summaryrefslogtreecommitdiff
path: root/openEMS/matlab/polarFF.m
blob: 96b97da5cd3f2fc3fb4f2d31fcc94e1fd6b8cb9d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
function h = polarFF(nf2ff,varargin)
%  h = polarFF(nf2ff,varargin)
%
%  plot polar far field pattern
%
% input:
%   nf2ff:      output of CalcNF2FF
%
% variable input:
%   'freq_index':  - use the given frequency index, see nf2ff.freq
%                  - default is 1
%   'xaxis':       - 'phi' (default) or 'theta'
%   'param':       - array positions of parametric plot
%                  - if xaxis='phi', theta is parameter, and vice versa
%                  - default is 1
%   'normalize':   - true/false, normalize linear plot
%                  - default is false, log-plot is always normalized!
%   'logscale':    - if set, plot logarithmic polar
%                  - set the dB value for point of origin if scalar
%                  - set point of origin and maximum if 2-element array
%                  - values below minimum will be clamped
%                  - default is -20
%   'xtics':       - set the number of tics for polar grid
%                  - default is 5
%
%   example:
%       polarFF(nf2ff, 'freq_index', 2, ...
%                      'xaxis', 'phi', 'param', [1 46 91] );
%
%       polarFF(..., 'normalize', true );
%       polarFF(..., 'logscale', -30 );
%       polarFF(..., 'logscale', [-30 10]);
%
%       polarFF(..., 'xtics', 10);
%
%       see examples/antenna/infDipol.m
%
% See also CalcNF2FF, plotFFdB, plotFF3D
% 
% openEMS matlab interface
% -----------------------
% author: Thorsten Liebig, Stefan Mahr

% defaults
freq_index = 1;
xaxis = 'phi';
param = 1;
logscale = [];
xtics = 5;
normalize = 0;

for n=1:2:numel(varargin)
    if (strcmp(varargin{n},'freq_index')==1);
        freq_index = varargin{n+1};
    elseif (strcmp(varargin{n},'xaxis')==1);
        xaxis = varargin{n+1};
    elseif (strcmp(varargin{n},'param')==1);
        param = varargin{n+1};
    elseif (strcmp(varargin{n},'normalize')==1);
        normalize = varargin{n+1};
    elseif (strcmp(varargin{n},'logscale')==1);
        logscale = varargin{n+1};
    elseif (strcmp(varargin{n},'xtics')==1);
        xtics = varargin{n+1};
    else
        warning('openEMS:polarFF',['unknown argument key: ''' varargin{n} '''']);
    end
end

E_far_max = max(nf2ff.E_norm{freq_index}(:));
if ~isempty(logscale)
    gridmin = logscale(1);

    Dmax = 10*log10(nf2ff.Dmax(freq_index));
    E_far_scale = Dmax - gridmin;
    E_far = 20*log10(nf2ff.E_norm{freq_index}) - 20*log10(E_far_max) + E_far_scale;
    E_far = E_far .* ( E_far > 0 );
    E_far = E_far ./ E_far_scale;

    titletext = sprintf('electrical far field [dBi] @ f = %e Hz',nf2ff.freq(freq_index));

    if numel(logscale) == 2 % normalize to maximum grid
        gridmax = logscale(2);
        E_far = E_far .* E_far_scale/(gridmax-gridmin);
    else
        gridmax = Dmax;
    end
elseif (normalize==0)
    E_far = nf2ff.E_norm{freq_index};

    titletext = sprintf('electrical far field [V/m] @ f = %e Hz',nf2ff.freq(freq_index));

    gridmin = 0;
    gridmax = E_far_max;
else % normalize == 1
    E_far = nf2ff.E_norm{freq_index} / E_far_max;

    titletext = sprintf('normalized electrical far field @ f = %e Hz',nf2ff.freq(freq_index));

    gridmin = 0;
    gridmax = 1;
end


if (strcmp(xaxis,'theta')==1);
    xax = nf2ff.theta(:);
    yax = E_far(:,param);
    parval = nf2ff.phi(param);
    param = 'phi';
elseif (strcmp(xaxis,'phi')==1);
    xax = nf2ff.phi(:);
    yax = E_far(param,:)';
    parval = nf2ff.theta(param);
    param = 'theta';
else
    error('openEMS:polarFF','unknown parameter to ''xaxis''');
end

if ~isempty(logscale)
    scalegrid = 1;
else
    scalegrid = gridmax;
end

% workaround for polar plot
gridcolor = [0.85 0.85 0.85];
% plot xtics circles
a=linspace(0,2*pi,60);
b=linspace(0,scalegrid,xtics+1);
b=repmat(b(2:end),numel(a),1)';
a=repmat(a,size(b,1),1);
[x,y] = pol2cart(a,b);
h = plot(x',y');
%h=polar(a,b,'-k');
set(h,'Color',gridcolor);
set(h(end),'Color',gridcolor*0.8);
hold on;
% plot degree lines
a=bsxfun(@plus,[0:pi/6:pi-pi/6],[0 pi]');
b=scalegrid.*ones(size(a));
h=polar(a,b,'-k');
set(h,'Color',gridcolor);
set(h([1 4]),'Color',gridcolor*0.8);
text(scalegrid*0.05,scalegrid*0.05,num2str(gridmin))
text(scalegrid*1.05,scalegrid*0.05,num2str(gridmax))


% draw far field
xax = repmat(xax,1,size(yax,2));
[x,y] = pol2cart(xax,yax);
h = plot(x,y);
%h = polar( xax, yax );

% legend
ylabel( sprintf('%s / deg', xaxis) );
title( titletext );
createlegend = @(d)sprintf('%s = %3.1f',param,d / pi * 180);
legendtext = arrayfun(createlegend,parval,'UniformOutput',0);
legend( h, legendtext ,'location','southeast');

% workaround for polar plot
axis equal tight
axis ([-scalegrid scalegrid -scalegrid scalegrid]);
axis off
hold off
set(gcf,'Color','white');

if (nargout == 0)
  clear h;
end

end