summaryrefslogtreecommitdiff
path: root/inst/misc/dist/stk_filldist_exact.m
blob: b250dc188df1df536ba660ddec34c4dc2d7bb002 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
% STK_FILLDIST_EXACT computes the (exact) fill distance of a set of points
%
% CALL: FD = stk_filldist_exact(X, BOX)
%
%    computes the fill distance FD of the dataset X in the hyper-rectangle
%    BOX, using the computational-geometric algorithm of L. Pronzato and
%    W. G. Muller [1]. Recall that
%
%       D = max_{Y in BOX} min_{1 <= i <= n} norm(X(i,:) - Y),         (1)
%
%    where norm(.) denotes the Euclidean norm in R^d. Optimal designs with
%    respect to the fill distance are sometimes called "minimax" designs
%    (see, e.g., [2]).
%
% CALL: FD = stk_filldist_exact(X)
%
%    assumes that the fill distance is to be computed with respect to the
%    hyperrectangle BOX = [0; 1]^d.
%
% CALL: [FD, YMAX] = stk_filldist_exact(...)
%
%    also returns the point YMAX where the maximal distance is attained,
%    i.e., the argmax in equation (1).
%
% REFERENCES
%
%   [1] Luc Pronzato and Werner G. Muller, "Design of computer
%       experiments: space filling and beyond", Statistics and Computing,
%       22(3):681-701, 2012.
%
%   [2] Mark E. Johnson, Leslie M. Moore and Donald Ylvisaker, "Minimax
%       and maximin distance designs", Journal of Statistical Planning
%       and Inference, 26(2):131-148, 1990.
%
% See also: stk_filldist, stk_filldist_discretized, stk_dist, stk_mindist

% Copyright Notice
%
%    Copyright (C) 2018 CentraleSupelec
%    Copyright (C) 2013 SUPELEC, Guillaume Carlier & Florian Pasanisi
%
%    Authors:  Julien Bect             <julien.bect@centralesupelec.fr>
%              Florian Pasanisi        <florian.pasanisi@gmail.com>
%              and Guillaume Carlier
%
%    Maintainer: Julien Bect <julien.bect@centralesupelec.fr>
%
%    Guillaume Carlier and Florian Pasanisi wrote a first implementation
%    of the algorithm  following the paper of  Pronzato & Muller (2011),
%    which was subsequently  streamlined and adapted  to the STK toolbox
%    by Julien Bect.

% Copying Permission Statement
%
%    This file is part of
%
%            STK: a Small (Matlab/Octave) Toolbox for Kriging
%               (https://github.com/stk-kriging/stk/)
%
%    STK is free software: you can redistribute it and/or modify it under
%    the terms of the GNU General Public License as published by the Free
%    Software Foundation,  either version 3  of the License, or  (at your
%    option) any later version.
%
%    STK is distributed  in the hope that it will  be useful, but WITHOUT
%    ANY WARRANTY;  without even the implied  warranty of MERCHANTABILITY
%    or FITNESS  FOR A  PARTICULAR PURPOSE.  See  the GNU  General Public
%    License for more details.
%
%    You should  have received a copy  of the GNU  General Public License
%    along with STK.  If not, see <http://www.gnu.org/licenses/>.

function [fd, ymax] = stk_filldist_exact(x, box) %---------------------------------------

x = double(x);
[n, d] = size(x);

if nargin == 1,
    box = repmat([0; 1], 1, d);
else
    box = double(box);
end    

%--- Construct a triangulation that covers [0; 1]^d -------------------------------------

x  = add_symm(x, box); % extend using symmetries with respect to the faces

% 2013/03/13: at the present time, Octave doesn't have the 'stable' option
% (but, fortunately, we don't really care about doing a STABLE sort here...)

% remove duplicates to avoid a a warning in delaunayn()
x = unique(x, 'rows');

dt = delaunayn(x);     % Delaunay trianulation
nt = length(dt(:, 1)); % number of triangles

%--- Compute centers and radiuses -------------------------------------------------------

center   = zeros(nt, d);  % prepare for computing the centers
rsquared = zeros(nt, 1);  % prepare for computing the (squared) radiuses

for i = 1:nt,
    Z = x(dt(i, :), :);  % vertices of the simplex
    W = sum(Z.^2, 2);    % squared norms
    C = repmat(Z(1, :), d, 1) - Z(2:end, :);
    B = (W(1) - W(2:end))/2;
    center(i, :) = transpose(C\B);
    rsquared(i, 1) = sum(center(i,:).^2) + W(1) - 2 * Z(1, :) * center(i, :)';
end

%--- Find the simplices for which the center is (almost) inside the box -----------------

% enlarge box for numerical tolerance
TOLERANCE = 1e-10;
bbox = box + TOLERANCE * [-1; 1] * diff(box);

inside = true(size(center, 1), 1);
for j = 1:d,
    inside = inside & (center(:, j) >= bbox(1, j)) ...
                    & (center(:, j) <= bbox(2, j)) ;
end

%--- Grand finale -----------------------------------------------------------------------

% maximal radius for centers that are almost inside the box
[rsquared_max, idx_max] = max(rsquared .* double(inside));

% project on the box
ymax = max(min(center(idx_max, :), box(2, :)),  box(1, :));

% fill distance
fd = sqrt(rsquared_max);

% safety net
if isinf(fd) || any(isnan(ymax)),
    errmsg = 'This is surprising... How did I get here ???';
    stk_error(errmsg, 'AlgorithmFailure');
end

end % function


%%%%%%%%%%%%%%%
%   add_sym   %
%%%%%%%%%%%%%%%

function y = add_symm(x, box) %----------------------------------------------------------

[n d] = size(x);
k = 2 * d + 1;
y = repmat(x, k, 1);

for j = 1:d
    y(n*j+1:(j+1)*n, j) = 2 * box(1, j) - x(1:n, j);
    y((k-j)*n+1:(k+1-j)*n, j) = 2 * box(2, j) - x(1:n, j);
end

end % function


%%
% Check that both double-precision matrices and stk_dataframe objects are accepted

%!test
%! d = 3; x = rand(7, d); box = repmat([0; 1], 1, d);
%! fd1 = stk_filldist_exact(x, box);
%! fd2 = stk_filldist_exact(stk_dataframe(x), stk_dataframe(box));
%! assert(stk_isequal_tolabs(fd1, fd2));

%%
% One point in the middle of [0; 1]^d

%!test
%! for dim = 1:6,
%!     x = 0.5 * ones(1, dim);
%!     fd = stk_filldist_exact(x); % [0; 1]^d is the default box
%!     assert(stk_isequal_tolabs(fd, 0.5 * sqrt(dim)));
%! end

%%
% One point in the middle of [1; 2]^d

%!test
%! for dim = [1 3 7],
%!     box = repmat([1; 2], 1, dim);
%!     x = 1 + 0.5 * ones(1, dim);
%!     fd = stk_filldist_exact(x, box);
%!     assert(stk_isequal_tolabs(fd, 0.5 * sqrt(dim)));
%! end

%%
% One point at the origin, BOX = [0; 1]^d

%!test
%! for dim = [1 3 7],
%!     x = zeros(1, dim);
%!     [fd, ymax] = stk_filldist_exact(x);
%!     assert(stk_isequal_tolabs(fd, sqrt(dim)));
%!     assert(stk_isequal_tolabs(ymax, ones(1, dim)));
%! end