summaryrefslogtreecommitdiff
path: root/inst/polygons2d/minimumCaliperDiameter.m
blob: 3cdeff10d7aa9c117e7a43a0dc6e5e3f5a165a80 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
## Copyright (C) 2004-2016 David Legland <david.legland@grignon.inra.fr>
## Copyright (C) 2004-2016 INRA - CEPIA Nantes - MIAJ (Jouy-en-Josas)
## Copyright (C) 2016 Adapted to Octave by Juan Pablo Carbajal <ajuanpi+dev@gmail.com>
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
##     1 Redistributions of source code must retain the above copyright notice,
##       this list of conditions and the following disclaimer.
##     2 Redistributions in binary form must reproduce the above copyright
##       notice, this list of conditions and the following disclaimer in the
##       documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

%MINIMUMCALIPERDIAMETER Minimum caliper diameter of a set of points
%
%   WIDTH = minimumCaliperDiameter(POINTS)
%   Computes the minimum width of a set of points. As polygons and
%   polylines are represented as point lists, this function works also for
%   polygons and polylines.
%
%   [WIDTH THETA] = minimumCaliperDiameter(POINTS)
%   Also returns the direction of minimum width. The direction corresponds
%   to the horizontal angle of the edge that minimizes the width. THETA is
%   given in radians, between 0 and PI.
%
%
%   Example
%   % Compute minimal caliper diameter, and check coords of rotated points
%   % have expected extent
%     points = randn(30, 2);
%     [width theta] = minimumCaliperDiameter(points);
%     points2 = transformPoint(points, createRotation(-theta));
%     diff = max(points2) - min(points2);
%     abs(width - diff(2)) < 1e-10
%     ans =
%         1
%
%   References
%   Algorithms use rotating caliper. Implementation was based on that of
%   Wikipedia:
%   http://en.wikipedia.org/wiki/Rotating_calipers
%
%   See also
%   polygons2d, convexHull, orientedBox

% ------
% Author: David Legland
% e-mail: david.legland@grignon.inra.fr
% Created: 2011-04-08,    using Matlab 7.9.0.529 (R2009b)
% Copyright 2011 INRA - Cepia Software Platform.

function [min_width, min_angle] = minimumCaliperDiameter(points)
  % first, compute convex hull of the polygon
  inds = convhull(points(:,1), points(:,2));
  hull = points(inds, :);

  % if first and last points are the same, remove the last one
  if inds(1) == inds(end)
      hull = hull(1:end-1, :);
  end

  % number of hull vertices
  nV = size(hull, 1);

  % default values
  rotated_angle = 0;
  min_width = inf;
  min_angle = 0;

  % avoid degenerated cases
  if nV < 3
      return;
  end

  [tmp, p_a] = min(hull(:, 2)); %#ok<ASGLU>
  [tmp, p_b] = max(hull(:, 2)); %#ok<ASGLU>

  caliper_a = [ 1 0];    % Caliper A points along the positive x-axis
  caliper_b = [-1 0];    % Caliper B points along the negative x-axis

  while rotated_angle < pi
      % compute the direction vectors corresponding to each edge
      ind_a2 = mod(p_a, nV) + 1;
      vector_a = hull(ind_a2, :) - hull(p_a, :);
      
      ind_b2 = mod(p_b, nV) + 1;
      vector_b = hull(ind_b2, :) - hull(p_b, :);
      
      % Determine the angle between each caliper and the next adjacent edge
      % in the polygon 
      angle_a = vectorAngle(caliper_a, vector_a);
      angle_b = vectorAngle(caliper_b, vector_b);
      
      % Determine the smallest of these angles
      minAngle = min(angle_a, angle_b);
      
      % Rotate the calipers by the smallest angle
      caliper_a = rotateVector(caliper_a, minAngle);
      caliper_b = rotateVector(caliper_b, minAngle);
      
      rotated_angle = rotated_angle + minAngle;
      
      % compute current width, and update opposite vertex
      if angle_a < angle_b
          line = createLine(hull(p_a, :), hull(ind_a2, :));
          width = distancePointLine(hull(p_b, :), line);
          p_a = mod(p_a, nV) + 1;
      
      else
          line = createLine(hull(p_b, :), hull(ind_b2, :));
          width = distancePointLine(hull(p_a, :), line);
          p_b = mod(p_b, nV) + 1;

      end
      
      % update minimum width and corresponding angle if needed
      if width < min_width
          min_width = width;
          min_angle = rotated_angle;
      end

  end
endfunction

%!demo
%! % Compute minimal caliper diameter, and check coords of rotated points
%! % have expected extent
%! points = randn(30, 2);
%! [width theta] = minimumCaliperDiameter(points);
%! points = transformPoint(points, createRotation(-theta));
%! points = transformPoint(points, createTranslation(-min(points)));
%! drawPoint (points);
%! hold on
%! cm = centroid (points);
%! drawEdge ([cm(1) 0], [cm(1) width], "linewidth", 3);
%! drawPolygon (convexHull(points))
%! hold off
%! axis image