summaryrefslogtreecommitdiff
path: root/inst/misc/optim/@stk_optim_octavesqp/private/sqp_quadprog.m
blob: 698e52d9f946a7c3f87f044df50cf897b4bb9dcc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
% -*- texinfo -*-
% @deftypefn  {Function File} {[@var{x}, @var{obj}, @var{info}, @var{iter}, @var{nf}, @var{lambda}] =} sqp (@var{x0}, @var{phi})
% @deftypefnx {Function File} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g})
% @deftypefnx {Function File} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g}, @var{h})
% @deftypefnx {Function File} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g}, @var{h}, @var{lb}, @var{ub})
% @deftypefnx {Function File} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g}, @var{h}, @var{lb}, @var{ub}, @var{maxiter})
% @deftypefnx {Function File} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g}, @var{h}, @var{lb}, @var{ub}, @var{maxiter}, @var{tol})
% Minimize an objective function using sequential quadratic programming (SQP).
%
% Solve the nonlinear program
% @tex
% $$
% \min_x \phi (x)
% $$
% @end tex
% @ifnottex
%
% @example
% @group
% min phi (x)
%  x
% @end group
% @end example
%
% @end ifnottex
% subject to
% @tex
% $$
%  g(x) = 0 \qquad h(x) \geq 0 \qquad lb \leq x \leq ub
% $$
% @end tex
% @ifnottex
%
% @example
% @group
% g(x)  = 0
% h(x) >= 0
% lb <= x <= ub
% @end group
% @end example
%
% @end ifnottex
% @noindent
% using a sequential quadratic programming method.
%
% The first argument is the initial guess for the vector @var{x0}.
%
% The second argument is a function handle pointing to the objective function
% @var{phi}.  The objective function must accept one vector argument and
% return a scalar.
%
% The second argument may also be a 2- or 3-element cell array of function
% handles.  The first element should point to the objective function, the
% second should point to a function that computes the gradient of the
% objective function, and the third should point to a function that computes
% the Hessian of the objective function.  If the gradient function is not
% supplied, the gradient is computed by finite differences.  If the Hessian
% function is not supplied, a BFGS update formula is used to approximate the
% Hessian.
%
% When supplied, the gradient function @code{@var{phi}@{2@}} must accept one
% vector argument and return a vector.  When supplied, the Hessian function
% @code{@var{phi}@{3@}} must accept one vector argument and return a matrix.
%
% The third and fourth arguments @var{g} and @var{h} are function handles
% pointing to functions that compute the equality constraints and the
% inequality constraints, respectively.  If the problem does not have
% equality (or inequality) constraints, then use an empty matrix ([]) for
% @var{g} (or @var{h}).  When supplied, these equality and inequality
% constraint functions must accept one vector argument and return a vector.
%
% The third and fourth arguments may also be 2-element cell arrays of
% function handles.  The first element should point to the constraint
% function and the second should point to a function that computes the
% gradient of the constraint function:
% @tex
% $$
%  \Bigg( {\partial f(x) \over \partial x_1},
%         {\partial f(x) \over \partial x_2}, \ldots,
%         {\partial f(x) \over \partial x_N} \Bigg)^T
% $$
% @end tex
% @ifnottex
%
% @example
% @group
%             [ d f(x)   d f(x)        d f(x) ]
% transpose ( [ ------   -----   ...   ------ ] )
%             [  dx_1     dx_2          dx_N  ]
% @end group
% @end example
%
% @end ifnottex
% The fifth and sixth arguments, @var{lb} and @var{ub}, contain lower and
% upper bounds on @var{x}.  These must be consistent with the equality and
% inequality constraints @var{g} and @var{h}.  If the arguments are vectors
% then @var{x}(i) is bound by @var{lb}(i) and @var{ub}(i).  A bound can also
% be a scalar in which case all elements of @var{x} will share the same
% bound.  If only one bound (lb, ub) is specified then the other will
% default to (-@var{realmax}, +@var{realmax}).
%
% The seventh argument @var{maxiter} specifies the maximum number of
% iterations.  The default value is 100.
%
% The eighth argument @var{tol} specifies the tolerance for the stopping
% criteria.  The default value is @code{sqrt (eps)}.
%
% The value returned in @var{info} may be one of the following:
%
% @table @asis
% @item 101
% The algorithm terminated normally.
% All constraints meet the specified tolerance.
%
% @item 102
% The BFGS update failed.
%
% @item 103
% The maximum number of iterations was reached.
%
% @item 104
% The stepsize has become too small, i.e.,
% @tex
% $\Delta x,$
% @end tex
% @ifnottex
% delta @var{x},
% @end ifnottex
% is less than @code{@var{tol} * norm (x)}.
% @end table
%
% An example of calling @code{sqp}:
%
% @example
% function r = g (x)
%   r = [ sum(abs(x).^2)-10;
%         x(2)*x(3)-5*x(4)*x(5);
%         x(1)^3+x(2)^3+1 ];
% end % function
%
% function obj = phi (x)
%   obj = exp (prod (x)) - 0.5*(x(1)^3+x(2)^3+1)^2;
% end % function
%
% x0 = [-1.8; 1.7; 1.9; -0.8; -0.8];
%
% [x, obj, info, iter, nf, lambda] = sqp (x0, @@phi, @@g, [])
%
% x =
%
%   -1.71714
%    1.59571
%    1.82725
%   -0.76364
%   -0.76364
%
% obj = 0.053950
% info = 101
% iter = 8
% nf = 10
% lambda =
%
%   -0.0401627
%    0.0379578
%   -0.0052227
% @end example
%
% @seealso{qp}
% @end deftypefn

% Copyright Notice
%
%    Copyright (C) 2015 CentraleSupelec
%
%    Author:  Julien Bect  <julien.bect@centralesupelec.fr>
%
%    This file is based on Octave's sqp function (distributed under the
%    GPLv3 licence) with minor modifications to be usable under Matlab.
%    The original copyright notice is as follows:
%
%       Copyright (C) 2005-2015 John W. Eaton
%       Copyright (C) 2013-2015 Arun Giridhar

% Copying Permission Statement
%
%    This file is part of
%
%            STK: a Small (Matlab/Octave) Toolbox for Kriging
%               (https://github.com/stk-kriging/stk/)
%
%    STK is free software: you can redistribute it and/or modify it under
%    the terms of the GNU General Public License as published by the Free
%    Software Foundation,  either version 3  of the License, or  (at your
%    option) any later version.
%
%    STK is distributed  in the hope that it will  be useful, but WITHOUT
%    ANY WARRANTY;  without even the implied  warranty of MERCHANTABILITY
%    or FITNESS  FOR A  PARTICULAR PURPOSE.  See  the GNU  General Public
%    License for more details.
%
%    You should  have received a copy  of the GNU  General Public License
%    along with STK.  If not, see <http://www.gnu.org/licenses/>.

% Original Copying Permission Statement
%
%    This file is part of Octave.
%
%    Octave is free software; you can redistribute it and/or modify it
%    under the terms of the GNU General Public License as published by
%    the Free Software Foundation; either version 3 of the License, or (at
%    your option) any later version.
%
%    Octave is distributed in the hope that it will be useful, but
%    WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
%    General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with Octave; see the file COPYING.  If not, see
%    <http://www.gnu.org/licenses/>.

function [x, obj, info, iter, nf, lambda] = sqp_quadprog ...
    (x0, objf, cef, cif, lb, ub, maxiter, tolerance)

  globals = struct (); % data and handles, needed and changed by subfunctions

  if (nargin < 2 || nargin > 8 || nargin == 5)
    print_usage ();
  end % if

  if (~ isvector (x0))
    error ('sqp: X0 must be a vector');
  end % if
  if (size (x0, 1) == 1)
    x0 = x0';
  end % if

  have_hess = 0;
  if (iscell (objf))
    switch (numel (objf))
      case 1
        obj_fun = objf{1};
        obj_grd = @(x) fd_obj_grd (x, obj_fun);
      case 2
        obj_fun = objf{1};
        obj_grd = objf{2};
      case 3
        obj_fun = objf{1};
        obj_grd = objf{2};
        obj_hess = objf{3};
        have_hess = 1;
      otherwise
        error ('sqp: invalid objective function specification');
    end % switch
  else
    obj_fun = objf;   % No cell array, only obj_fun set
    obj_grd = @(x) fd_obj_grd (x, obj_fun);
  end % if

  ce_fun = @empty_cf;
  ce_grd = @empty_jac;
  if (nargin > 2)
    if (iscell (cef))
      switch (numel (cef))
        case 1
          ce_fun = cef{1};
          ce_grd = @(x) fd_ce_jac (x, ce_fun);
        case 2
          ce_fun = cef{1};
          ce_grd = cef{2};
        otherwise
          error ('sqp: invalid equality constraint function specification');
      end % switch
    elseif (~ isempty (cef))
      ce_fun = cef;   % No cell array, only constraint equality function set
      ce_grd = @(x) fd_ce_jac (x, ce_fun);
    end % if
  end % if

  ci_fun = @empty_cf;
  ci_grd = @empty_jac;
  if (nargin > 3)
    % constraint function given by user with possible gradient
    globals.cif = cif;
    % constraint function given by user without gradient
    globals.cifcn = @empty_cf;
    if (iscell (cif))
      if (~ isempty (cif))
        globals.cifcn = cif{1};
      end % if
    elseif (~ isempty (cif))
      globals.cifcn = cif;
    end % if

    if (nargin < 5 || (nargin > 5 && isempty (lb) && isempty (ub)))
      % constraint inequality function only without any bounds
      ci_grd = @(x) fd_ci_jac (x, globals.cifcn);
      if (iscell (cif))
        switch (length (cif))
          case 1
            ci_fun = cif{1};
          case 2
            ci_fun = cif{1};
            ci_grd = cif{2};
          otherwise
           error ('sqp: invalid inequality constraint function specification');
        end % switch
      elseif (~ isempty (cif))
        ci_fun = cif;   % No cell array, only constraint inequality function set
      end % if
    else
      % constraint inequality function with bounds present
      ub_idx = true (size (x0));  lb_idx = ub_idx;
      lb_grad = eye (size (x0, 1));  ub_grad = - lb_grad;
      if (isvector (lb))
        tmp_lb = lb(:);  globals.lb = tmp_lb;
        tmp_idx = (lb ~= -Inf);  lb_idx(:) = tmp_idx;
        globals.lb = globals.lb(tmp_idx, 1);
        lb_grad = lb_grad(lb_idx, :);
      elseif (isempty (lb))
        if (isa (x0, 'single'))
          tmp_lb = - realmax ('single');  globals.lb = tmp_lb;
        else
          tmp_lb = -realmax;  globals.lb = tmp_lb;
        end % if
      else
        error ('sqp: invalid lower bound');
      end % if

      if (isvector (ub))
        tmp_ub = ub(:);  globals.ub = tmp_ub;
        tmp_idx = (ub ~= Inf);  ub_idx(:) = tmp_idx;
        globals.ub = globals.ub(tmp_idx, 1);
        ub_grad = ub_grad(ub_idx, :);
      elseif (isempty (ub))
        if (isa (x0, 'single'))
          tmp_ub = realmax ('single');  globals.ub = tmp_ub;
        else
          tmp_ub = realmax;  globals.ub = tmp_ub;
        end % if
      else
        error ('sqp: invalid upper bound');
      end % if

      if (any (tmp_lb > tmp_ub))
        error ('sqp: upper bound smaller than lower bound');
      end % if
      bounds_grad = [lb_grad; ub_grad];
      ci_fun = @(x) cf_ub_lb (x, lb_idx, ub_idx, globals);
      ci_grd = @(x) cigrad_ub_lb (x, bounds_grad, globals);
    end % if

  end % if   % if (nargin > 3)

  iter_max = 100;
  if (nargin > 6 && ~ isempty (maxiter))
    if (isscalar (maxiter) && maxiter > 0 && fix (maxiter) == maxiter)
      iter_max = maxiter;
    else
      error ('sqp: invalid number of maximum iterations');
    end % if
  end % if

  tol = sqrt (eps);
  if (nargin > 7 && ~ isempty (tolerance))
    if (isscalar (tolerance) && tolerance > 0)
      tol = tolerance;
    else
      error ('sqp: invalid value for TOLERANCE');
    end % if
  end % if

  % Initialize variables for search loop
  % Seed x with initial guess and evaluate objective function, constraints,
  % and gradients at initial value x0.
  %
  % obj_fun   -- objective function
  % obj_grad  -- objective gradient
  % ce_fun    -- equality constraint functions
  % ci_fun    -- inequality constraint functions
  % A == [grad_{x_1} cx_fun, grad_{x_2} cx_fun, ..., grad_{x_n} cx_fun]^T
  x = x0;

  obj = feval (obj_fun, x0);
  globals.nfun = 1;

  c = feval (obj_grd, x0);

  % Choose an initial NxN symmetric positive definite Hessian approximation B.
  n = length (x0);
  if (have_hess)
    B = feval (obj_hess, x0);
  else
    B = eye (n, n);
  end % if

  ce = feval (ce_fun, x0);
  F = feval (ce_grd, x0);

  ci = feval (ci_fun, x0);
  C = feval (ci_grd, x0);

  A = [F; C];

  % Choose an initial lambda (x is provided by the caller).
  lambda = 100 * ones (size (A, 1), 1);

  qp_iter = 1;
  alpha = 1;

  info = 0;
  % report ();  % Called with no arguments to initialize reporting
  % report (iter, qp_iter, alpha, __sqp_nfun__, obj);

  for iter = 1:iter_max  % FIXME in Octave -> shift by one (check iter_max = 1) ???

    % Check convergence.  This is just a simple check on the first
    % order necessary conditions.
    nr_f = size (F, 1);

    lambda_e = lambda((1:nr_f)');
    lambda_i = lambda((nr_f+1:end)');

    con = [ce; ci];

    t0 = norm (c - A' * lambda);
    t1 = norm (ce);
    t2 = all (ci >= 0);
    t3 = all (lambda_i >= 0);
    t4 = norm (lambda .* con);

    % Normal convergence.  All constraints are satisfied
    % and objective has converged.
    if (t2 && t3 && max ([t0; t1; t4]) < tol)
      info = 101;
      break;
    end % if

    % Compute search direction p by solving QP.
    g = -ce;
    d = -ci;
    
    % [p, obj_qp, INFO, lambda] = qp (x, B, c, F, g, [], [], d, C, ...
    %                                 Inf (size (d)));
    
    B = 0.5 * (B + B');  % Prevents quadprog warning

    % Matlab's quadprog issues a warning when changing its default solver,
    % but we don't want to see that in the output of sqp.
    ws = warning ('off', 'all');

    try
        % Call quadprog to solve the QP subproblem
        quadprog_options = optimset ('Display', 'off');
        [p, ~, quadprog_exitflag, ~, lambda] = quadprog ...
            (B, c, -C, -d, F, g, [], [], x, quadprog_options);
    catch
        warning (ws);
        rethrow (lasterror ());
    end
    
    warning (ws);

    % Recreate a vector of Lagrange multipliers similar to qp's one
    lambda = [- lambda.eqlin; lambda.ineqlin];
    
    % VERY crude processing of quadprog_exitflag
    if quadprog_exitflag <= 0
        error ('quadprog failed to solve QP subproblem');
    end
    
    % info = INFO.info;
    %
    % % FIXME: check QP solution and attempt to recover if it has failed.
    % %        For now, just warn about possible problems.
    %
    % id = 'Octave:SQP-QP-subproblem';
    % switch (info)
    %   case 2
    %     warning (id, 'sqp: QP subproblem is non-convex and unbounded');
    %   case 3
    %     warning (id, 'sqp: QP subproblem failed to converge in %d iterations', ...
    %              INFO.solveiter);
    %   case 6
    %     warning (id, 'sqp: QP subproblem is infeasible');
    % end % switch

    % Choose mu such that p is a descent direction for the chosen
    % merit function phi.
    [x_new, alpha, obj_new, globals] = ...
        linesearch_L1 (x, p, obj_fun, obj_grd, ce_fun, ci_fun, lambda, ...
                       obj, globals);

    % Evaluate objective function, constraints, and gradients at x_new.
    c_new = feval (obj_grd, x_new);

    ce_new = feval (ce_fun, x_new);
    F_new = feval (ce_grd, x_new);

    ci_new = feval (ci_fun, x_new);
    C_new = feval (ci_grd, x_new);

    A_new = [F_new; C_new];

    % Set
    %
    % s = alpha * p
    % y = grad_x L (x_new, lambda) - grad_x L (x, lambda})

    y = c_new - c;

    if (~ isempty (A))
      t = ((A_new - A)'*lambda);
      y = y - t;
    end % if

    delx = x_new - x;

    % Check if step size has become too small (indicates lack of progress).
    if (norm (delx) < tol * norm (x))
      info = 104;
      break;
    end % if

    if (have_hess)

      B = feval (obj_hess, x);

    else
      % Update B using a quasi-Newton formula.
      delxt = delx';

      % Damped BFGS.  Or maybe we would actually want to use the Hessian
      % of the Lagrangian, computed directly?
      d1 = delxt*B*delx;

      t1 = 0.2 * d1;
      t2 = delxt*y;

      if (t2 < t1)
        theta = 0.8*d1/(d1 - t2);
      else
        theta = 1;
      end % if

      r = theta*y + (1-theta)*B*delx;

      d2 = delxt*r;

      % Check if the next BFGS update will work properly.
      % If d1 or d2 vanish, the BFGS update will fail.
      if (d1 == 0 || d2 == 0)
        info = 102;
        break;
      end % if

      B = B - B*delx*delxt*B/d1 + r*r'/d2;

    end % if

    x = x_new;

    obj = obj_new;

    c = c_new;

    ce = ce_new;
    F = F_new;

    ci = ci_new;
    C = C_new;

    A = A_new;

    % report (iter, qp_iter, alpha, __sqp_nfun__, obj);
    
  end % for

  % Check if we've spent too many iterations without converging.
  if (iter >= iter_max)
    info = 103;
  end % if

  nf = globals.nfun;

end % function


function [merit, obj, globals] = phi_L1 (obj, obj_fun, ce_fun, ci_fun, ...
                                         x, mu, globals)

  ce = feval (ce_fun, x);
  ci = feval (ci_fun, x);

  idx = ci < 0;

  con = [ce; ci(idx)];

  if (isempty (obj))
    obj = feval (obj_fun, x);
    globals.nfun = globals.nfun + 1;
  end % if

  merit = obj;
  t = norm (con, 1) / mu;

  if (~ isempty (t))
    merit = merit + t;
  end % if

end % function


function [x_new, alpha, obj, globals] = ...
      linesearch_L1 (x, p, obj_fun, obj_grd, ce_fun, ci_fun, lambda, ...
                     obj, globals)

  % Choose parameters
  %
  % eta in the range (0, 0.5)
  % tau in the range (0, 1)

  eta = 0.25;
  tau = 0.5;

  delta_bar = sqrt (eps);

  if (isempty (lambda))
    mu = 1 / delta_bar;
  else
    mu = 1 / (norm (lambda, Inf) + delta_bar);
  end % if

  alpha = 1;

  c = feval (obj_grd, x);
  ce = feval (ce_fun, x);

  [phi_x_mu, obj, globals] = phi_L1 (obj, obj_fun, ce_fun, ci_fun, x, ...
                                     mu, globals);

  D_phi_x_mu = c' * p;
  d = feval (ci_fun, x);
  % only those elements of d corresponding
  % to violated constraints should be included.
  idx = d < 0;
  t = - norm ([ce; d(idx)], 1) / mu;
  if (~ isempty (t))
    D_phi_x_mu = D_phi_x_mu + t;
  end % if

  while (1)
    [p1, obj, globals] = phi_L1 ([], obj_fun, ce_fun, ci_fun, ...
                                 x+alpha*p, mu, globals);
    p2 = phi_x_mu+eta*alpha*D_phi_x_mu;
    if (p1 > p2)
      % Reset alpha = tau_alpha * alpha for some tau_alpha in the
      % range (0, tau).
      tau_alpha = 0.9 * tau;  % ??
      alpha = tau_alpha * alpha;
    else
      break;
    end % if
  end % while

  x_new = x + alpha * p;

end % function


function grd = fdgrd (f, x)

  if (~ isempty (f))
    y0 = feval (f, x);
    nx = length (x);
    grd = zeros (nx, 1);
    deltax = sqrt (eps);
    for i = 1:nx
      t = x(i);
      x(i) = x(i) + deltax;
      grd(i) = (feval (f, x) - y0) / deltax;
      x(i) = t;
    end % for
  else
    grd = zeros (0, 1);
  end % if

end % function


function jac = fdjac (f, x)

  nx = length (x);
  if (~ isempty (f))
    y0 = feval (f, x);
    nf = length (y0);
    nx = length (x);
    jac = zeros (nf, nx);
    deltax = sqrt (eps);
    for i = 1:nx
      t = x(i);
      x(i) = x(i) + deltax;
      jac(:,i) = (feval (f, x) - y0) / deltax;
      x(i) = t;
    end % for
  else
    jac = zeros  (0, nx);
  end % if

end % function


function grd = fd_obj_grd (x, obj_fun)

  grd = fdgrd (obj_fun, x);

end % function


function res = empty_cf (x)

  res = zeros (0, 1);

end % function


function res = empty_jac (x)

  res = zeros (0, length (x));

end % function


function jac = fd_ce_jac (x, ce_fun)

  jac = fdjac (ce_fun, x);

end % function


function jac = fd_ci_jac (x, cifcn)

  % cifcn = constraint function without gradients and lb or ub
  jac = fdjac (cifcn, x);

end % function


function res = cf_ub_lb (x, lbidx, ubidx, globals)

  % combine constraint function with ub and lb
  if (isempty (globals.cifcn))
    res = [x(lbidx,1)-globals.lb; globals.ub-x(ubidx,1)];
  else
    res = [feval(globals.cifcn,x); x(lbidx,1)-globals.lb;
           globals.ub-x(ubidx,1)];
  end % if

end % function


function res = cigrad_ub_lb (x, bgrad, globals)

  cigradfcn = @(x) fd_ci_jac (x, globals.cifcn);

  if (iscell (globals.cif) && length (globals.cif) > 1)
    cigradfcn = globals.cif{2};
  end % if

  if (isempty (cigradfcn))
    res = bgrad;
  else
    res = [feval(cigradfcn,x); bgrad];
  end % if

end % function

% Utility function used to debug sqp
function report (iter, qp_iter, alpha, nfun, obj)

  if (nargin == 0)
    printf ('  Itn ItQP     Step  Nfun     Objective\n');
  else
    printf ('%5d %4d %8.1g %5d %13.6e\n', iter, qp_iter, alpha, nfun, obj);
  end % if

end % function


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Test Code

%!test if (exist ('quadprog', 'file') == 2)
%! 
%! x0 = [-1.8; 1.7; 1.9; -0.8; -0.8];
%!
%! [x, obj, info, iter, nf, lambda] = sqp_quadprog ...
%!    (x0, @sqp_quadprog_testf, @sqp_quadprog_testg, []);
%!
%! x_opt = [-1.717143501952599;
%!           1.595709610928535;
%!           1.827245880097156;
%!          -0.763643103133572;
%!          -0.763643068453300];
%!
%! obj_opt = 0.0539498477702739;
%!
%! assert (stk_isequal_tolrel (x, x_opt, 8 * sqrt (eps)));
%! assert (stk_isequal_tolrel (obj, obj_opt, sqrt (eps)));
%!
%! end

% Test input validation
%!error sqp_quadprog ()
%!error sqp_quadprog (1)
%!error sqp_quadprog (1,2,3,4,5,6,7,8,9)
%!error sqp_quadprog (1,2,3,4,5)
%!error sqp_quadprog (ones (2,2))
%!error sqp_quadprog (1, cell (4,1))
%!error sqp_quadprog (1, cell (3,1), cell (3,1))
%!error sqp_quadprog (1, cell (3,1), cell (2,1), cell (3,1))
%!error sqp_quadprog (1, cell (3,1), cell (2,1), cell (2,1), ones (2,2),[])
%!error sqp_quadprog (1, cell (3,1), cell (2,1), cell (2,1),[], ones (2,2))
%!error sqp_quadprog (1, cell (3,1), cell (2,1), cell (2,1),1,-1)
%!error sqp_quadprog (1, cell (3,1), cell (2,1), cell (2,1),[],[], ones (2,2))
%!error sqp_quadprog (1, cell (3,1), cell (2,1), cell (2,1),[],[],-1)
%!error sqp_quadprog (1, cell (3,1), cell (2,1), cell (2,1),[],[],1.5)
%!error sqp_quadprog (1, cell (3,1), cell (2,1), cell (2,1),[],[],[], ones (2,2))
%!error sqp_quadprog (1, cell (3,1), cell (2,1), cell (2,1),[],[],[],-1)