summaryrefslogtreecommitdiff
path: root/openEMS/matlab/Tutorials/Simple_Patch_Antenna.m
blob: 1e24c4ceba462baa1c0c1054117a1eef22d9cabb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
%% Simple Patch Antenna Tutorial
%
% Describtion at:
% <http://openems.de/index.php/Tutorial:_Simple_Patch_Antenna>
%
% Tested with
%  - Matlab 2013a / Octave 4.0
%  - openEMS v0.0.35
%
% (C) 2010-2017 Thorsten Liebig <thorsten.liebig@uni-due.de>
%%

close all
clear
clc

%% Setup the Simulation
physical_constants;
unit = 1e-3; % all length in mm

% patch width in x-direction
patch.width  = 32; % resonant length
% patch length in y-direction
patch.length = 40;

%substrate setup
substrate.epsR   = 3.38;
substrate.kappa  = 1e-3 * 2*pi*2.45e9 * EPS0*substrate.epsR;
substrate.width  = 60;
substrate.length = 60;
substrate.thickness = 1.524;
substrate.cells = 4;

%setup feeding
feed.pos = -6; %feeding position in x-direction
feed.R = 50;     %feed resistance

% size of the simulation box
SimBox = [200 200 150];

%% Setup FDTD Parameter & Excitation Function
f0 = 2e9; % center frequency
fc = 1e9; % 20 dB corner frequency
FDTD = InitFDTD( 'NrTs', 30000 );
FDTD = SetGaussExcite( FDTD, f0, fc );
BC = {'MUR' 'MUR' 'MUR' 'MUR' 'MUR' 'MUR'}; % boundary conditions
FDTD = SetBoundaryCond( FDTD, BC );

%% Setup CSXCAD Geometry & Mesh
CSX = InitCSX();

%initialize the mesh with the "air-box" dimensions
mesh.x = [-SimBox(1)/2 SimBox(1)/2];
mesh.y = [-SimBox(2)/2 SimBox(2)/2];
mesh.z = [-SimBox(3)/3 SimBox(3)*2/3];

% Create Patch
CSX = AddMetal( CSX, 'patch' ); % create a perfect electric conductor (PEC)
start = [-patch.width/2 -patch.length/2 substrate.thickness];
stop  = [ patch.width/2  patch.length/2 substrate.thickness];
CSX = AddBox(CSX,'patch',10,start,stop); % add a box-primitive to the metal property 'patch'

% Create Substrate
CSX = AddMaterial( CSX, 'substrate' );
CSX = SetMaterialProperty( CSX, 'substrate', 'Epsilon', substrate.epsR, 'Kappa', substrate.kappa );
start = [-substrate.width/2 -substrate.length/2 0];
stop  = [ substrate.width/2  substrate.length/2 substrate.thickness];
CSX = AddBox( CSX, 'substrate', 0, start, stop );

% add extra cells to discretize the substrate thickness
mesh.z = [linspace(0,substrate.thickness,substrate.cells+1) mesh.z];

% Create Ground same size as substrate
CSX = AddMetal( CSX, 'gnd' ); % create a perfect electric conductor (PEC)
start(3)=0;
stop(3) =0;
CSX = AddBox(CSX,'gnd',10,start,stop);

% Apply the Excitation & Resist as a Current Source
start = [feed.pos 0 0];
stop  = [feed.pos 0 substrate.thickness];
[CSX port] = AddLumpedPort(CSX, 5 ,1 ,feed.R, start, stop, [0 0 1], true);

% Finalize the Mesh
% detect all edges except of the patch
mesh = DetectEdges(CSX, mesh,'ExcludeProperty','patch');
% detect and set a special 2D metal edge mesh for the patch
mesh = DetectEdges(CSX, mesh,'SetProperty','patch','2D_Metal_Edge_Res', c0/(f0+fc)/unit/50);
% generate a smooth mesh with max. cell size: lambda_min / 20
mesh = SmoothMesh(mesh, c0/(f0+fc)/unit/20);
CSX = DefineRectGrid(CSX, unit, mesh);

CSX = AddDump(CSX,'Hf', 'DumpType', 11, 'Frequency',[2.4e9]);
CSX = AddBox(CSX,'Hf',10,[-substrate.width -substrate.length -10*substrate.thickness],[substrate.width +substrate.length 10*substrate.thickness]); %assign box

% add a nf2ff calc box; size is 3 cells away from MUR boundary condition
start = [mesh.x(4)     mesh.y(4)     mesh.z(4)];
stop  = [mesh.x(end-3) mesh.y(end-3) mesh.z(end-3)];
[CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop);

%% Prepare and Run Simulation
Sim_Path = 'tmp_Patch_Ant';
Sim_CSX = 'patch_ant.xml';

% create an empty working directory
[status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory
[status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder

% write openEMS compatible xml-file
WriteOpenEMS( [Sim_Path '/' Sim_CSX], FDTD, CSX );

% show the structure
CSXGeomPlot( [Sim_Path '/' Sim_CSX] );

% run openEMS
RunOpenEMS( Sim_Path, Sim_CSX);

%% Postprocessing & Plots
freq = linspace( max([1e9,f0-fc]), f0+fc, 501 );
port = calcPort(port, Sim_Path, freq);

%% Smith chart port reflection
plotRefl(port, 'threshold', -10)
title( 'reflection coefficient' );

% plot feed point impedance
Zin = port.uf.tot ./ port.if.tot;
figure
plot( freq/1e6, real(Zin), 'k-', 'Linewidth', 2 );
hold on
grid on
plot( freq/1e6, imag(Zin), 'r--', 'Linewidth', 2 );
title( 'feed point impedance' );
xlabel( 'frequency f / MHz' );
ylabel( 'impedance Z_{in} / Ohm' );
legend( 'real', 'imag' );

% plot reflection coefficient S11
s11 = port.uf.ref ./ port.uf.inc;
figure
plot( freq/1e6, 20*log10(abs(s11)), 'k-', 'Linewidth', 2 );
grid on
title( 'reflection coefficient S_{11}' );
xlabel( 'frequency f / MHz' );
ylabel( 'reflection coefficient |S_{11}|' );

drawnow

%% NFFF Plots
%find resonance frequncy from s11
f_res_ind = find(s11==min(s11));
f_res = freq(f_res_ind);

% calculate the far field at phi=0 degrees and at phi=90 degrees
disp( 'calculating far field at phi=[0 90] deg...' );

nf2ff = CalcNF2FF(nf2ff, Sim_Path, f_res, [-180:2:180]*pi/180, [0 90]*pi/180);

% display power and directivity
disp( ['radiated power: Prad = ' num2str(nf2ff.Prad) ' Watt']);
disp( ['directivity: Dmax = ' num2str(nf2ff.Dmax) ' (' num2str(10*log10(nf2ff.Dmax)) ' dBi)'] );
disp( ['efficiency: nu_rad = ' num2str(100*nf2ff.Prad./port.P_inc(f_res_ind)) ' %']);

% normalized directivity as polar plot
figure
polarFF(nf2ff,'xaxis','theta','param',[1 2],'normalize',1)

% log-scale directivity plot
figure
plotFFdB(nf2ff,'xaxis','theta','param',[1 2])
% conventional plot approach
% plot( nf2ff.theta*180/pi, 20*log10(nf2ff.E_norm{1}/max(nf2ff.E_norm{1}(:)))+10*log10(nf2ff.Dmax));

drawnow

% Show 3D pattern
disp( 'calculating 3D far field pattern and dumping to vtk (use Paraview to visualize)...' );
thetaRange = (0:2:180);
phiRange = (0:2:360) - 180;
nf2ff = CalcNF2FF(nf2ff, Sim_Path, f_res, thetaRange*pi/180, phiRange*pi/180,'Verbose',1,'Outfile','3D_Pattern.h5');

figure
plotFF3D(nf2ff,'logscale',-20);


E_far_normalized = nf2ff.E_norm{1} / max(nf2ff.E_norm{1}(:)) * nf2ff.Dmax;
DumpFF2VTK([Sim_Path '/3D_Pattern.vtk'],E_far_normalized,thetaRange,phiRange,'scale',1e-3);