summaryrefslogtreecommitdiff
path: root/openEMS/matlab/Tutorials/MRI_LP_Birdcage.m
diff options
context:
space:
mode:
Diffstat (limited to 'openEMS/matlab/Tutorials/MRI_LP_Birdcage.m')
-rw-r--r--openEMS/matlab/Tutorials/MRI_LP_Birdcage.m320
1 files changed, 320 insertions, 0 deletions
diff --git a/openEMS/matlab/Tutorials/MRI_LP_Birdcage.m b/openEMS/matlab/Tutorials/MRI_LP_Birdcage.m
new file mode 100644
index 0000000..2434f03
--- /dev/null
+++ b/openEMS/matlab/Tutorials/MRI_LP_Birdcage.m
@@ -0,0 +1,320 @@
+%
+% Tutorials / 3T MRI Low Pass Birdcage coil
+%
+% Describtion at:
+% http://openems.de/index.php/Tutorial:_MRI_LP_Birdcage
+%
+% Estimated time to run: ~7h @ ~65MC/s
+% Memory requirement (RAM): ~ 700MB
+%
+% Tested with
+% - openEMS v0.0.33
+% - Matlab 7.12.0 (R2011a)
+%
+% (C) 2013-2015 Thorsten Liebig <thorsten.liebig@gmx.de>
+
+
+close all
+clear
+clc
+
+% simulation setup
+f0 = 128e6;
+excite.f_0 = 75e6; % excite gaussian pulse center frequency
+excite.f_c = 75e6; % excite gaussian pulse cutoff frequency
+
+postproc_only = 0; % set to 1 to perform only post processing
+GeomPlot = 1; % set to 0 to skip geometry viewer
+
+% bore setup
+Bore.rad = 320;
+Bore.length = 1600;
+
+% birdcage setup
+BC.N_rungs = 8;
+BC.rad = 120;
+BC.stripwidth = 10;
+BC.portwidth = BC.stripwidth/2;
+BC.portlength = BC.stripwidth/2;
+BC.length = 250;
+BC.cap = 2.6e-12;
+
+% feed amplitude and phase at given rungs
+BC.feed_pos = [1 3];
+BC.feed_amp = [1 -1j];
+
+%% define the human body model (virtual family)
+% set file name for human body model to create with "Convert_VF_DiscMaterial"
+% the file name should contain a full path
+body_model_file = [pwd '/Ella_centered_' num2str(f0/1e6) 'MHz.h5'];
+
+% convert only part of the model (head/shoulder section)
+body_model_range = {[],[],[-0.85 0]};
+
+body_mesh_res = 2.5; % should be something like: BC.stripwidth/4
+
+% paths to virtual family voxel models (VFVM), adept to your install!
+VF_raw_filesuffix = '/tmp/Ella_26y_V2_1mm';
+VF_mat_db_file = '/tmp/DB_h5_20120711_SEMCADv14.8.h5';
+
+% delete(body_model_file); % uncomment to delete old model if something changed
+
+% convert model (if it does not exist)
+Convert_VF_DiscMaterial(VF_raw_filesuffix, VF_mat_db_file, body_model_file, ...
+ 'Frequency', f0, 'Center', 1, ...
+ 'Range', body_model_range);
+
+% rotate model to face the nose in +y-dir, and translate
+body_model_transform = {'Rotate_X',pi,'Rotate_Z',pi, ...
+ 'Translate',[0,5,-720]};
+
+%% some internal parameter
+physical_constants % load important physical constans
+end_crit = 1e-5; %abort simulation at -50dB energy drop
+unit = 1e-3; %drawing unit used
+
+%capacity footprint is 4mm x 4mm
+lambda_min = c0/(excite.f_0+excite.f_c);
+
+% meshing options
+% desired mesh resolution
+mesh_res([1 3]) = min(15,lambda_min/20/unit);
+mesh_res(2) = body_mesh_res / BC.rad;
+
+%% setup FDTD parameter & excitation function
+FDTD = InitFDTD('CoordSystem', 1, ... %init a cylindrical FDTD setup
+ 'EndCriteria', 1e-4, ... % with an end criteria of -40dB (1e-4)
+ 'MultiGrid', '10,20',... % add two cylindrical sub-grids at a radius of 10 and 20 mm
+ 'CellConstantMaterial', 1); % assume a material is constant inside
+ % a cell (material probing in cell center)
+
+% define the excitation time-signal (unmodulated gaussian pulse)
+FDTD = SetGaussExcite(FDTD,excite.f_0,excite.f_c);
+
+% define & set boundary conditions
+% - pml in +/- z-direction
+% - boundaries in -r and +/- alpha direction disabled (full cylindrical mesh)
+% - PEC boundary in +r-direction to model bore RF shield
+FDTD = SetBoundaryCond(FDTD, [0 0 0 0 3 3]);
+
+
+%% setup CSXCAD geometry & mesh (cylindrical)
+CSX = InitCSX('CoordSystem',1);
+
+% init empty mesh structure
+mesh.r = [];
+mesh.a = [];
+mesh.z = [];
+
+%% Create metal bird cage and rung capacities
+CSX = AddMetal(CSX,'metal');
+CSX = AddLumpedElement(CSX,'caps','z','C',BC.cap);
+
+da_Strip = BC.stripwidth/BC.rad; % width of a strip in radiant
+da_Caps = BC.portwidth/BC.rad; % width of a cap/port in radiant
+da_Segs = 2*pi/BC.N_rungs; % width of a rung in radiant
+
+a_start = -pi-da_Segs/2; % starting angle
+
+w0 = 2*pi*f0;
+T0 = 1/f0;
+
+% port counter
+port_Nr = 1;
+
+a0 = a_start;
+
+for n=1:BC.N_rungs
+ start = [BC.rad a0+da_Segs/2-da_Caps/2 -0.5*BC.portlength];
+ stop = [BC.rad a0+da_Segs/2+da_Caps/2 +0.5*BC.portlength];
+ CSX = AddBox(CSX,'caps',1, start, stop);
+
+ start = [BC.rad a0+da_Segs/2-da_Caps/2 0.5*BC.length-BC.stripwidth/2-BC.portlength];
+ stop = [BC.rad a0+da_Segs/2+da_Caps/2 0.5*BC.length-BC.stripwidth/2];
+ if (~isempty(intersect(n, BC.feed_pos)) && (BC.feed_amp(port_Nr)~=0)) % active port
+ exc_amp = abs(BC.feed_amp(port_Nr));
+
+ % calculate time delay to achieve a given phase shift at f0
+ T = -angle(BC.feed_amp(port_Nr)) / w0;
+ if T<0
+ T = T + T0;
+ end
+ [CSX port{port_Nr}] = AddLumpedPort(CSX, 100, port_Nr, 50, start, stop, [0 0 1]*exc_amp, true,'Delay',T);
+
+ %increase port count
+ port_Nr = port_Nr+1;
+
+ start = [BC.rad a0+da_Segs/2-da_Strip/2 0.5*BC.length-BC.stripwidth/2-BC.portlength];
+ elseif ~isempty(intersect(n, BC.feed_pos)) % passive port
+ [CSX port{port_Nr}] = AddLumpedPort(CSX, 100, port_Nr, 50, start, stop, [0 0 1], false);
+
+ %increase port count
+ port_Nr = port_Nr+1;
+
+ start = [BC.rad a0+da_Segs/2-da_Strip/2 0.5*BC.length-BC.stripwidth/2-BC.portlength];
+ else
+ start = [BC.rad a0+da_Segs/2-da_Strip/2 0.5*BC.length];
+ end
+
+ % the start z-coordinate depends on the port (see above)
+ stop = [BC.rad a0+da_Segs/2+da_Strip/2 0.5*BC.portlength];
+ CSX = AddBox(CSX,'metal',1, start, stop);
+
+ start = [BC.rad a0+da_Segs/2-da_Strip/2 -0.5*BC.length];
+ stop = [BC.rad a0+da_Segs/2+da_Strip/2 -0.5*BC.portlength];
+ CSX = AddBox(CSX,'metal',1, start, stop);
+
+ % some additonal mesh lines
+ mesh.a = [mesh.a a0+da_Segs/2];
+
+ a0 = a0 + da_Segs;
+end
+
+% create metal top ring
+start = [BC.rad a_start -(BC.length-BC.stripwidth)/2];
+stop = [BC.rad a_start+2*pi -(BC.length+BC.stripwidth)/2];
+CSX = AddBox(CSX,'metal',1, start, stop);
+
+% create metal bottom ring
+start = [BC.rad a_start (BC.length-BC.stripwidth)/2];
+stop = [BC.rad a_start+2*pi (BC.length+BC.stripwidth)/2];
+CSX = AddBox(CSX,'metal',1, start, stop);
+
+%% create smooth mesh
+mesh = DetectEdges(CSX, mesh);
+mesh.r = [0 SmoothMeshLines([body_mesh_res*1.5 mesh.r], body_mesh_res)];
+mesh.z = SmoothMeshLines(mesh.z, body_mesh_res);
+
+mesh.r = [mesh.r Bore.rad]; %mesh lines in radial direction
+mesh.z = [-Bore.length/2 mesh.z Bore.length/2]; %mesh lines in z-direction
+
+mesh = SmoothMesh(mesh, mesh_res, 1.5);
+
+%% check the cell limit
+numCells = numel(mesh.r)*numel(mesh.a)*numel(mesh.z);
+
+%% define human body model
+CSX = AddDiscMaterial(CSX, 'body_model', 'File', body_model_file, 'Scale', 1/unit, 'Transform', body_model_transform);
+start = [mesh.r(1) mesh.a(1) mesh.z(1)];
+stop = [mesh.r(end) mesh.a(end) mesh.z(end)];
+CSX = AddBox(CSX, 'body_model', 0, start, stop);
+
+
+%% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+start = [0 mesh.a(1) -BC.length/2];
+stop = [BC.rad mesh.a(end) +BC.length/2];
+
+CSX = AddDump(CSX,'Ef','FileType',1,'DumpType',10,'DumpMode',2,'Frequency',f0);
+CSX = AddBox(CSX,'Ef',0 , start,stop);
+
+CSX = AddDump(CSX,'Hf','FileType',1,'DumpType',11,'DumpMode',2,'Frequency',f0);
+CSX = AddBox(CSX,'Hf',0 , start,stop);
+
+CSX = AddDump(CSX,'SAR','FileType',1,'DumpType',20,'DumpMode',2,'Frequency',f0);
+CSX = AddBox(CSX,'SAR',0 , start,stop);
+
+start = [0 mesh.a(1) 0];
+stop = [BC.rad mesh.a(end) 0];
+CSX = AddDump(CSX,'Ht','FileType',1,'DumpType',1,'DumpMode',2);
+CSX = AddBox(CSX,'Ht',0 , start,stop);
+
+%% finalize mesh
+% add some lines for the pml in +/- z- direction
+mesh = AddPML(mesh, [0 0 0 0 10 10], 1);
+
+% define the mesh
+CSX = DefineRectGrid(CSX, unit, mesh);
+
+%% Write file & run openEMS
+Sim_Path = ['tmp_' mfilename];
+
+if (postproc_only==0)
+ [status, message, messageid] = rmdir(Sim_Path,'s'); %delete old results
+ [status, message, messageid] = mkdir(Sim_Path); %create folder
+
+ WriteOpenEMS([Sim_Path '/BirdCage.xml'],FDTD,CSX);
+end
+
+if (GeomPlot==1)
+ CSXGeomPlot( [Sim_Path '/BirdCage.xml'] , ['--export-polydata-vtk=' Sim_Path ' --RenderDiscMaterial -v']);
+end
+
+if (postproc_only==0)
+ RunOpenEMS(Sim_Path, 'BirdCage.xml');
+end
+
+%%
+freq = linspace(excite.f_0-excite.f_c,excite.f_0+excite.f_c,201);
+port = calcPort(port, Sim_Path, freq);
+
+close all
+s11 = port{1}.uf.ref./port{1}.uf.inc;
+s22 = port{2}.uf.ref./port{2}.uf.inc;
+
+% the s-parameter may be larger than 1 (0dB) since all ports are excited
+% and do not have a perfect port isolation
+plot(freq*1e-6,20*log10(abs(s11)),'Linewidth',2)
+hold on
+grid on
+plot(freq*1e-6,20*log10(abs(s22)),'r--','Linewidth',2)
+legend('s11','s22');
+
+%% read SAR values on a xy-plane (range)
+[SAR SAR_mesh] = ReadHDF5Dump([Sim_Path '/SAR.h5'],'Range',{[],[],0},'CloseAlpha',1);
+SAR = SAR.FD.values{1};
+
+% SAR plot
+figure()
+[R A] = ndgrid(SAR_mesh.lines{1},SAR_mesh.lines{2});
+X = R.*cos(A);Y = R.*sin(A);
+colormap('hot');
+h = pcolor(X,Y,(squeeze(SAR)));
+% h = pcolor(X,Y,log10(squeeze(SAR)));
+set(h,'EdgeColor','none');
+xlabel('x -->');
+ylabel('y -->');
+title('local SAR');
+axis equal tight
+
+%% plot B1+/- on an xy-plane
+[H_field H_mesh] = ReadHDF5Dump([Sim_Path '/Hf.h5'],'Range',{[0 0.1],[],0},'CloseAlpha',1);
+% create a 2D grid to plot on
+[R A] = ndgrid(H_mesh.lines{1},H_mesh.lines{2});
+X = R.*cos(A);
+Y = R.*sin(A);
+
+% calc Bx,By (from Br and Ba), B1p, B1m
+Bx = MUE0*(H_field.FD.values{1}(:,:,:,1).*cos(A) - H_field.FD.values{1}(:,:,:,2).*sin(A));
+By = MUE0*(H_field.FD.values{1}(:,:,:,1).*sin(A) + H_field.FD.values{1}(:,:,:,2).*cos(A));
+B1p = 0.5*(Bx+1j*By);
+B1m = 0.5*(Bx-1j*By);
+
+Dump2VTK([Sim_Path '/B1p_xy.vtk'], abs(B1p), H_mesh, 'B-Field');
+Dump2VTK([Sim_Path '/B1m_xy.vtk'], abs(B1m), H_mesh, 'B-Field');
+
+maxB1 = max([abs(B1p(:)); abs(B1m(:))]);
+
+% B1+ plot
+figure()
+subplot(1,2,1);
+h = pcolor(X,Y,abs(B1p));
+set(h,'EdgeColor','none');
+xlabel('x -->');
+ylabel('y -->');
+title('B_1^+ field (dB)');
+caxis([0 maxB1]);
+axis equal tight
+
+% B1- plot
+subplot(1,2,2);
+h = pcolor(X,Y,abs(B1m));
+set(h,'EdgeColor','none');
+xlabel('x -->');
+ylabel('y -->');
+title('B_1^- field (dB)');
+caxis([0 maxB1]);
+axis equal tight
+
+%%
+ConvertHDF5_VTK([Sim_Path '/Hf.h5'],[Sim_Path '/Hf_xy'],'Range',{[],[],0},'CloseAlpha',1)
+ConvertHDF5_VTK([Sim_Path '/SAR.h5'],[Sim_Path '/SAR_xy'],'Range',{[],[],0},'CloseAlpha',1)