summaryrefslogtreecommitdiff
path: root/src/silx/math/fft/test/test_fft.py
blob: b696317933e9bbd251c2d73e18326b44a4104875 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
#!/usr/bin/env python
# /*##########################################################################
#
# Copyright (c) 2018-2021 European Synchrotron Radiation Facility
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ###########################################################################*/
"""Test of the FFT module"""

from os import path
import logging
import numpy as np
import unittest
from pkg_resources import parse_version
import pytest
from tempfile import TemporaryDirectory
try:
    from scipy.misc import ascent
    __have_scipy = True
except ImportError:
    __have_scipy = False
from silx.utils.testutils import ParametricTestCase
from silx.math.fft.fft import FFT
from silx.math.fft.clfft import __have_clfft__
from silx.math.fft.cufft import __have_cufft__
from silx.math.fft.fftw import __have_fftw__, import_wisdom, export_wisdom, get_wisdom_file

if __have_cufft__:
    import atexit
    import pycuda.driver as cuda
    from pycuda.tools import clear_context_caches

def get_cuda_context(device_id=None, cleanup_at_exit=True):
    """
    Create or get a CUDA context.
    """
    current_ctx = cuda.Context.get_current()
    # If a context already exists, use this one
    # TODO what if the device used is different from device_id ?
    if current_ctx is not None:
        return current_ctx
    # Otherwise create a new context
    cuda.init()

    if device_id is None:
        device_id = 0
    # Use the Context obtained by retaining the device's primary context,
    # which is the one used by the CUDA runtime API (ex. scikit-cuda).
    # Unlike Context.make_context(), the newly-created context is not made current.
    context = cuda.Device(device_id).retain_primary_context()
    context.push()
    # Register a clean-up function at exit
    def _finish_up(context):
        if context is not None:
            context.pop()
            context = None
        clear_context_caches()
    if cleanup_at_exit:
        atexit.register(_finish_up, context)
    return context

logger = logging.getLogger(__name__)

class TransformInfos(object):
    def __init__(self):
        self.dimensions = [
            "1D",
            "batched_1D",
            "2D",
            "batched_2D",
            "3D",
        ]
        self.modes = {
            "R2C": np.float32,
            "R2C_double": np.float64,
            "C2C": np.complex64,
            "C2C_double": np.complex128,
        }
        self.sizes = {
            "1D": [(128,), (127,)],
            "2D": [(128, 128), (128, 127), (127, 128), (127, 127)],
            "3D": [(64, 64, 64), (64, 64, 63), (64, 63, 64), (63, 64, 64),
                 (64, 63, 63), (63, 64, 63), (63, 63, 64), (63, 63, 63)]
        }
        self.axes = {
            "1D": None,
            "batched_1D": (-1,),
            "2D": None,
            "batched_2D": (-2, -1),
            "3D": None,
        }
        self.sizes["batched_1D"] = self.sizes["2D"]
        self.sizes["batched_2D"] = self.sizes["3D"]


class Data(object):
    def __init__(self):
        self.data = ascent().astype("float32")
        self.data1d = self.data[:, 0]  # non-contiguous data
        self.data3d = np.tile(self.data[:64, :64], (64, 1, 1))
        self.data_refs = {
            1: self.data1d,
            2: self.data,
            3: self.data3d,
        }


@unittest.skipUnless(__have_scipy, "scipy is missing")
@pytest.mark.usefixtures("test_options_class_attr")
class TestFFT(ParametricTestCase):
    """Test cuda/opencl/fftw backends of FFT"""

    def setUp(self):
        self.tol = {
            np.dtype("float32"): 1e-3,
            np.dtype("float64"): 1e-9,
            np.dtype("complex64"): 1e-3,
            np.dtype("complex128"): 1e-9,
        }
        self.transform_infos = TransformInfos()
        self.test_data = Data()

    @staticmethod
    def calc_mae(arr1, arr2):
        """
        Compute the Max Absolute Error between two arrays
        """
        return np.max(np.abs(arr1 - arr2))

    @unittest.skipIf(not __have_cufft__,
                     "cuda back-end requires pycuda and scikit-cuda")
    def test_cuda(self):
        get_cuda_context()

        # Error is higher when using cuda. fast_math mode ?
        self.tol[np.dtype("float32")] *= 2

        self.__run_tests(backend="cuda")

    @unittest.skipIf(not __have_clfft__,
                     "opencl back-end requires pyopencl and gpyfft")
    def test_opencl(self):
        from silx.opencl.common import ocl
        if ocl is not None:
            self.__run_tests(backend="opencl", ctx=ocl.create_context())

    @unittest.skipIf(not __have_fftw__,
                     "fftw back-end requires pyfftw")
    def test_fftw(self):
        self.__run_tests(backend="fftw")

    def __run_tests(self, backend, **extra_args):
        """Run all tests with the given backend

        :param str backend:
        :param dict extra_args: Additional arguments to provide to FFT
        """
        for trdim in self.transform_infos.dimensions:
            for mode in self.transform_infos.modes:
                for size in self.transform_infos.sizes[trdim]:
                    with self.subTest(trdim=trdim, mode=mode, size=size):
                        self.__test(backend, trdim, mode, size, **extra_args)

    def __test(self, backend, trdim, mode, size, **extra_args):
        """Compare given backend with numpy for given conditions"""
        logger.debug("backend: %s, trdim: %s, mode: %s, size: %s",
                     backend, trdim, mode, str(size))
        if size == "3D" and self.test_options.TEST_LOW_MEM:
            self.skipTest("low mem")

        ndim = len(size)
        input_data = self.test_data.data_refs[ndim].astype(
            self.transform_infos.modes[mode])
        tol = self.tol[np.dtype(input_data.dtype)]
        if trdim == "3D":
            tol *= 10  # Error is relatively high in high dimensions
        # It seems that cuda has problems with C2D batched 1D
        if trdim == "batched_1D" and backend == "cuda" and mode == "C2C":
            tol *= 10

        # Python < 3.5 does not want to mix **extra_args with existing kwargs
        fft_args = {
            "template": input_data,
            "axes": self.transform_infos.axes[trdim],
            "backend": backend,
        }
        fft_args.update(extra_args)
        F = FFT(
            **fft_args
        )
        F_np = FFT(
            template=input_data,
            axes=self.transform_infos.axes[trdim],
            backend="numpy"
        )

        # Forward FFT
        res = F.fft(input_data)
        res_np = F_np.fft(input_data)
        mae = self.calc_mae(res, res_np)
        all_close = np.allclose(res, res_np, atol=tol, rtol=tol),
        self.assertTrue(
            all_close,
            "FFT %s:%s, MAE(%s, numpy) = %f (tol = %.2e)" % (mode, trdim, backend, mae, tol)
        )

        # Inverse FFT
        res2 = F.ifft(res)
        mae = self.calc_mae(res2, input_data)
        self.assertTrue(
            mae < tol,
            "IFFT %s:%s, MAE(%s, numpy) = %f" % (mode, trdim, backend, mae)
        )


    # Test normalizations. silx FFT has three normalization modes:
    #    - "rescale" (default). FFT is unscaled, IFFT is scaled by 1/N.
    #      This corresponds to numpy normalize=None i.e normalize="backward"
    #    - "ortho": FFT/IFFT are both scaled with 1/sqrt(N) so that FFT is unitary.
    #    - "none": Neither FFT nor IFFT are not scaled, so IFFT(FFT(array)) = N*array

    norms_backends_support = {
        "numpy": {
            "supported_normalizations": ["rescale", "ortho", "none"],
        },
        "fftw": {
            "supported_normalizations": ["rescale", "ortho", "none"],
        },
        "opencl": {
            "supported_normalizations": ["rescale"],
        },
        "cuda": {
            "supported_normalizations": ["rescale", "none"],
        }
    }

    @staticmethod
    def _compute_numpy_normalized_fft(data, axes, silx_normalization_mode):
        if silx_normalization_mode in ["rescale", "none"]:
            return np.fft.rfftn(data, axes=axes, norm=None)
        elif silx_normalization_mode == "ortho":
            return np.fft.rfftn(data, axes=axes, norm="ortho")
        else:
            raise ValueError("Unknown normalization mode %s" % silx_normalization_mode)

    @staticmethod
    def _compute_numpy_normalized_ifft(data, axes, silx_normalization_mode):
        if silx_normalization_mode == "rescale":
            return np.fft.irfftn(data, axes=axes, norm=None)
        elif silx_normalization_mode == "ortho":
            return np.fft.irfftn(data, axes=axes, norm="ortho")
        elif silx_normalization_mode == "none":
            res =  np.fft.irfftn(data, axes=axes, norm=None)
            # This assumes a FFT on all the axes, won't work on batched FFT
            N = res.size
            return res * N
        else:
            raise ValueError("Unknown normalization mode %s" % silx_normalization_mode)

    @unittest.skipIf(not __have_fftw__, "fftw back-end requires pyfftw")
    def test_norms_fftw(self):
        return self._test_norms_with_backend("fftw")

    @unittest.skipIf(
        parse_version(np.version.version) <= parse_version("1.19.5"),
        "normalization does not work for numpy <= 1.19.5"
    )
    def test_norms_numpy(self):
        return self._test_norms_with_backend("numpy")

    @unittest.skipIf(not __have_clfft__, "opencl back-end requires pyopencl and gpyfft")
    def test_norms_opencl(self):
        from silx.opencl.common import ocl
        if ocl is not None:
            return self._test_norms_with_backend("opencl")

    @unittest.skipIf(not __have_cufft__, "cuda back-end requires pycuda and scikit-cuda")
    def test_norms_cuda(self):
        get_cuda_context()
        return self._test_norms_with_backend("cuda")

    def _test_norms_with_backend(self, backend_name):
        backend_params = self.norms_backends_support[backend_name]

        data = self.test_data.data
        tol = self.tol[np.dtype(data.dtype)]

        for norm in backend_params["supported_normalizations"]:
            fft = FFT(template=data, backend=backend_name, normalize=norm)
            res = fft.fft(data)
            ref = self._compute_numpy_normalized_fft(data, fft.axes, norm)
            assert np.allclose(res, ref, atol=tol, rtol=tol), "Something wrong with %s norm=%s" % (backend_name, norm)

            res2 = fft.ifft(res)
            ref2 = self._compute_numpy_normalized_ifft(ref, fft.axes, norm)
            # unscaled IFFT yields very large values. Use a relatively high "atol"
            assert np.allclose(res2, ref2, atol=res2.max()/1e6), "Something wrong with I%s norm=%s" % (backend_name, norm)


@unittest.skipUnless(__have_scipy, "scipy is missing")
class TestNumpyFFT(ParametricTestCase):
    """
    Test the Numpy backend individually.
    """

    def setUp(self):
        transforms = {
            "1D": {
                True: (np.fft.rfft, np.fft.irfft),
                False: (np.fft.fft, np.fft.ifft),
            },
            "2D": {
                True: (np.fft.rfft2, np.fft.irfft2),
                False: (np.fft.fft2, np.fft.ifft2),
            },
            "3D": {
                True: (np.fft.rfftn, np.fft.irfftn),
                False: (np.fft.fftn, np.fft.ifftn),
            },
        }
        transforms["batched_1D"] = transforms["1D"]
        transforms["batched_2D"] = transforms["2D"]
        self.transforms = transforms
        self.transform_infos = TransformInfos()
        self.test_data = Data()

    def test(self):
        """Test the numpy backend against native fft.

        Results should be exactly the same.
        """
        for trdim in self.transform_infos.dimensions:
            for mode in self.transform_infos.modes:
                for size in self.transform_infos.sizes[trdim]:
                    with self.subTest(trdim=trdim, mode=mode, size=size):
                        self.__test(trdim, mode, size)

    def __test(self, trdim, mode, size):
        logger.debug("trdim: %s, mode: %s, size: %s", trdim, mode, str(size))
        ndim = len(size)
        input_data = self.test_data.data_refs[ndim].astype(
            self.transform_infos.modes[mode])
        np_fft, np_ifft = self.transforms[trdim][np.isrealobj(input_data)]

        F = FFT(
            template=input_data,
            axes=self.transform_infos.axes[trdim],
            backend="numpy"
        )
        # Test FFT
        res = F.fft(input_data)
        ref = np_fft(input_data)
        self.assertTrue(np.allclose(res, ref))

        # Test IFFT
        res2 = F.ifft(res)
        ref2 = np_ifft(ref)
        self.assertTrue(np.allclose(res2, ref2))


@pytest.mark.skipif(not(__have_fftw__), reason="Need fftw/pyfftw for this test")
def test_fftw_wisdom():
    """
    Test FFTW wisdom import/export mechanism
    """

    assert path.isdir(path.dirname(get_wisdom_file())) # Default: tempdir.gettempdir()

    with TemporaryDirectory(prefix="test_fftw_wisdom") as dname:
        subdir = path.join(dname, "subdir")
        get_wisdom_file(directory=subdir, create_dirs=False)
        assert not(path.isdir(subdir))
        fname = get_wisdom_file(directory=subdir, create_dirs=True)
        assert path.isdir(subdir)
        export_wisdom(fname)
        assert path.isfile(fname)
        import_wisdom(fname)