summaryrefslogtreecommitdiff
path: root/silx/image/bilinear.pyx
blob: 0b072dffe6d2025dfbd194648bcb3ca528df8650 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# -*- coding: utf-8 -*-
#
#    Project: silx (originally pyFAI)
#             https://github.com/silx-kit/silx
#
#    Copyright (C) 2012-2017  European Synchrotron Radiation Facility, Grenoble, France
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.

__authors__ = ["J. Kieffer"]
__license__ = "MIT"
__date__ = "15/09/2016"
__doc__ = "Bilinear interpolator, peak finder, line-profile for images"

import cython
from cython.view cimport array as cvarray
import numpy
from libc.math cimport floor, ceil, sin, cos, sqrt, atan2
import logging
logger = logging.getLogger(__name__)


cdef class BilinearImage:
    """Bilinear interpolator for images ... or any data on a regular grid
    """
    cdef:
        readonly float[:, ::1] data
        readonly float maxi, mini
        readonly size_t width, height

    cpdef size_t coarse_local_maxi(self, size_t)
    cdef size_t c_local_maxi(self, size_t) nogil
    cdef float c_funct(self, float, float) nogil

    def __cinit__(self, data not None):
        """Constructor

        :param data: image as a 2D array
        """
        assert data.ndim == 2
        self.height = data.shape[0]
        self.width = data.shape[1]
        self.maxi = data.max()
        self.mini = data.min()
        self.data = numpy.ascontiguousarray(data, dtype=numpy.float32)

    def __dealloc__(self):
        self.data = None

    def __call__(self, coord):
        """Function f((y, x)) where f is a continuous function
        made from the image and (y,x)=(row, column) is the pixel coordinates
        in natural C-order

        :param x: 2-tuple of float (row, column)
        :return: Interpolated signal from the image
        """
        return self.c_funct(coord[1], coord[0])

    @cython.boundscheck(False)
    @cython.wraparound(False)
    cdef float c_funct(self, float x, float y) nogil:
        """Function f(x, y) where f is a continuous function
        made from the image.

        :param x (float): column coordinate
        :param y (float): row coordinate
        :return: Interpolated signal from the image (nearest for outside)

        Cython only function due to NOGIL
        """
        cdef:
            float d0 = min(max(y, 0.0), (self.height - 1.0))
            float d1 = min(max(x, 0.0), (self.width - 1.0))
            int i0, i1, j0, j1
            float x0, x1, y0, y1, res

        x0 = floor(d0)
        x1 = ceil(d0)
        y0 = floor(d1)
        y1 = ceil(d1)
        i0 = < int > x0
        i1 = < int > x1
        j0 = < int > y0
        j1 = < int > y1
        if (i0 == i1) and (j0 == j1):
            res = self.data[i0, j0]
        elif i0 == i1:
            res = (self.data[i0, j0] * (y1 - d1)) + (self.data[i0, j1] * (d1 - y0))
        elif j0 == j1:
            res = (self.data[i0, j0] * (x1 - d0)) + (self.data[i1, j0] * (d0 - x0))
        else:
            res = (self.data[i0, j0] * (x1 - d0) * (y1 - d1))  \
                + (self.data[i1, j0] * (d0 - x0) * (y1 - d1))  \
                + (self.data[i0, j1] * (x1 - d0) * (d1 - y0))  \
                + (self.data[i1, j1] * (d0 - x0) * (d1 - y0))
        return res

    @cython.boundscheck(False)
    @cython.wraparound(False)
    def opp_f(self, coord):
        """Function -f((y,x)) for peak finding via minimizer.

        Gives large number outside the boundaries to return into the image

        :param x: 2-tuple of float in natural C order, i.e (row, column)
        :return: Negative interpolated signal from the image
        """
        cdef:
            float d0, d1, res
        d0, d1 = coord
        if d0 < 0:
            res = self.mini + d0
        elif d1 < 0:
            res = self.mini + d1
        elif d0 > (self.height - 1):
            res = self.mini - d0 + self.height - 1
        elif d1 > self.width - 1:
            res = self.mini - d1 + self.width - 1
        else:
            res = self.c_funct(d1, d0)
        return - res

    @cython.boundscheck(False)
    @cython.wraparound(False)
    @cython.cdivision(True)
    def local_maxi(self, coord):
        """Return the nearest local maximum ... with sub-pixel refinement

        Nearest maximum search:
            steepest ascent

        Sub-pixel refinement:
            Second order Taylor expansion of the function;
            At the maximum, the first derivative is null
            delta = x-i = -Inverse[Hessian].gradient
            if Hessian is singular or \|delta\|>1: use a center of mass.

        :param coord: 2-tuple of scalar (row, column)
        :return: 2-tuple of float with the nearest local maximum
        """
        cdef:
            int res, current0, current1
            int i0, i1
            float tmp, sum0 = 0, sum1 = 0, sum = 0
            float a00, a01, a02, a10, a11, a12, a20, a21, a22
            float d00, d11, d01, denom, delta0, delta1
        res = self.c_local_maxi(round(coord[0]) * self.width + round(coord[1]))

        current0 = res // self.width
        current1 = res % self.width
        if (current0 > 0) and (current0 < self.height - 1) and (current1 > 0) and (current1 < self.width - 1):
            # Use second order polynomial Taylor expansion
            a00 = self.data[current0 - 1, current1 - 1]
            a01 = self.data[current0 - 1, current1    ]
            a02 = self.data[current0 - 1, current1 + 1]
            a10 = self.data[current0    , current1 - 1]
            a11 = self.data[current0    , current1    ]
            a12 = self.data[current0    , current1 + 1]
            a20 = self.data[current0 + 1, current1 - 1]
            a21 = self.data[current0 + 1, current1    ]
            a22 = self.data[current0 + 1, current1 - 1]
            d00 = a12 - 2.0 * a11 + a10
            d11 = a21 - 2.0 * a11 + a01
            d01 = (a00 - a02 - a20 + a22) / 4.0
            denom = 2.0 * (d00 * d11 - d01 * d01)
            if abs(denom) < 1e-10:
                logger.debug("Singular determinant, Hessian undefined")
            else:
                delta0 = ((a12 - a10) * d01 + (a01 - a21) * d11) / denom
                delta1 = ((a10 - a12) * d00 + (a21 - a01) * d01) / denom
                if abs(delta0) <= 1.0 and abs(delta1) <= 1.0:
                    # Result is OK if lower than 0.5.
                    return (delta0 + float(current0), delta1 + float(current1))
                else:
                    logger.debug("Failed to find root using second order expansion")
            # refinement of the position by a simple center of mass of the last valid region used
            for i0 in range(current0 - 1, current0 + 2):
                for i1 in range(current1 - 1, current1 + 2):
                    tmp = self.data[i0, i1]
                    sum0 += tmp * i0
                    sum1 += tmp * i1
                    sum += tmp
            if sum > 0:
                return (sum0 / sum, sum1 / sum)

        return (float(current0), float(current1))

    cpdef size_t coarse_local_maxi(self, size_t x):
        """Return the nearest local maximum ... without sub-pixel refinement

        :param idx: start index (=row*width+column)
        :return: local maximum index
        """
        return self.c_local_maxi(x)

    @cython.boundscheck(False)
    @cython.wraparound(False)
    @cython.cdivision(True)
    cdef size_t c_local_maxi(self, size_t idx) nogil:
        """Return the nearest local maximum without sub-pixel refinement

        :param idx: start index (=row*width+column)
        :return: local maximum index

        This method is Cython only due to the NOGIL
        """
        cdef:
            int current0 = idx // self.width
            int current1 = idx % self.width
            int i0, i1, start0, stop0, start1, stop1, new0, new1
            float tmp, value, old_value

        value = self.data[current0, current1]
        old_value = value - 1.0
        new0, new1 = current0, current1

        while value > old_value:
            old_value = value
            start0 = max(0, current0 - 1)
            stop0 = min(self.height, current0 + 2)
            start1 = max(0, current1 - 1)
            stop1 = min(self.width, current1 + 2)
            for i0 in range(start0, stop0):
                for i1 in range(start1, stop1):
                    tmp = self.data[i0, i1]
                    if tmp > value:
                        new0, new1 = i0, i1
                        value = tmp
            current0, current1 = new0, new1
        return self.width * current0 + current1

    @cython.boundscheck(False)
    def map_coordinates(self, coordinates):
        """Map coordinates of the array on the image

        :param coordinates: 2-tuple of array of the same size (row_array, column_array)
        :return: array of values at given coordinates
        """
        cdef:
            float[:] d0, d1, res
            size_t size, i
        shape = coordinates[0].shape
        size = coordinates[0].size
        d0 = numpy.ascontiguousarray(coordinates[0].ravel(), dtype=numpy.float32)
        d1 = numpy.ascontiguousarray(coordinates[1].ravel(), dtype=numpy.float32)
        assert size == d1.size
        res = numpy.empty(size, dtype=numpy.float32)
        with nogil:
            for i in range(size):
                res[i] = self.c_funct(d1[i], d0[i])
        return numpy.asarray(res).reshape(shape)

    @cython.boundscheck(False)
    def profile_line(self, src, dst, int linewidth=1):
        """Return the intensity profile of an image measured along a scan line.

        :param src: The start point of the scan line.
        :type src: 2-tuple of numeric scalar
        :param dst: The end point of the scan line.
            The destination point is included in the profile,
            in contrast to standard numpy indexing.
        :type dst: 2-tuple of numeric scalar
        :param int linewidth: Width of the scanline (unit image pixel).
        :return: The intensity profile along the scan line.
            The length of the profile is the ceil of the computed length
            of the scan line.
        :rtype: 1d array

        Inspired from skimage
        """
        cdef:
            float src_row, src_col, dst_row, dst_col, d_row, d_col
            float length, col_width, row_width, sum, row, col, new_row, new_col
            int lengt, i, j, cnt
            float[::1] result
        src_row, src_col = src
        dst_row, dst_col = dst
        if (src_row == dst_row) and (src_col == dst_col):
            logger.warning("Source and destination points are the same")
            return numpy.array([self.c_funct(src_col, src_row)])
        d_row = dst_row - src_row
        d_col = dst_col - src_col

        # Offsets to deal with linewidth
        length = sqrt(d_row * d_row + d_col * d_col)
        row_width = d_col / length
        col_width = - d_row / length

        lengt = <int> ceil(length + 1)
        d_row /= <float> (lengt -1)
        d_col /= <float> (lengt -1)

        result = numpy.zeros(lengt, dtype=numpy.float32)

        # Offset position to the center of the bottom pixels of the profile
        src_row -= row_width * (linewidth - 1) / 2.
        src_col -= col_width * (linewidth - 1) / 2.

        with nogil:
            for i in range(lengt):
                sum = 0
                cnt = 0

                row = src_row + i * d_row
                col = src_col + i * d_col

                for j in range(linewidth):
                    new_row = row + j * row_width
                    new_col = col + j * col_width
                    if ((new_col >= 0) and (new_col < self.width) and
                            (new_row >= 0) and (new_row < self.height)):
                        cnt = cnt + 1
                        sum = sum + self.c_funct(new_col, new_row)
                if cnt:
                    result[i] += sum / cnt

        # Ensures the result is exported as numpy array and not memory view.
        return numpy.asarray(result)