoints (cdr breakpoints))
    (cond (breakpoints
       (go loop)))
    (return (reverse result))))


(defun pwlr-list (breakpoints)
  (pwl-list (breakpoints-relative breakpoints)))

(defun pwl-list (breakpoints)
  (let ((t0 (local-to-global 0)))
    (snd-pwl t0 *control-srate* (breakpoints-convert breakpoints t0))))

;; (pwlv l1 t1 l2 t2 ... ln)
;; Creates a piece-wise linear envelope from breakpoint data;
;; the function initial and final values are explicit
;;
(defun pwlv (&rest breakpoints)
  ;use pwl, modify breakpoints with initial and final changes
  ;need to put initial time of 0, and final time of 0
  (pwlv-list breakpoints))

(defun pwlv-list (breakpoints)
    (pwl-list (cons 0.0 (append breakpoints '(0.0)))))

(defun pwlvr (&rest breakpoints) (pwlvr-list breakpoints))

(defun pwlvr-list (breakpoints)
  (pwlr-list (cons 0.0 (append breakpoints '(0.0)))))

(defun pwe (&rest breakpoints)
  (pwe-list breakpoints))

(defun pwe-list (breakpoints)
  (pwev-list (cons 1.0 (append breakpoints '(1.0)))))

(defun pwer (&rest breakpoints) (pwer-list breakpoints))

(defun pwer-list (breakpoints)
  (pwe-list (breakpoints-relative breakpoints)))

(defun pwev (&rest breakpoints)
  (pwev-list breakpoints))

(defun pwev-list (breakpoints)
  (let ((lis (breakpoints-log breakpoints)))
    (s-exp (pwl-list lis))))

(defun pwevr (&rest breakpoints) (pwevr-list breakpoints))

(defun pwevr-list (breakpoints)
  (pwev-list (cdr (breakpoints-relative (cons 0.0 breakpoints)))))


(defun breakpoints-log (breakpoints)
  (prog ((result '(0.0)) val tim)
loop
    (cond (breakpoints
       (setf val (float (car breakpoints)))
       (setf breakpoints (cdr breakpoints))
       (cond (breakpoints
          (setf tim (car breakpoints))
          (setf breakpoints (cdr breakpoints))))
       (setf result (cons tim (cons (log val) result)))
       (cond ((null breakpoints)
          (return (reverse result))))
       (go loop))
      (t
       (error "Expected odd number of elements in breakpoint list")))))


;; SOUND-WARP -- apply warp function to a sound
;; 
(defun sound-warp (warp-fn signal &optional wrate)
  (cond (wrate
     (snd-resamplev signal *sound-srate*
            (snd-inverse warp-fn (local-to-global 0) wrate)))
    (t
     (snd-compose signal 
              (snd-inverse warp-fn (local-to-global 0) *sound-srate*)))))

(defun snd-extent (sound maxsamples) 
    (list (snd-t0 sound)
      (+ (snd-t0 sound) (/ (snd-length sound maxsamples)
                   (snd-srate sound)))))

(setfn snd-flatten snd-length)

;; (maketable sound)
;;   Creates a table for osc, lfo, etc. by assuming that the samples
;;   in sound represent one period.  The sound must start at time 0.

(defun maketable (sound)
  (list sound
    (hz-to-step 
     (/ 1.0
        (cadr (snd-extent sound 1000000))))
    T))


;(defmacro endTime (sound)
;   `(get-logical-stop ,sound))


;(defmacro beginTime (sound)
;   `(car (snd-extent ,sound)))


; simple stereo pan: as where goes from 0 to 1, sound
; is linearly panned from left to right
;
(defun pan (sound where)
  (vector (mult sound (sum 1 (mult -1 where)))
      (mult sound where)))


(defun prod (&rest snds)
  (cond ((null snds)
     (snd-zero (local-to-global 0) *sound-srate*))
    ((null (cdr snds))
     (car snds))
    ((null (cddr snds))
     (nyq:prod2 (car snds) (cadr snds)))
    (t
     (nyq:prod2 (car snds) (apply #'prod (cdr snds))))))

(setfn mult prod)


;; (NYQ:PROD-OF-ARRAYS S1 S2) - form pairwise products
;
(defun nyq:prod-of-arrays (s1 s2)
  (let* ((n (length s1))
     (p (make-array n)))
    (cond ((/= n (length s2))
       (error "unequal number of channels in prod")))
    (dotimes (i n)
      (setf (aref p i) (nyq:prod2 (aref s1 i) (aref s2 i))))
    p))


; nyq:prod2 - multiply two arguments
; 
(defun nyq:prod2 (s1 s2)
  (setf s1 (nyq:coerce-to s1 s2))
  (setf s2 (nyq:coerce-to s2 s1))
  (cond ((arrayp s1)
     (nyq:prod-of-arrays s1 s2))
    (t
     (nyq:prod-2-sounds s1 s2))))


; (PROD-2-SOUNDS S1 S2) - multiply two sound arguments
; 
(defun nyq:prod-2-sounds (s1 s2)
  (cond ((numberp s1)
     (cond ((numberp s2)
        (* s1 s2))
           (t
        (scale s1 s2))))
    ((numberp s2)
     (scale s2 s1))
    (t
     (let ((s1sr (snd-srate s1))
           (s2sr (snd-srate s2)))
;    (display "nyq:prod-2-sounds" s1sr s2sr)
        (cond ((> s1sr s2sr)
           (snd-prod s1 (snd-up s1sr s2)))
          ((< s1sr s2sr)
           (snd-prod (snd-up s2sr s1) s2))
          (t
           (snd-prod s1 s2)))))))


;; RAMP -- linear ramp from 0 to x
;;
(defun ramp (&optional (x 1))
  (let* ((duration (get-duration x)))
    (set-logical-stop
      (warp-abs nil
        (at *rslt*
          (sustain-abs 1
                       (pwl duration 1 (+ duration (/ *control-srate*))))))
      x)))


(defun resample (snd rate)
  (cond ((arrayp snd)
     (let* ((len (length snd))
        (result (make-array len)))
        (dotimes (i len)
        (setf (aref result i)
              (snd-resample (aref snd i) rate)))
        result))
    (t
     (snd-resample snd rate))))


(defun scale (amt snd)
  (cond ((arrayp snd)
     (let* ((len (length snd))
        (result (make-array len)))
        (dotimes (i len)
        (setf (aref result i) (snd-scale amt (aref snd i))))
        result))
    (t
     (snd-scale amt snd))))


(setfn s-print-tree snd-print-tree)

;; (PEAK sound-expression number-of-samples) - find peak amplitude
;
; NOTE: this used to be called s-max
;
(defmacro peak (expression maxlen)
   `(snd-max ',expression ,maxlen))

;; (S-MAX S1 S2) - return maximum of S1, S2
;
(defun s-max (s1 s2)
  (setf s1 (nyq:coerce-to s1 s2))
  (setf s2 (nyq:coerce-to s2 s1))
  (cond ((arrayp s1)
     (nyq:max-of-arrays s1 s2))
    (t
     (nyq:max-2-sounds s1 s2))))

(defun nyq:max-of-arrays (s1 s2)
  (let* ((n (length s1))
     (p (make-array n)))
    (cond ((/= n (length s2))
       (error "unequal number of channels in max")))
    (dotimes (i n)
      (setf (aref p i) (s-max (aref s1 i) (aref s2 i))))
    p))

(defun nyq:max-2-sounds (s1 s2)
  (cond ((numberp s1)
         (cond ((numberp s2)
                (max s1 s2))
               (t
                (snd-maxv s2
                          (snd-const s1 (local-to-global 0.0)
                                     (snd-srate s2) (get-duration 1.0))))))
        ((numberp s2)
         (snd-maxv s1 (snd-const s2 (local-to-global 0.0)
                   (snd-srate s1) (get-duration 1.0))))
        (t
         (let ((s1sr (snd-srate s1))
               (s2sr (snd-srate s2)))
            (cond ((> s1sr s2sr)
                   (snd-maxv s1 (snd-up s1sr s2)))
                  ((< s1sr s2sr)
                   (snd-maxv (snd-up s2sr s1) s2))
                  (t
                   (snd-maxv s1 s2)))))))

(defun s-min (s1 s2)
  (setf s1 (nyq:coerce-to s1 s2))
  (setf s2 (nyq:coerce-to s2 s1))
  (cond ((arrayp s1)
         (nyq:min-of-arrays s1 s2))
        (t
         (nyq:min-2-sounds s1 s2))))

(defun nyq:min-of-arrays (s1 s2)
  (let* ((n (length s1))
     (p (make-array n)))
    (cond ((/= n (length s2))
       (error "unequal number of channels in max")))
    (dotimes (i n)
      (setf (aref p i) (s-min (aref s1 i) (aref s2 i))))
    p))

(defun nyq:min-2-sounds (s1 s2)
  (cond ((numberp s1)
         (cond ((numberp s2)
                (min s1 s2))
               (t
                (snd-minv s2
                          (snd-const s1 (local-to-global 0.0)
                                     (snd-srate s2) (get-duration 1.0))))))
        ((numberp s2)
         (snd-minv s1 (snd-const s2 (local-to-global 0.0)
                   (snd-srate s1) (get-duration 1.0))))
       (t
        (let ((s1sr (snd-srate s1))
              (s2sr (snd-srate s2)))
          (cond ((> s1sr s2sr)
                 (snd-minv s1 (snd-up s1sr s2)))
                ((< s1sr s2sr)
                 (snd-minv (snd-up s2sr s1) s2))
               (t
                (snd-minv s1 s2)))))))

(defun snd-minv (s1 s2)
  (scale -1.0 (snd-maxv (scale -1.0 s1) (scale -1.0 s2))))

; sequence macros SEQ and SEQREP are now in seq.lsp:
; 
(load "seq" :verbose NIL)


; set-logical-stop - modify the sound and return it, time is shifted and
;			 stretched
(defun set-logical-stop (snd tim)
  (let ((d (local-to-global tim)))
    (multichan-expand #'set-logical-stop-abs snd d)))


; set-logical-stop-abs - modify the sound and return it
; 
(defun set-logical-stop-abs (snd tim) (snd-set-logical-stop snd tim) snd)


(defmacro simrep (pair sound)
  `(let (_snds)
     (dotimes ,pair (push ,sound _snds))
     (sim-list _snds)))

(defun sim (&rest snds)
  (sim-list snds))

(setfn sum sim)

(defun sim-list (snds)
  (cond ((null snds)
         (snd-zero (local-to-global 0) *sound-srate*))
        ((null (cdr snds))
         (car snds))
        ((null (cddr snds))
         (nyq:add2 (car snds) (cadr snds)))
        (t
         (nyq:add2 (car snds) (sim-list (cdr snds))))))


(defun s-rest (&optional (dur 1.0) (chans 1))
  (let ((d (get-duration dur))
        r)
    (cond ((= chans 1)
           (snd-const 0.0 *rslt* *SOUND-SRATE* d))
          (t
           (setf r (make-array chans))
           (dotimes (i chans)
             (setf (aref r i) (snd-const 0.0 *rslt* *SOUND-SRATE* d)))
           r))))


(defun tempo (warpfn)
  (slope (snd-inverse warpfn (local-to-global 0) *control-srate*)))



;; (SUM-OF-ARRAYS S1 S2) - add multichannel sounds
; 
; result has as many channels the largest of s1, s2
; corresponding channels are added, extras are copied
; 
(defun sum-of-arrays (s1 s2)
  (let* ((n1 (length s1))
     (n2 (length s2))
     (n (min n1 n2))
     (m (max n1 n2))
     (result (make-array m))
     (big-s (if (> n1 n2) s1 s2)))
    
    (dotimes (i n)
      (setf (aref result i) (nyq:add-2-sounds (aref s1 i) (aref s2 i))))
    (dotimes (i (- m n))
      (setf (aref result (+ n i)) (aref big-s (+ n i))))
    result))


;; (WARP fn behavior) - warp behavior according to fn
;;
;; fn is a map from behavior time to local time, and *WARP* expresses
;; a map from local to global time.
;; To produce a new *WARP* for the environment, we want to compose the
;; effect of the current *WARP* with fn.  Note that fn is also a behavior.
;; It is evaluated in the current environment first, then it is used to
;; modify the environment seen by behavior.
;; *WARP* is a triple: (d s f) denoting the function f(st+d).
;; Letting g represent the new warp function fn, we want f(st+d) o g, or
;; f(s*g(t) + d) in the form (d' s' f').
;; Let's do this one step at a time:
;; f(s*g(t) + d) = f(scale(s, g) + d)
;;               = (shift f -d)(scale(s, g))
;;               = (snd-compose (shift-time f (- d)) (scale s g))
;;
;; If f in NIL, it denotes the identity mapping f(t)=t, so we can
;; simplify:
;; f(scale(s, g) + d) = scale(s, g) + d
;;                    = (snd-offset (scale s g) d)

(defmacro warp (x s)
 `(progv '(*WARP*) (list 
            (list 0.0 1.0
              (if (warp-function *WARP*)
                  (snd-compose (shift-time (warp-function *WARP*) 
                               (- (warp-time *WARP*)))
                       (scale (warp-stretch *WARP*) 
                          (must-be-sound ,x)))
                  (snd-offset (scale (warp-stretch *WARP*) 
                         (must-be-sound ,x))
                      (warp-time *WARP*)))))
     ,s))


(defmacro warp-abs (x s)
 `(progv '(*WARP*) (list (list 0.0 1.0 ,x))
     ,s))


;; MULTICHAN-EXPAND -- construct and return array according to args
;;
;; arrays are used in Nyquist to represent multiple channels
;; if any argument is an array, make sure all array arguments
;; have the same length.  Then, construct a multichannel result
;; by calling fn once for each channel.  The arguments passed to
;; fn for the i'th channel are either the i'th element of an array
;; argument, or just a copy of a non-array argument.
;;
(defun multichan-expand (fn &rest args)
  (let (len newlen result) ; len is a flag as well as a count
    (dolist (a args)
        (cond ((arrayp a)
           (setf newlen (length a))
           (cond ((and len (/= len newlen))
              (error (format nil "In ~A, two arguments are vectors of differing length." fn))))
           (setf len newlen))))
    (cond (len
       (setf result (make-array len))
       ; for each channel, call fn with args
       (dotimes (i len)
           (setf (aref result i)
             (apply fn
            (mapcar
                #'(lambda (a)
                ; take i'th entry or replicate:
                (cond ((arrayp a) (aref a i))
                      (t a)))
                args))))
       result)
      (t
       (apply fn args)))))


;; SELECT-IMPLEMENTATION-? -- apply an implementation according to args
;;
;; There is a different Nyquist primitive for each combination of 
;; constant (NUMBERP) and time-variable (SOUNDP) arguments.  E.g.
;; a filter with fixed parameters differs from one with varying
;; parameters.  In most cases, the user just calls one function,
;; and the arguments are decoded here:


;; SELECT-IMPLEMENTATION-1-1 -- 1 sound arg, 1 selector
;;
(defun select-implementation-1-1 (fns snd sel1 &rest others)
  (if (numberp sel1)
    (apply (aref fns 0) (cons snd (cons sel1 others)))
    (apply (aref fns 1) (cons snd (cons sel1 others)))))


;; SELECT-IMPLEMENTATION-1-2 -- 1 sound arg, 2 selectors
;;
;; choose implemenation according to args 2 and 3
;;
(defun select-implementation-1-2 (fns snd sel1 sel2 &rest others)
  (if (numberp sel2)
    (if (numberp sel1)
      (apply (aref fns 0) (cons snd (cons sel1 (cons sel2 others))))
      (apply (aref fns 1) (cons snd (cons sel1 (cons sel2 others)))))
    (if (numberp sel1)
      (apply (aref fns 2) (cons snd (cons sel1 (cons sel2 others))))
      (apply (aref fns 3) (cons snd (cons sel1 (cons sel2 others)))))))

;; some waveforms

(setf *saw-table* (pwlvr -1 1 1))		; eh, creepy way to get 2205 samples.
(setf *saw-table* (list *saw-table* (hz-to-step 1) T))

(setf *tri-table* (pwlvr -1 0.5 1 0.5 -1))
(setf *tri-table* (list *tri-table* (hz-to-step 1) T))

(setf *id-shape*  (pwlvr -1 2 1 .01 1))	            ; identity
(setf *step-shape* (seq (const -1) (const 1 1.01)))  ; hard step at zero

(defun exp-dec (hold halfdec length)
  (let* ((target (expt 0.5 (/ length halfdec)))
     (expenv (pwev 1 hold 1 length target)))
    expenv)
)

;;; operations on sounds

(defun diff (x &optional y)
  (cond (y (sum x (prod -1 y)))
        (t (prod -1 x))))

; compare-shape is a shape table -- origin 1.
(defun compare (x y &optional (compare-shape *step-shape*))
  (let ((xydiff (diff x y)))
    (shape xydiff compare-shape 1)))

;;; oscs

(defun osc-saw (hz) (hzosc hz *saw-table*))
(defun osc-tri (hz) (hzosc hz *tri-table*))

; bias is [-1, 1] pulse width.  sound or scalar.
; hz is a sound or scalar
(defun osc-pulse (hz bias &optional (compare-shape *step-shape*))
  (compare bias (osc-tri hz) compare-shape))
  
;;; tapped delays

;(tapv snd offset vardelay maxdelay)
(setfn tapv snd-tapv) ;; linear interpolation
(setfn tapf snd-tapf) ;; no interpolation