summaryrefslogtreecommitdiff
path: root/generators.scm
blob: ccc2a56583fbea85199989ea7ed8cc891c477b3f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
(provide 'snd-generators.scm)
(if (provided? 'snd)
    (require snd-ws.scm)
    (require sndlib-ws.scm))

;;; it is dangerous to use a method within a generator's definition of that method --
;;;   if the gen is used as the environment in with-let, the embedded call
;;;   becomes a recursive call on that method.  You either need to check the type
;;;   of the method argument, or use #_method to override the name lookup, or use
;;;   the explicit call style: (((gen 'embedded-gen) 'shared-method) ...)

;;; if gen has embedded gen, mus-copy needs a special copy method (see adjustable-oscil)
;;; a problem with a special copy method: if you change the generator, remember to change its copy method!
;;; also, I think (inlet e) is a way to copy e without accidentally invoking any 'copy method in e


(define nearly-zero 1.0e-10) ; 1.0e-14 in clm.c, but that is trouble here (noddcos)
(define two-pi (* 2.0 pi))

(define (convert-frequency g)
  (set! (g 'frequency) (hz->radians (g 'frequency)))
  g)


;;; --------------------------------------------------------------------------------

;;; nssb (see nxycos) -- wouldn't a more consistent name be nxycos? but it already exists -- perhaps delete nssb?

(defgenerator (nssb :make-wrapper convert-frequency)
  (frequency 0.0) (ratio 1.0) (n 1) (angle 0.0) fm)


(define nssb 

  (let ((+documentation+ "(make-nssb frequency (ratio 1.0) (n 1)) creates an nssb generator,
similar to nxysin. (nssb gen (fm 0.0)) returns n sinusoids from frequency spaced by frequency * ratio."))

    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((cx angle)
	       (mx (* cx ratio))
	       (den (sin (* 0.5 mx))))
	  (set! angle (+ angle fm frequency))
	  (if (< (abs den) nearly-zero)
	      -1.0
	      (/ (- (* (sin cx) 
		       (sin (* mx (/ (+ n 1) 2)))
		       (sin (/ (* n mx) 2)))
		    (* (cos cx) 
		       0.5 (+ den (sin (* mx (+ n 0.5))))))
		 (* (+ n 1) den))))))))
  
#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-nssb 1000.0 0.1 3)))
     (do ((i 0 (+ i 1)))
	 ((= i 10000))
       (outa i (nssb gen)))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-nssb 1000.0 0.1 3))
	(vib (make-oscil 5.0))
	(ampf (make-env '(0 0 1 1 2 1 3 0) :length 20000 :scaler 1.0)))
     (do ((i 0 (+ i 1)))
	 ((= i 20000))
       (outa i (* (env ampf) 
		  (nssb gen (* (hz->radians 100.0) 
			       (oscil vib))))))))
|#



;;; --------------------------------------------------------------------------------

;;; G&R first col rows 1&2

(define (nodds x n) 
  (let ((den (sin x))
	(num (sin (* n x))))
    (if (= den 0.0)
	0.0
	(/ (* num num) den))))

(define find-nxysin-max 
  (letrec ((find-mid-max 
	    (let ((ns (lambda (x n) 
			(let* ((a2 (/ x 2))
			       (den (sin a2)))
			  (if (= den 0.0)
			      0.0
			      (/ (* (sin (* n a2)) (sin (* (+ 1 n) a2))) den))))))
	      (lambda (n lo hi)
		(let ((mid (/ (+ lo hi) 2))
		      (ylo (ns lo n))
		      (yhi (ns hi n)))
		  (if (< (abs (- ylo yhi)) nearly-zero) ; was e-100 but that hangs if not using doubles
		      (ns mid n)
		      (find-mid-max n (if (> ylo yhi)
					  (values lo mid)
					  (values mid hi))))))))
	   (find-nodds-mid-max 
	    (lambda (n lo hi)
	      (let ((mid (/ (+ lo hi) 2))
		    (ylo (nodds lo n))
		    (yhi (nodds hi n)))
		(if (< (abs (- ylo yhi)) nearly-zero)
		    (nodds mid n)
		    (find-nodds-mid-max n (if (> ylo yhi)
					      (values lo mid)
					      (values mid hi))))))))
    (lambda (n ratio)
      (case ratio
	((1) (find-mid-max n 0.0 (/ pi (+ n .5))))
	((2) (find-nodds-mid-max n 0.0 (/ pi (+ (* 2 n) 0.5))))
	(else n)))))


(defgenerator (nxysin
	       :make-wrapper (lambda (g)
			       (convert-frequency g)
			       (set! (g 'norm) (/ 1.0 (find-nxysin-max (g 'n) (g 'ratio))))
			       g))
  (frequency 0.0) (ratio 1.0) (n 1) (angle 0.0) fm
  (norm 1.0))


(define nxysin 

  (let ((+documentation+ "(make-nxysin frequency (ratio 1.0) (n 1)) creates an nxysin 
generator. (nxysin gen (fm 0.0)) returns n sines from frequency spaced by frequency * ratio."))

    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((x angle)
	       (y (* x ratio))
	       (den (sin (* y 0.5))))
	  (set! angle (+ angle fm frequency))
	  (if (< (abs den) nearly-zero)
	      0.0
	      (/ (* (sin (+ x (* 0.5 (- n 1) y)))
		    (sin (* 0.5 n y))
		    norm)
		 den)))))))

;;; if x (angle) is constant (an initial-phase offset for a sum of sines,
;;;  the peak amp is nsin-max(n) + abs(sin(initial-phase))*(1 - nsin-max(n))
;;;  that is, it varys sinusoidally from a sum-of-sines .7245 to a sum-of-cosines 1
;;; since we're treating "x" as the carrier (it's not a constant phase offset in this case)
;;;  the output varies as x does, so we have a maxamp of n? There are special cases
;;;  for low n and low integer ratio:

;;;  ratio (4):    (40):   (400):
;;;    1: 3.23      29.34       290.1
;;;    2: 2.9404    28.97       289.7
;;;    3: 3.85      38.6        346.8
;;; 1.123: n
;;;   .5: 3.55      30.0        290

;;; a ratio of 1 gives a sum of equal amplitude sines, so we could use nsin-max?
;;;            2                                odd harmonics -- use noddsin?
;;; else use n (not so great for ratio: 3, but not way off)
;;; worst case right now is probably ratio .5

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-nxysin 300 1/3 3)))
     (do ((i 0 (+ i 1)))
	 ((= i 20000))
       (outa i (nxysin gen)))))

;;; here's the varying initial-phase case:

(with-sound (:clipped #f)
   (let ((x 0.0)
	 (ix (/ pi 1000))
	 (n 100))
     (do ((i 0 (+ i 1)))
	 ((= i 1000))
       (let ((pk 0.0)
	     (phi x)
	     (y 0.0)
	     (iy (/ (* 2 pi) 10000)))
	 (set! x (+ x ix))
	 (do ((k 0 (+ k 1)))
	     ((= k 10000))
	   ;; x = phi
	   (let ((den (sin (/ y 2))))
	     (if (not (= den 0.0))
		 (let ((sum (abs (/ (* (sin (+ phi (* y (/ (- n 1) 2)))) (sin (/ (* n y) 2))) den))))
		   (if (> sum pk)
		       (set! pk sum)))))
	   (set! y (+ y iy)))
	 (outa i pk)))))
|#


(defgenerator (nxycos :make-wrapper convert-frequency)
  (frequency 0.0) (ratio 1.0) (n 1) (angle 0.0) fm)


(define nxycos 

  (let ((+documentation+ "(make-nxycos frequency (ratio 1.0) (n 1)) creates an nxycos generator. (nxycos gen (fm 0.0)) 
returns n cosines from frequency spaced by frequency * ratio."))

    (lambda* (gen (fm 0.0))  
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((x angle)
	       (y (* x ratio))
	       (den (sin (* y 0.5))))
	  (set! angle (+ angle fm frequency))
	  (if (< (abs den) nearly-zero)
	      1.0
	      (/ (* (cos (+ x (* 0.5 (- n 1) y)))
		    (sin (* 0.5 n y)))
		 (* n den)))))))) ; n=normalization

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-nxycos 300 1/3 3)))
     (do ((i 0 (+ i 1)))
	 ((= i 20000))
       (outa i (* .5 (nxycos gen))))))
|#



;;; --------------------------------------------------------------------------------
;;;
;;; G&R first col rows 3 4

(defgenerator (nxy1cos :make-wrapper convert-frequency)
  (frequency 0.0) (ratio 1.0) (n 1) (angle 0.0) fm)


(define nxy1cos 

  (let ((+documentation+ "(make-nxy1cos frequency (ratio 1.0) (n 1)) creates an nxy1cos 
generator. (nxy1cos gen (fm 0.0)) returns 2n cosines from frequency spaced by frequency * ratio with every other cosine multiplied by -1."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((x angle)
	       (y (* x ratio))
	       (den (cos (* y 0.5))))
	  (set! angle (+ angle fm frequency))
	  (if (< (abs den) nearly-zero)
	      -1.0
	      (max -1.0
		   (min 1.0
			(/ (* (sin (* n y))
			      (sin (+ x (* (- n 0.5) y))))
			   (* 2 n den))))))))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-nxy1cos 300 1/3 3)))
    (do ((i 0 (+ i 1)))
	 ((= i 20000))
       (outa i (nxy1cos gen)))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-nxy1cos 300 1/3 3))
	(gen1 (make-nxycos 300 1/3 6)))
     (do ((i 0 (+ i 1)))
	 ((= i 20000))
       (outa i (* 0.4 (+ (nxycos gen1 0.0) (nxy1cos gen)))))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-nxy1cos (radians->hz (* .01 pi)) 1.0 3)))
       (do ((i 0 (+ i 1)))
	   ((= i 20000))
	 (outa i (nxy1cos gen)))))
|#


(defgenerator (nxy1sin :make-wrapper convert-frequency)
  (frequency 0.0) (ratio 1.0) (n 1) (angle 0.0) fm)


(define nxy1sin 

  (let ((+documentation+ "(make-nxy1sin frequency (ratio 1.0) (n 1)) creates an nxy1sin generator.  (nxy1sin gen (fm 0.0)) 
returns n sines from frequency spaced by frequency * ratio with every other sine multiplied by -1."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((x angle)
	       (y (* x ratio))
	       (den (cos (* y 0.5))))
	  (set! angle (+ angle fm frequency))
	  (/ (* (sin (+ x (* 0.5 (- n 1) (+ y pi))))
		(sin (* 0.5 n (+ y pi))))
	     (* n den)))))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-nxy1sin 300 1/3 3)))
     (do ((i 0 (+ i 1)))
	 ((= i 20000))
       (outa i (nxy1sin gen)))))
|#

;;;   we can get the sinusoidally varying maxamp by using e.g. (make-nxy1sin 1 1000 3)
;;;   the peak starts at ca .72 and goes to 1 etc
;;; the peak is just offset from pi (either way)



;;; --------------------------------------------------------------------------------

;;; n odd sinusoids: noddsin, noddcos, noddssb

;;; sndclm.html (G&R) first col 5th row (sum of odd sines)

(define (find-noddsin-max n) 
  (let find-mid-max ((n n)
		     (lo 0.0000)
		     (hi (/ pi (+ (* 2 n) 0.5))))
    (let ((mid (/ (+ lo hi) 2))
	  (ylo (nodds lo n))
	  (yhi (nodds hi n)))
      (if (< (abs (- ylo yhi)) 1e-09)
	  (nodds mid n)
	  (find-mid-max n (if (> ylo yhi) 
			      (values lo mid) 
			      (values mid hi)))))))

(define noddsin-maxes (make-float-vector 100))

(defgenerator (noddsin 
	       :make-wrapper (lambda (g)
			       (set! (g 'n) (max (g 'n) 1))
			       (convert-frequency g)
			       (if (not (and (< (g 'n) 100)
					     (> (noddsin-maxes (g 'n)) 0.0)))
				   (set! (noddsin-maxes (g 'n)) (find-noddsin-max (g 'n))))
			       (set! (g 'norm) (/ 1.0 (noddsin-maxes (g 'n))))
			       g))
  (frequency 0.0) (n 1) (angle 0.0) (norm 1.0) fm)


(define noddsin 

  (let ((+documentation+ "(make-noddsin frequency (n 1)) creates an noddsin generator. (noddsin gen (fm 0.0)) 
returns n odd-numbered sines spaced by frequency."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((snx (sin (* n angle)))
	      (den (sin angle)))
	  (set! angle (+ angle fm frequency))
	  (if (< (abs den) nearly-zero)
	      0.0
	      (/ (* norm snx snx) den)))))))

;;; max is at about: 3*pi/(8*n) -- essentially half of the nsin peak
;;; and we end up with the same max amp as nsin!!
;;; :(/ (* 8 (sin (* pi 3/8)) (sin (* pi 3/8))) (* 3 pi))
;;; 7.245186202974229185687564326622851596478E-1


#|
;;; clarinety
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-noddsin 300 :n 3))
	(ampf (make-env '(0 0 1 1 2 1 3 0) :length 40000 :scaler .5)))
      (do ((i 0 (+ i 1)))
	  ((= i 40000))
	(outa i (* (env ampf) (noddsin gen))))))
|#



(defgenerator (noddcos :make-wrapper convert-frequency)
  (frequency 0.0) (n 1) (angle 0.0) fm)


(define noddcos 
  
  (let ((+documentation+ "(make-noddcos frequency (n 1)) creates an noddcos generator.  (noddcos gen (fm 0.0)) 
returns n odd-numbered cosines spaced by frequency."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((cx angle)
	      (den (* 2 n (sin angle)))) ; "n" here is normalization
	  (set! angle (+ angle fm frequency))
	  (if (< (abs den) nearly-zero)
	      (let ((fang (modulo cx (* 2 pi))))
		;; hopefully this almost never happens...
		(if (or (< fang 0.001)
			(< (abs (- fang (* 2 pi))) 0.001))
		    1.0
		    -1.0))
	      (/ (sin (* 2 n cx)) den)))))))

;;; (Gradshteyn and Ryzhik 1.342)

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-noddcos 100 :n 10)))
      (do ((i 0 (+ i 1)))
	  ((= i 10000))
	(outa i (* .5 (noddcos gen))))))
|#



(defgenerator (noddssb :make-wrapper convert-frequency)
  (frequency 0.0) (ratio 1.0) (n 1) (angle 0.0) fm)


(define noddssb 

  (let ((+documentation+ "(make-noddssb frequency (ratio 1.0) (n 1)) creates an noddssb generator. (noddssb gen (fm 0.0))
returns n sinusoids from frequency spaced by 2 * ratio * frequency."))
    
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((cx angle)
	       (mx (* cx ratio)))
	  (let ((x (- cx mx))
		(sinnx (sin (* n mx)))
		(den (* n (sin mx)))) ; "n" is normalization
	    (set! angle (+ angle fm frequency))
	    (if (< (abs den) nearly-zero)
		(if (< (modulo mx (* 2 pi)) .1)
		    -1.0
		    1.0)
		(- (* (sin x)
		      (/ (* sinnx sinnx) den))
		   (* (cos x)
		      (/ (sin (* 2 n mx))
			 (* 2 den)))))))))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-noddssb 1000.0 0.1 5)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (* .5 (noddssb gen))))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-noddssb 1000.0 0.1 5))
	(vib (make-oscil 5.0)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (* .5 (noddssb gen (* (hz->radians 100.0) (oscil vib))))))))
|#




;;; --------------------------------------------------------------------------------
;;;
;;; various kernels: ncos2 = ncos squared (Fejer), ncos4 = ncos2 squared (Jackson), npcos = Poussin kernel

(defgenerator (ncos2 :make-wrapper convert-frequency)
  (frequency 0.0) (n 1) (angle 0.0) fm)


(define ncos2 

  (let ((+documentation+ "(make-ncos2 frequency (n 1)) creates an ncos2 (Fejer kernel) generator.  (ncos2 gen (fm 0.0)) 
returns n sinusoids spaced by frequency scaled by (n-k)/(n+1)"))
    
    ;; from "Trigonometric Series" Zygmund p88 with changes suggested by Katznelson "Introduction to Harmonic Analysis" p12, and
    ;;   scaling by an extra factor of 1/n+1 to make sure we always peak at 1.0 (I assume callers in this context are interested 
    ;;   in the pulse-train aspect and want easily predictable peak amp).  Harmonics go as (n-i)/n+1.
    
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((x angle)
	       (den (sin (* 0.5 x))))
	  (set! angle (+ angle fm frequency))
	  (if (< (abs den) nearly-zero)
	      1.0
	      (let ((val (/ (sin (* 0.5 (+ n 1) x)) 
			    (* (+ n 1) den))))
		(* val val))))))))

;;; can't use two oscils here because the angles have to line up perfectly

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-ncos2 100.0 :n 10)))
    (do ((i 0 (+ i 1)))
	((= i 20000))
      (outa i (* .5 (ncos2 gen))))))
|#



(define make-ncos4 make-ncos2)

;; Katznelson p16

(define ncos4 

  (let ((+documentation+ "(make-ncos4 frequency (n 1)) creates an ncos4 (Jackson kernel) generator. (ncos4 gen (fm 0.0)) 
returns n sinusoids spaced by frequency scaled by ((n-k)/(n+1))^2"))
  
    (lambda* (gen (fm 0.0))
      (let ((val (ncos2 gen fm)))
	(* val val))))) ; we already normalized this to 1.0

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-ncos4 100.0 :n 10)))
    (do ((i 0 (+ i 1)))
	((= i 20000))
      (outa i (* .5 (ncos4 gen))))))
|#



(defgenerator (npcos :make-wrapper convert-frequency)
  (frequency 0.0) (n 1) (angle 0.0) fm)


(define npcos 
  
  (let ((+documentation+ "(make-npcos frequency (n 1)) creates an npcos (Poussin kernel) generator. (npcos gen (fm 0.0)) 
returns n*2+1 sinusoids spaced by frequency with amplitudes in a sort of tent shape."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((result (let ((den (sin (* 0.5 angle))))
			(if (< (abs den) nearly-zero)
			    1.0
			    (let ((result1 (let ((val (let ((n1 (+ n 1)))
							(/ (sin (* 0.5 n1 angle))
							   (* n1 den)))))
					     (* val val)))
				  (result2 (let ((val (let ((p2n2 (+ (* 2 n) 2)))
							(/ (sin (* 0.5 p2n2 angle)) 
							   (* p2n2 den)))))
					     (* val val))))
			      (- (* 2 result2) result1))))))
	  (set! angle (+ angle fm frequency))
	  result)))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-npcos 100.0 :n 10)))
    (do ((i 0 (+ i 1)))
	((= i 20000))
      (outa i (* .5 (npcos gen))))))
|#


#|

;;; ncos5 and nsin5 are minor variants of nsin and ncos -- the last component is at half amplitude

(defgenerator (ncos5 :make-wrapper convert-frequency)
  (frequency 0.0) (n 1) (angle 0.0) fm)


(define ncos5 
  
  (let ((+documentation+ "(make-ncos5 frequency (n 1)) creates an ncos5 generator.  (ncos5 gen (fm 0.0)) 
returns n cosines spaced by frequency. All are equal amplitude except the first and last at half amp."))
    
    ;; from "Chebyshev Polynomials", Mason and Handscomb, p87
    
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((x angle)
	       (den (tan (* 0.5 x))))
	  (set! angle (+ angle fm frequency))
	  (if (< (abs den) nearly-zero)
	      1.0
	      (/ (- (/ (sin (* n x))
		       (* 2 den))
		    0.5)
		 (- n 0.5))))))))


(with-sound (:clipped #f :statistics #t)
  (let ((gen (make-ncos5 100.0 :n 10)))
    (do ((i 0 (+ i 1)))
	((= i 20000))
      (outa i (* .5 (ncos5 gen))))))


(define (find-nsin5-max n)
  
  (define (find-mid-max n lo hi)
    (define (ns x n)
      (let* ((den (tan (* 0.5 x))))
	(if (< (abs den) nearly-zero)
	    0.0
	    (/ (- 1.0 (cos (* n x)))
	       den))))
    (let ((mid (/ (+ lo hi) 2)))
      (let ((ylo (ns lo n))
	    (yhi (ns hi n)))
	(if (< (abs (- ylo yhi)) 1e-9)
	    (ns mid n)
	    (if (> ylo yhi)
		(find-mid-max n lo mid)
		(find-mid-max n mid hi))))))
  
  (find-mid-max n 0.0 (/ pi (+ n .5))))


(defgenerator (nsin5
	       :make-wrapper (lambda (g)
			       (convert-frequency g)
			       (set! (g 'n) (max 2 (g 'n)))
			       (set! (g 'norm) (find-nsin5-max (g 'n)))
			       g))
  (frequency 0.0) (n 2) (angle 0.0) (norm 1.0) fm)


(define nsin5 

  (let ((+documentation+ "(make-nsin5 frequency (n 1)) creates an nsin5 generator. (nsin5 gen (fm 0.0)) 
returns n sines spaced by frequency. All are equal amplitude except last at half amp."))
    
    ;; from "Chebyshev Polynomials", Mason and Handscomb, p100
    
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((x angle)
	       (den (tan (* 0.5 x))))
	  (set! angle (+ angle fm frequency))
	  (if (< (abs den) nearly-zero)
	      0.0
	      (/ (- 1.0 (cos (* n x)))
		 (* den norm))))))))
    

(define (find-nsin-max n)
  
  (define (find-mid-max n lo hi)
    (define (ns x n) 
      (let* ((a2 (/ x 2))
	     (den (sin a2)))
	(if (= den 0.0)
	    0.0
	    (/ (* (sin (* n a2)) (sin (* (+ 1 n) a2))) den))))
    (let ((mid (/ (+ lo hi) 2)))
      (let ((ylo (ns lo n))
	    (yhi (ns hi n)))
	(if (< (abs (- ylo yhi)) 1e-14)
	    (ns mid n) ; rationalize (/ mid pi) for location
	    (if (> ylo yhi)
		(find-mid-max n lo mid)
		(find-mid-max n mid hi))))))
  
  (find-mid-max n 0.0 (/ pi (+ n .5))))


(with-sound (:clipped #f :statistics #t)
  (let ((gen (make-nsin5 100.0 :n 10)))
    (do ((i 0 (+ i 1)))
	((= i 20000))
      (outa i (nsin5 gen)))))

(let ((norms (list 1.0 0.0)))
  (do ((i 2 (+ i 1)))
      ((= i 40))
    (let* ((res (with-sound (:clipped #f)
 	          (let ((gen (make-nsin5 100.0 :n i)))
		    (do ((i 0 (+ i 1)))
			((= i 20000))
		      (outa i (nsin5 gen))))))
	   (snd (find-sound res)))
      (format () ";~D: ~A" i (maxamp snd 0))
      (set! norms (cons (maxamp snd 0) norms))))
  (reverse norms))

;;; from the same book p 110 is atan(x)/x, if x=cos we get:

(with-sound (:clipped #f :statistics #t)
  (let* ((x 0.0)
	 (freq (hz->radians 100.0)))
    (do ((i 0 (+ i 1)))
	((= i 20000))
      (outa i (/ (- (/ (atan (cos x))
		       (cos x))
		    (* 0.5 1.76275))
		 -0.1187))
      (set! x (+ x freq)))))

(let ((sum 0.0))
  (do ((s 1 (+ s 2)))
      ((>= s 100))
    (set! sum (+ sum (* 4 (/ (expt (- (sqrt 2.0) 1.0) (+ (* 2 s) 1))
			     (+ (* 2 s) 1))))))
  sum) ; ~ 0.096

;;; the evens cancel, each of the odds gets through once
|#




(define generator-max-r 0.999999)
(define generator-min-r -0.999999)
(define (generator-clamp-r r)
  (min generator-max-r (max generator-min-r r)))


;;; --------------------------------------------------------------------------------
;;;
;;; n sinusoids scaled by r: nrsin, nrcos, nrssb

#|
(define nrsin-methods
  (list
   (cons 'mus-frequency
	 (dilambda
	  (lambda (g) (mus-frequency (g 'gen)))
	  (lambda (g val) (set! (mus-frequency (g 'gen)) val))))
   (cons 'mus-scaler
	 (dilambda
	  (lambda (g) (mus-scaler (g 'gen)))
	  (lambda (g val) (set! (mus-scaler (g 'gen)) val))))))

(defgenerator (nrsin
	       :make-wrapper (lambda (g)
			       (set! (g 'r) (generator-clamp-r (g 'r)))
			       (set! (g 'gen) (make-nrxysin (g 'frequency) 1.0 (g 'n) (g 'r)))
			       g)
	       :methods nrsin-methods)
  (frequency 0.0) (n 1) (r 0.5) 
  (gen #f))
|#

(define make-nrsin make-nrxysin)
(define nrsin nrxysin)
(define nrsin? nrxysin?)

;;  "(make-nrsin frequency (n 1) (r 0.5)) creates an nrsin generator.\n\
;;   (nrsin gen (fm 0.0)) returns n sines spaced by frequency with amplitudes scaled by r^k."


(define (nrcos-set-scaler g val)
  (set! (g 'r) (min 0.999999 (max -0.999999 val)))
  (with-let g
    (let ((absr (abs r)))
      (set! rr (* r r))
      (set! r1 (+ 1.0 rr))
      (set! norm (- (/ (- (expt absr n) 1) (- absr 1)) 1.0))
      (set! trouble (or (= n 1) 
			(< absr 1.0e-12)))))
  val)
  
(define nrcos-methods
  (list
   (cons 'mus-order
	 (dilambda
	  (lambda (g) (- (g 'n) 1))
	  (lambda (g val) 
	    (set! (g 'n) (+ 1 val))
	    (set! (g 'e1) (expt (g 'r) (g 'n)))
	    (set! (g 'e2) (expt (g 'r) (+ (g 'n) 1)))
	    (set! (g 'norm) (- (/ (- (expt (abs (g 'r)) (g 'n)) 1) (- (abs (g 'r)) 1)) 1.0))
	    (set! (g 'trouble) (or (= (g 'n) 1) (< (abs (g 'r)) nearly-zero)))
	    val)))
   (cons 'mus-frequency
	 (dilambda
	  (lambda (g) (radians->hz (g 'frequency)))
	  (lambda (g val) (set! (g 'frequency) (hz->radians val)))))
   (cons 'mus-scaler
	 (dilambda
	  (lambda (g) (g 'r))
	  nrcos-set-scaler))))

(defgenerator (nrcos
	       :make-wrapper (lambda (g)
			       (convert-frequency g)
			       (set! (g 'n) (+ 1 (g 'n)))
			       (set! (g 'r) (generator-clamp-r (g 'r)))
			       (set! (g 'rr) (* (g 'r) (g 'r)))
			       (set! (g 'r1) (+ 1.0 (g 'rr)))
			       (set! (g 'e1) (expt (g 'r) (g 'n)))
			       (set! (g 'e2) (expt (g 'r) (+ (g 'n) 1)))
			       (set! (g 'norm) (- (/ (- (expt (abs (g 'r)) (g 'n)) 1) (- (abs (g 'r)) 1)) 1.0)) ; n+1??
			       (set! (g 'trouble) (or (= (g 'n) 1) (< (abs (g 'r)) nearly-zero)))
			       g)
	       :methods nrcos-methods)
  (frequency 0.0) (n 1) (r 0.5) (angle 0.0) fm rr r1 e1 e2 norm trouble)


(define nrcos 

  (let ((+documentation+ "(make-nrcos frequency (n 1) (r 0.5)) creates an nrcos generator. (nrcos gen (fm 0.0)) 
returns n cosines spaced by frequency with amplitudes scaled by r^k."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((x angle)
	      (rcos (* r (cos angle))))
	  (set! angle (+ angle fm frequency))
	  (if trouble
	      0.0
	      (/ (- (+ rcos (* e2 (cos (* (- n 1) x))))
		    (* e1 (cos (* n x))) rr)
		 (* norm (+ r1 (* -2.0 rcos))))))))))

;; it's faster to use polywave here and nrcos->polywave for the partials list (animals.scm) if n is not enormous

;;; formula changed to start at k=1 and n increased so we get 1 to n
;;; here is the preoptimization form:
#|
  (with-let gen
    (let ((x angle))
      (set! angle (+ angle fm frequency))
      (if (or (= n 1)
	      (< (abs r) nearly-zero))
	  0.0
	  (let ((norm (- (/ (- (expt (abs r) n) 1) (- (abs r) 1)) 1.0))) ; n+1??
	    (/ (+ (- (* r (cos x)) 
		     (* (expt r n) (cos (* n x))) (* r r)) 
		  (* (expt r (+ n 1)) (cos (* (- n 1) x))))
	       (* norm (+ 1.0 (* -2.0 r (cos x)) (* r r))))))))
|#

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-nrcos 400.0 :n 5 :r 0.5)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (* .5 (nrcos gen))))))

(with-sound (:clipped #f :statistics #t :play #t :scaled-to .1)
  (let ((gen (make-nrcos 1200.0 :n 3 :r 0.99))
	(mod (make-oscil 400.0)) ; multi-carrier fm
	(index 0.01))
    (do ((i 0 (+ i 1)))
	((= i 30000))
      (outa i (nrcos gen (* index (oscil mod)))))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-nrcos 2000.0 :n 3 :r 0.5))
	(mod (make-oscil 400.0)) ; multi-carrier fm
	(index 0.02))
    (do ((i 0 (+ i 1)))
	((= i 30000))
      (outa i (* .5 (nrcos gen (* index (oscil mod))))))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-nrcos 2000.0 :n 3 :r 0.5))
	(mod (make-oscil 400.0))
	(index (make-env '(0 0 1 .1) :length 30000))) ; or '(0 .4 1 0)
    (do ((i 0 (+ i 1)))
	((= i 30000))
      (outa i (* .5 (nrcos gen (* (env index) (oscil mod))))))))
|#

(definstrument (lutish beg dur freq amp)
  (let ((res1 (max 1 (round (/ 1000.0 (max 1.0 (min 1000.0 freq))))))
	(maxind (max .01 (min .3 (/ (- (log freq) 3.5) 8.0)))))
    (let ((gen (make-nrcos (* freq res1) :n (max 1 (- res1 2))))
	  (mod (make-oscil freq))
	  (start (seconds->samples beg))
	  (stop (seconds->samples (+ beg dur)))
	  (index (make-env (list 0 maxind 1 (* maxind .25) (max dur 2.0) 0.0) :duration dur))
	  (amplitude (make-env (list 0 0  .01 1  .2 1  .5 .5  1 .25  (max dur 2.0) 0.0) :duration dur :scaler amp)))
      (do ((i start (+ i 1)))
	  ((= i stop))
	(let ((ind (env index)))
	  (set! (gen 'r) ind)
	  (outa i (* (env amplitude)
		     (nrcos gen (* ind (oscil mod))))))))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (lutish 0 1 440 .1))

(with-sound (:clipped #f :statistics #t :play #t)
  (do ((i 0 (+ i 1)))
      ((= i 10))
    (lutish (* i .1) 2 (* 100 (+ i 1)) .05)))
|#



;;; G&R second col first and second rows

(defgenerator (nrssb
	       :make-wrapper (lambda (g)
			       (convert-frequency g)
			       (set! (g 'r) (generator-clamp-r (g 'r)))
			       (set! (g 'r) (max (g 'r) 0.0))
			       (set! (g 'rn) (- (expt (g 'r) (g 'n))))
			       (set! (g 'rn1) (expt (g 'r) (+ (g 'n) 1)))
			       (set! (g 'norm) (/ (- (g 'rn) 1) (- (g 'r) 1)))
			       g))
  (frequency 0.0) (ratio 1.0) (n 1) (r 0.5) (angle 0.0) fm interp rn rn1 norm)


(define nrssb 

  (let ((+documentation+ "(make-nrssb frequency (ratio 1.0) (n 1) (r 0.5)) creates an nrssb generator. (nrssb gen (fm 0.0)) 
returns n sinusoids from frequency spaced by frequency * ratio with amplitudes scaled by r^k."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((cx angle)
	       (mx (* cx ratio)))
	  (let ((nmx (* n mx))
		(n1mx (* (- n 1) mx))
		(den (* norm (+ 1.0 (* -2.0 r (cos mx)) (* r r)))))
	    (set! angle (+ angle fm frequency))
	    (/ (- (* (sin cx)
		     (+ (* r (sin mx))
			(* rn (sin nmx))
			(* rn1 (sin n1mx))))
		  (* (cos cx)
		     (+ 1.0
			(* -1.0 r (cos mx))
			(* rn (cos nmx))
			(* rn1 (cos n1mx)))))
	       den)))))))


(define nrssb-interp 

  (let ((+documentation+ "(make-nrssb frequency (ratio 1.0) (n 1) (r 0.5)) creates an nrssb generator for use with 
nrssb-interp. (nrssb-interp gen fm interp) returns n sinusoids from frequency spaced by frequency * ratio with amplitudes 
scaled by r^k. The 'interp' argument determines whether the sidebands are above (1.0) or below (-1.0) frequency."))

    (lambda (gen fm interp)
      (let-set! gen 'fm fm)
      (let-set! gen 'interp interp)
      (with-let gen
	(let* ((cx angle)
	       (mx (* cx ratio)))
	  (let ((nmx (* n mx))
		(n1mx (* (- n 1) mx))
		(den (* norm (+ 1.0 (* -2.0 r (cos mx)) (* r r)))))
	    (set! angle (+ angle fm frequency))
	    (/ (- (* interp 
		     (sin cx)
		     (+ (* r (sin mx))
			(* rn (sin nmx))
			(* rn1 (sin n1mx))))
		  (* (cos cx)
		     (+ 1.0
			(* -1.0 r (cos mx))
			(* rn (cos nmx))
			(* rn1 (cos n1mx)))))
	       den)))))))


#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-nrssb 1000 0.1 5 0.5)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (nrssb gen)))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-nrssb 1000 0.1 5 0.5))
	(vib (make-oscil 5)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (nrssb gen (* (hz->radians 100) (oscil vib)))))))
|#

(definstrument (oboish beg dur freq amp aenv)
  (let ((res1 (max 1 (round (/ 1400.0 (max 1.0 (min 1400.0 freq))))))
	 (mod1 (make-oscil 5.0))
	 (res2 (max 1 (round (/ 2400.0 (max 1.0 (min 2400.0 freq))))))
	 (gen3 (make-oscil freq))
	 (start (seconds->samples beg))
	 (amplitude (make-env aenv :duration dur :base 4 :scaler amp))
	 (skenv (make-env (list 0.0 0.0 1 1 2.0 (mus-random 1.0) 3.0 0.0 (max 4.0 (* dur 20.0)) 0.0) 
			  :duration dur :scaler (hz->radians (random (* freq .05)))))
	 (relamp (+ .85 (random .1)))
	 (avib (make-rand-interp 5 .2))
	 (hfreq (hz->radians freq))
	 (h3freq (hz->radians (* .003 freq)))
	 (scl (/ 0.05 amp)))
    (let ((gen (make-nrssb (* freq res1) (/ res1) :n res1 :r 0.75))
	  (gen2 (make-oscil (* freq res2)))
	  (stop (+ start (seconds->samples dur))))
      (do ((i start (+ i 1)))
	  ((= i stop))
	(let ((result (let* ((vol (* (+ .8 (rand-interp avib)) 
				     (env amplitude)))
			     (vola (* scl vol))
			     (vib (+ (* h3freq (oscil mod1))
				     (env skenv))))
			 (* vol
			    (+ (* (- relamp vola) 
				  (nrssb-interp gen (* res1 vib) -1.0))
			       (* (- (+ 1.0 vola) relamp) 
				  (oscil gen2 (+ (* vib res2) 
						 (* hfreq (oscil gen3 vib))))))))))
	  (outa i result)
	  (if *reverb* (outa i (* .01 result) *reverb*)))))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (oboish 0 1 300 .1 '(0 0 1 1 2 0)))

(with-sound (:clipped #f :statistics #t :play #t)
  (do ((i 0 (+ i 1)))
      ((= i 10))
    (oboish (* i .3) .4 (+ 100 (* 50 i)) .05 '(0 0 1 1 2 1 3 0))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((rats (vector 1 256/243 9/8 32/27 81/64 4/3 1024/729 3/2 128/81 27/16 16/9 243/128 2))
	(mode (vector 0 0 2 4 11 11 5 6 7 9 2 12 0)))
    (do ((i 0 (+ i 1)))
	((= i 20))
      (oboish (/ (random 32) 8) 
	      (/ (+ 3 (random 8)) 8)
	      (* 16.351 16 (rats (mode (random 12))))
	      (+ .25 (random .25))
	      (let* ((pt1 (random 1.0))
		     (pt2 (+ pt1 (random 1.0)))
		     (pt3 (+ pt2 (random 1.0))))
		(list 0 0 pt1 1 pt2 .5 pt3 0))))))

;;; .85 .15 (* 2 freq) 300, 2400 + 0.5*vib
|#




;;; --------------------------------------------------------------------------------
;;;
;;; n sinusoids scaled by k: nkssb


;;; G&R first col ksinkx cases

(define nkssb-methods
  (list
   (cons 'mus-order
	 (dilambda
	  (lambda (g) (- (g 'n) 1))
	  (lambda (g val) 
	    (set! (g 'n) (+ 1 val))
	    (set! (g 'norm) (/ (* 0.5 val (- val 1))))))))) ; nominal n is off by 1

(defgenerator (nkssb
	       :make-wrapper (lambda (g)
			       (convert-frequency g)
			       (set! (g 'n) (+ 1 (g 'n))) ; sum goes 1 to n-1
			       (set! (g 'norm) (/ (* 0.5 (g 'n) (- (g 'n) 1))))
			       g)
	       :methods nkssb-methods)
  (frequency 0.0) (ratio 1.0) (n 1) (angle 0.0) fm interp norm)


(define nkssb 

  (let ((+documentation+ "(make-nkssb frequency (ratio 1.0) (n 1)) creates an nkssb generator. (nkssb gen (fm 0.0))
returns n sinusoids from frequency spaced by frequency * ratio with amplitude k."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((x (* angle ratio)))
	  (let ((cxx (- angle x))
		(sx2 (sin (* 0.5 x)))
		(nx (* n x))
		(nx2 (* 0.5 (- (* 2 n) 1) x)))
	    (let ((sx22 (* 2 sx2))
		  (sxsx (* 4 sx2 sx2)))
	      (set! angle (+ angle fm frequency))
	      (if (< (abs sx2) 1.0e-8)
		  -1.0
		  (let ((s1 (- (/ (sin nx) sxsx)
			       (/ (* n (cos nx2)) sx22)))
			(c1 (- (/ (* n (sin nx2)) sx22)
			       (/ (- 1.0 (cos nx)) sxsx))))
		    (* (- (* s1 (sin cxx))
			  (* c1 (cos cxx)))
		       norm))))))))))


(define nkssb-interp 

  (let ((+documentation+ "  (make-nkssb-interp frequency (ratio 1.0) (n 1)) creates an nkssb generator for 
nkssb-interp. (nkssb-interp gen fm interp) returns n sinusoids from frequency spaced by frequency * ratio 
with amplitude k. The 'interp' argument determines whether the sidebands are above (1.0) or below (-1.0) frequency."))
  
    (lambda (gen fm interp)
      (let-set! gen 'fm fm)
      (let-set! gen 'interp interp)
      (with-let gen
	(let ((x (* angle ratio)))
	  (let ((cxx (- angle x))
		(sx2 (sin (* 0.5 x))))
	    (let ((sx22 (* 2 sx2))
		  (sxsx (* 4 sx2 sx2))
		  (nx (* n x))
		  (nx2 (* 0.5 (- (* 2 n) 1) x)))
	      (set! angle (+ angle fm frequency))
	      (if (< (abs sx2) 1.0e-8)
		  1.0
		  (let ((s1 (- (/ (sin nx) sxsx)
			       (/ (* n (cos nx2)) sx22)))
			(c1 (- (/ (* n (sin nx2)) sx22)
			       (/ (- 1.0 (cos nx)) sxsx))))
		    (* (- (* c1 (cos cxx))
			  (* interp (sin cxx) s1))
		       norm))))))))))                    ; peak seems to be solid right through the interpolation

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-nkssb 1000.0 0.1 5)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (nkssb gen)))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-nkssb 1000.0 0.1 5))
	(vib (make-oscil 5.0))
	(vibamp (hz->radians 50.0)))
    (do ((i 0 (+ i 1)))
	((= i 30000))
      (outa i (nkssb gen (* vibamp (oscil vib)))))))
|#

(definstrument (nkssber beg dur freq mfreq n vibfreq amp)
  (let ((start (seconds->samples beg))
	 (stop (seconds->samples (+ beg dur)))
	 (gen (make-nkssb freq (/ mfreq freq) n))
	 (move (make-env '(0 1 1 -1) :duration dur))
	 (vib (make-polywave vibfreq (list 1 (hz->radians (* (/ freq mfreq) 5.0))) mus-chebyshev-second-kind))
	 (ampf (make-env '(0 0 1 1 5 1 6 0) :scaler amp :duration dur)))
    (do ((i start (+ i 1)))
	((= i stop))
      (outa i (* (env ampf)
		 (nkssb-interp gen 
			       (polywave vib)
			       (env move))) ; interp env
	    ))))

#|
(with-sound (:play #t)
  (nkssber 0 1 1000 100 5 5 0.5)
  (nkssber 1 2 600 100 4 1 0.5)
  (nkssber 3 2 1000 540 3 3 0.5)
  (nkssber 5 4 300 120 2 0.25 0.5)
  (nkssber 9 1 30 4 40 0.5 0.5)
  (nkssber 10 1 20 6 80 0.5 0.5))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-nkssb 1000.0 0.1 5))
	(move (make-env '(0 1 1 -1) :length 30000))
	(vib (make-oscil 5.0))
	(vibamp (hz->radians 50.0)))
    (do ((i 0 (+ i 1)))
	((= i 30000))
      (outa i (* 0.5 (nkssb-interp gen 
				   (* vibamp (oscil vib))
				   (env move))) ; interp env
	    ))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-nkssb 600.0 1/6 4))
	(vib (make-oscil 1.0))
	(vibamp (hz->radians 30.0)))
    (do ((i 0 (+ i 1)))
	((= i 100000)) 
      (let ((intrp (oscil vib)))
	(outa i (* 0.5 (nkssb-interp gen 
				     (* vibamp intrp)
				     intrp)))))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-nkssb 1000.0 (/ 540 1000) 3))
	(vib (make-oscil 3.0)) ; 0.3  or 125 + 0.25 and 2 -> circling sound
	(vibamp (hz->radians (* (/ 1000 540) 5.0))))
    (do ((i 0 (+ i 1)))
	((= i 100000)) 
      (let ((intrp (oscil vib)))
	(outa i (* 0.5 (nkssb-interp gen 
				     (* vibamp intrp)
				     intrp)))))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-nkssb 300.0 (/ 120 300) 2))
	(vib (make-oscil 0.25))
	(vibamp (hz->radians (* (/ 300 120) 5.0))))
    (do ((i 0 (+ i 1)))
	((= i 300000)) 
      (let ((intrp (oscil vib)))
	(outa i (* 0.5 (nkssb-interp gen 
				     (* vibamp intrp)
				     intrp)))))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-nkssb 30.0 (/ 4 30) 40))
	(vib (make-oscil 0.5))
	(vibamp (hz->radians (* (/ 30 4) 5.0))))
    (do ((i 0 (+ i 1)))
	((= i 300000)) 
      (let ((intrp (oscil vib)))
	(outa i (* 0.5 (nkssb-interp gen 
				     (* vibamp intrp)
				     intrp)))))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-nkssb 20.0 (/ 6 20) 80)) ; 120 8 80 (100), 6 400
	
	(vib (make-oscil 0.5))
	(vibamp (hz->radians (* (/ 20 6) 5.0))))
    (do ((i 0 (+ i 1)))
	((= i 300000))
      (let ((intrp (oscil vib)))
	(outa i (* 0.5 (nkssb-interp gen 
				     (* vibamp intrp)
				     intrp)))))))
|#


;;; --------------------------------------------------------------------------------

;;; n cos scaled by sin(k*pi/(n+1))/sin(pi/(n+1))
;;; "Biased Trigonometric Polynomials", Montgomery and Vorhauer
;;; American Math Monthly vol 114 no 9 Nov 2007

(defgenerator (nsincos
	       :make-wrapper (lambda (g)
			       (let ((n (g 'n)))
				 (convert-frequency g)
				 (set! (g 'n2) (/ (+ n 1) 2))
				 (set! (g 'cosn) (cos (/ pi (+ n 1))))
				 (do ((k 1 (+ k 1)))
				     ((> k n))
				   (set! (g 'norm) (+ (g 'norm) 
						      (/ (sin (/ (* k pi) (+ n 1))) 
							 (sin (/ pi (+ n 1)))))))
				 g)))
  (frequency 0.0) (n 1) 
  (angle 0.0) (n2 1.0) (cosn 1.0) (norm 0.0) fm)


(define nsincos 

  (let ((+documentation+ "(make-nsincos frequency (n 1)) creates an nsincos generator.  (nsincos gen (fm 0.0)) 
returns n cosines spaced by frequency with amplitude sin(k*pi/(n+1))/sin(pi/(n+1))"))

    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((x angle)
	       (num (cos (* n2 x))))
	  (set! angle (+ angle fm frequency))
	  (/ (* num num)
	     (* norm (- (cos x) cosn))))))))

#|
(with-sound (:clipped #f :statistics #t :play #f)
  (let ((gen (make-nsincos 100.0 3)))
    (do ((i 0 (+ i 1)))
	((= i 20000))
      (outa i (nsincos gen)))))
|#




;;; --------------------------------------------------------------------------------
;;;
;;; Ramanujan, "On certain Arithmetical Functions"

(defgenerator (n1cos :make-wrapper convert-frequency)
  (frequency 0.0) (n 1) (angle 0.0) fm)

(define* (n1cos gen (fm 0.0))
  (let-set! gen 'fm fm)
  (with-let gen
    (let* ((x angle)
	   (tn (tan (* 0.5 x))))
      (set! angle (+ angle fm frequency))
      (if (< (abs tn) 1.0e-6)
	  1.0
	  (/ (- 1.0 (cos (* n x)))
	     (* tn tn
		n n 2)))))) ; normalization -- this still has the very large DC term

#|
(with-sound (:clipped #f)
  (let ((gen (make-n1cos 100.0 10)))
    (do ((i 0 (+ i 1)))
	((= i 44100))
      (outa i (n1cos gen)))))
|#



#|
;;; --------------------------------------------------------------------------------

;;; not sure the next two are interesting -- 2 more kernels

;;; Dimitrov and Merlo

(defgenerator (npos1cos :make-wrapper convert-frequency)
  (frequency 0.0) (n 1) (angle 0.0) fm)


(define npos1cos 

  (let ((+documentation+ "(make-npos1cos frequency (n 1)) creates an npos1cos generator. (npos1cos gen (fm 0.0)) 
returns n cosines spaced by frequency."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((x angle)
	       (num (- (* (+ n 2) (sin (/ (* n x) 2)))
		       (* n (sin (/ (* (+ n 2) x) 2)))))
	       (sx (sin (/ x 2)))
	       (den (* 4 n (+ n 1) (+ n 2) sx sx sx sx)))
	  (set! angle (+ angle fm frequency))
	  (if (< (abs den) nearly-zero)
	      0.0
	      (/ (* 3 num num)
		 den)))))))

;;; needs normalization and no DC.   side amps seem close


(with-sound (:clipped #f :statistics #t :play #f)
  (let ((gen (make-npos1cos 100.0 3)))
    (do ((i 0 (+ i 1)))
	((= i 20000))
      (outa i (npos1cos gen)))))


(defgenerator (npos3cos :make-wrapper convert-frequency)
  (frequency 0.0) (n 1) (angle 0.0) fm)


(define npos3cos 

  (let ((+documentation+ "(make-npos3cos frequency (n 1)) creates an npos3cos generator. (npos3cos gen (fm 0.0)) 
returns n cosines spaced by frequency."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((x angle)
	       (sx (sin (/ x 2)))
	       (den (* (+ (* 4 n) 2) sx sx)))
	  (set! angle (+ angle fm frequency))
	  (if (< (abs den) nearly-zero)
	      (* 1.0 n)
	      (/ (- 2 (cos (* n x)) (cos (* (+ n 1) x)))
		 den)))))))

;;; needs normalization and no DC, peak at den=0 not right.   side amps seem close

(with-sound (:clipped #f :statistics #t :play #f)
  (let ((gen (make-npos3cos 100.0 3)))
    (do ((i 0 (+ i 1)))
	((= i 20000))
      (outa i (npos3cos gen)))))
|#




;;; --------------------------------------------------------------------------------
;;;
;;; inf sinusoids scaled by r: rcos, rssb

(define rcos-methods
  (list
   (cons 'mus-frequency
	 (dilambda
	  (lambda (g) (mus-frequency (g 'osc)))
	  (lambda (g val) (set! (mus-frequency (g 'osc)) val))))
   
   (cons 'mus-scaler
	 (dilambda
	  (lambda (g) (g 'r))
	  (lambda (g val) 
	    (set! (g 'r) (generator-clamp-r val))
	    (set! (g 'rr) (* (g 'r) (g 'r)))
	    (set! (g 'rr+1) (+ 1.0 (g 'rr)))
	    (set! (g 'rr-1) (- 1.0 (g 'rr)))
	    (set! (g 'r2) (* 2.0 (g 'r)))
	    (let ((absr (abs (g 'r))))
	      (set! (g 'norm) (if (< absr nearly-zero) 0.0 (/ (- 1.0 absr) (* 2.0 absr)))))
	    val)))
   
   (cons 'mus-phase
	 (dilambda
	  (lambda (g) (mus-phase (g 'osc)))
	  (lambda (g val) (set! (mus-phase (g 'osc)) val))))))

(defgenerator (rcos
	       :make-wrapper (lambda (g)
			       (set! (g 'osc) (make-oscil (g 'frequency) (* 0.5 pi)))
			       (set! (g 'r) (generator-clamp-r (g 'r)))
			       (set! (g 'rr) (* (g 'r) (g 'r)))
			       (set! (g 'rr+1) (+ 1.0 (g 'rr)))
			       (set! (g 'rr-1) (- 1.0 (g 'rr)))
			       (set! (g 'r2) (* 2.0 (g 'r)))
			       (let ((absr (abs (g 'r))))
				 (set! (g 'norm) (if (< absr nearly-zero) 0.0 (/ (- 1.0 absr) (* 2.0 absr)))))
			       g)
	       :methods rcos-methods)
  (frequency 0.0) (r 0.5) fm
  (osc #f) rr norm rr+1 rr-1 r2)

(define rcos 
  
  (let ((+documentation+ "(make-rcos frequency (r 0.5)) creates an rcos generator. (rcos gen (fm 0.0)) 
returns many cosines spaced by frequency with amplitude r^k."))
  
    ;; from Andrews, Askey, Roy "Special Functions" 5.1.16, p243. r^k cos sum
    ;; a variant of the G&R second col 4th row
    
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(* (- (/ rr-1 (- rr+1 (* r2 (oscil osc fm)))) 1.0) norm)))))

#|
  (with-let gen
    (let ((absr (abs r))
	  (rr (* r r)))
      (if (< absr nearly-zero)
	  0.0                       ; 1.0 from the formula, but we're subtracting out DC
	  (* (- (/ (- 1.0 rr)
		   (- (+ 1.0 rr)
		      (* 2.0 r (oscil osc fm))))
		1.0)
	     (/ (- 1.0 absr) (* 2.0 absr))))))) ; normalization
|#

#|
;;; G&R form:
(define* (rcos gen (fm 0.0))
  (let-set! gen 'fm fm)
  (with-let gen
    (let* ((absr (abs r))
	   (rcosx (* r (oscil osc fm))))
      (* (- (/ (- 1.0 rcosx)
	       (+ 1.0 
		  (* r r)
		  (* -2.0 rcosx)))
	    1.0)
	 (/ (- 1.0 absr) absr))))) ; normalization
|#

;;; if r>0 we get the spike at multiples of 2pi, since the k*pi case is flipping -1 1 -1 etc
;;; if r<0, we get the spike at multiples of (2k-1)pi since the r sign now counteracts the cos k*pi sign
;;;  so the peak amp is the same in the two cases, so the normalization has to use abs(r)!
;;;  but in the k*pi case we tend to miss k*pi (whereas we never miss 0 since we start there),
;;;  so the actual maxamp may be less than 1.0



#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-rcos 100.0 :r 0.5)))
    (do ((i 0 (+ i 1)))
	((= i 20000))
      (outa i (rcos gen)))))
|#

;; this uses rkoddssb below

(definstrument (stringy beg dur freq amp)
  (let ((n (floor (/ *clm-srate* (* 3 freq)))))
    (let ((start (seconds->samples beg))
	  (stop (seconds->samples (+ beg dur)))
	  (r (expt .001 (/ n))))
      (let ((carrier (make-rcos freq (* .5 r)))
	    (clang (make-rkoddssb (* freq 2) (/ 1.618 2) r))
	    (ampf (make-env '(0 0 1 1 2 .5 4 .25 10 0) :scaler amp :duration dur))
	    (clangf (make-env '(0 0 .1 1 .2 .1 .3 0) :scaler (* amp .5) :duration .1))
	    (rf (make-env '(0 1 1 0) :scaler (* 0.5 r) :duration dur))
	    (crf (make-env '(0 1 1 0) :scaler r :duration .1)))
	(let ((set-clang-scaler (setter (clang 'mus-scaler))))
	  (do ((i start (+ i 1)))
	      ((= i stop))
	    (set-clang-scaler clang (env crf))  ;(set! (mus-scaler clang) (env crf))
	    (set! (carrier 'r) (env rf))
	    (outa i (+ (* (env clangf)
			  (rkoddssb clang 0.0))
		       (* (env ampf)
			  (rcos carrier 0.0))))))))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (stringy 0 1 1000 .5))

(with-sound (:clipped #f :statistics #t :play #t)
  (do ((i 0 (+ i 1)))
      ((= i 10))
    (stringy (* i .3) .3 (+ 200 (* 100 i)) .5)))
|#


(define rssb-methods
  (list
   (cons 'mus-scaler
	 (dilambda
	  (lambda (g) (g 'r))
	  (lambda (g val) (set! (g 'r) (generator-clamp-r val)))))))

(defgenerator (rssb 
	       :make-wrapper (lambda (g)
			       (convert-frequency g)
			       (set! (g 'r) (generator-clamp-r (g 'r)))
			       g)
	       
	       :methods rssb-methods)
  (frequency 0.0) (ratio 1.0) (r 0.5) (angle 0.0) fm interp)


(define rssb 

  (let ((+documentation+ "(make-rssb frequency (ratio 1.0) (r 0.5)) creates an rssb generator. (rssb gen (fm 0.0))
 returns many cosines from frequency spaced by frequency * ratio with amplitude r^k."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((angle1 angle)
	       (angle2 (* angle1 ratio)))
	  (let ((carsin (sin angle1))
		(canrcos (cos angle1))
		(den (+ 1.0 (* r r) (* -2.0 r (cos angle2))))
		(sumsin (* r (sin angle2)))
		(sumcos (- 1.0 (* r (cos angle2)))))
	    (set! angle (+ angle1 fm frequency))
	    (/ (- (* carsin sumsin)
		  (* canrcos sumcos))
	       (* 2 den))))))))


(define rssb-interp 

  (let ((+documentation+ "(make-rssb frequency (ratio 1.0) (r 0.5)) creates an rssb generator for 
rssb-interp. (rssb-interp gen fm interp) returns many cosines from frequency spaced by frequency * ratio 
with amplitude r^k. The 'interp' argument determines whether the sidebands are above (1.0) or below (-1.0) frequency."))
  
    (lambda (gen fm interp)
      (let-set! gen 'fm fm)
      (let-set! gen 'interp interp)
      (with-let gen
	(let* ((angle1 angle)
	       (angle2 (* angle1 ratio)))
	  (let ((carsin (sin angle1))
		(canrcos (cos angle1))
		(den (+ 1.0 (* r r) (* -2.0 r (cos angle2))))
		(sumsin (* r (sin angle2)))
		(sumcos (- 1.0 (* r (cos angle2)))))
	    (set! angle (+ angle1 fm frequency))
	    (/ (- (* carsin sumsin)
		  (* interp canrcos sumcos))
	       (* 2 den))))))))


(definstrument (bump beg dur freq amp f0 f1 f2)
  (let ((start (seconds->samples beg))
	(stop (seconds->samples (+ beg dur)))
	(res0 (round (/ f0 freq)))
	(res1 (round (/ f1 freq)))
	(res2 (round (/ f2 freq))))
    (let ((gen1 (make-rssb (* res0 freq) (/ res0) .4))
	  (gen2 (make-rssb (* res1 freq) (/ res1) .5))
	  (gen3 (make-rssb (* res2 freq) (/ res2) .6))
	  (ampf (make-env '(0 0 .1 1 2 .5 3 .1 4 1 5 .4 6 .1 80 0) :scaler amp :base 32 :duration dur)) ; or 50 at end
	  ;;           or '(0 0 .1 1 2 .5 3 .1 4 .3 5 .1 40 0)
	  (pervib (make-triangle-wave 5.0 (hz->radians 3.0)))
	  (ranvib (make-rand-interp 12.0 (hz->radians 2.0))))
      (do ((i start (+ i 1)))
	  ((= i stop))
	(let ((vib (+ (rand-interp ranvib)
		      (triangle-wave pervib))))
	  (outa i (* (env ampf)
		     (+ (* .85 (rssb-interp gen1 (* res0 vib) -1))
			(* .1 (rssb-interp gen2 (* res1 vib) 0))
			(* .05 (rssb-interp gen3 (* res2 vib) 1))))))))))

#|
(with-sound (:play #t)
  (do ((k 0 (+ k 1))) 
      ((= k 10))
    (bump (* 0.4 k) 1 (* 16.3 (expt 2.0 (+ 3 (/ k 12)))) .5 520 1190 2390))
  (do ((k 0 (+ k 1))) 
      ((= k 10))
    (let* ((freq (* 16.3 (expt 2.0 (+ 3 (/ k 12)))))
	   (scl (sqrt (/ freq 120))))
      (bump (+ 4 (* 0.4 k)) 1 freq  .5 (* scl 520) (* scl 1190) (* scl 2390)))))

(with-sound (:clipped #f :statistics #t :play #t) 
  (do ((k 0 (+ k 1))) 
      ((= k 10))
    (let* ((freq (* 16.3 (expt 2.0 (+ 3 (/ k 12))))) ; if oct=5 (and env end at 100), sort of hammered string effect
	   (f0 520) ; "uh"
	   (f1 1190)
	   (f2 2390)
	   ;; "ah" is good: 730 1090 2440
	   ;; it might be smoother to scale the formant freqs by (sqrt (/ freq 120)) or even (expt (/ freq 120) 0.3)
	   (res0 (round (/ f0 freq)))
	   (res1 (round (/ f1 freq)))
	   (res2 (round (/ f2 freq)))
	   (gen1 (make-rssb (* res0 freq) (/ res0) .4))
	   (gen2 (make-rssb (* res1 freq) (/ res1) .5))
	   (gen3 (make-rssb (* res2 freq) (/ res2) .6))
	   (ampf (make-env '(0 0 .1 1 2 .5 3 .1 4 1 5 .4 6 .1 80 0) :scaler .5 :base 32 :length 60000)) ; or 50 at end
	   ;;           or '(0 0 .1 1 2 .5 3 .1 4 .3 5 .1 40 0)
	   (pervib (make-triangle-wave 5.0 (hz->radians 3.0)))
	   (ranvib (make-rand-interp 12.0 (hz->radians 2.0))))
      (do ((i 0 (+ i 1)))
	  ((= i 60000))
	(let ((vib (+ (rand-interp ranvib)
		      (triangle-wave pervib))))
	  (outa (+ i (* k 30000)) (* (env ampf)
				     (+ (* .85 (rssb-interp gen1 (* res0 vib) -1))
					(* .1 (rssb-interp gen2 (* res1 vib) 0))
					(* .05 (rssb-interp gen3 (* res2 vib) 1))))))))))

(with-sound (:clipped #f :statistics #t :play #t) 
  (do ((k 0 (+ k 1))) 
      ((= k 10))
    (let* ((freq (* 16.3 (expt 2.0 (+ 3 (/ k 12))))) ; froggy if oct=1 or 2 and "ah" (env end at 10 = cycling) ("er" is good too at oct=2)
	   (scl (sqrt (/ freq 120)))
	   (f0 (* scl 520)) ; "uh"
	   (f1 (* scl 1190))
	   (f2 (* scl 2390))
	   ;; "ah" is good: 730 1090 2440
	   (res0 (floor (/ f0 freq)))
	   (res1 (floor (/ f1 freq)))
	   (res2 (floor (/ f2 freq)))
	   (gen1 (make-rk!ssb (* res0 freq) (/ res0) 2.4))
	   (gen2 (make-rssb (* res1 freq) (/ res1) .5))
	   (gen3 (make-rssb (* res2 freq) (/ res2) .6))
	   (ampf (make-env '(0 0 .1 1 2 .5 3 .1 4 .3 5 .4 6 .1 40 0) :scaler .5 :base 32 :length 60000)) ; or 50 at end
	   ;;           or '(0 0 .1 1 2 .5 3 .1 4 .3 5 .1 40 0)
	   (pervib (make-triangle-wave 5.0 (hz->radians 3.0)))
	   (ranvib (make-rand-interp 12.0 (hz->radians 2.0))))
      (do ((i 0 (+ i 1)))
	  ((= i 60000))
	(let ((vib (+ (rand-interp ranvib)
		      (triangle-wave pervib))))
	  (outa (+ i (* k 30000)) (* (env ampf)
				     (+ (* .85 (rk!ssb gen1 (* res0 vib)))
					(* .1 (rssb-interp gen2 (* res1 vib) 0))
					(* .05 (rssb-interp gen3 (* res2 vib) 1))))))))))

(with-sound (:clipped #f :statistics #t :play #t) 
  (do ((k 0 (+ k 1))) 
      ((= k 10))
    (let* ((freq (* 16.3 (expt 2.0 (+ 3 (/ k 12)))))
	   (scl (sqrt (/ freq 120)))
	   (f0 (* scl 490)) ; "uh"
	   (f1 (* scl 1350))
	   (f2 (* scl 2440))
	   ;; "ah" is good: 730 1090 2440
	   (res0 (floor (/ f0 freq)))
	   (res1 (floor (/ f1 freq)))
	   (res2 (floor (/ f2 freq)))
	   (gen1 (make-rk!ssb (* res0 freq) (/ res0) 2))
	   (gen2 (make-rk!ssb (* res1 freq) (/ res1) 3))
	   (gen3 (make-rk!ssb (* res2 freq) (/ res2) 3))
	   (ampf (make-env '(0 0 .1 1 2 .5 3 .1 4 .3 5 .4 6 .1 40 0) :scaler .5 :base 32 :length 30000))
	   (pervib (make-triangle-wave 5.0 (hz->radians 3.0)))
	   (ranvib (make-rand-interp 12.0 (hz->radians 2.0))))
      (do ((i 0 (+ i 1)))
	  ((= i 30000))
	(let ((vib (+ (rand-interp ranvib)
		      (triangle-wave pervib))))
	  (outa (+ i (* k 30000)) (* (env ampf)
				     (+ (* .85 (rk!ssb gen1 (* res0 vib)))
					(* .1 (rk!ssb gen2 (* res1 vib)))
					(* .05 (rk!ssb gen3 (* res2 vib)))))))))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-rssb 2000.0 (/ 103.0 2000) 0.5)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (rssb gen)))))
|#


;;; --------------------------------------------------------------------------------
;;;
;;; rxysin
;;;
;;; similar to rssb: (JO first)

(define rxysin-methods
  (list
   (cons 'mus-scaler
	 (dilambda
	  (lambda (g) (g 'r))
	  (lambda (g val) 
	    (set! (g 'r) (generator-clamp-r val))
	    (set! (g 'r2) (* -2.0 (g 'r)))
	    (set! (g 'rr) (+ 1.0 (* (g 'r) (g 'r)))))))))
  
(defgenerator (rxysin
	       :make-wrapper (lambda (g)
			       (convert-frequency g)
			       (set! (g 'r) (generator-clamp-r (g 'r)))
			       (set! (g 'r2) (* -2.0 (g 'r)))
			       (set! (g 'rr) (+ 1.0 (* (g 'r) (g 'r))))
			       g)
	       :methods rxysin-methods)
  (frequency 0.0) (ratio 1.0) (r 0.5) (angle 0.0) fm rr r2)


(define rxysin 

  (let ((+documentation+ "(make-rxysin frequency (ratio 1.0) (r 0.5)) creates an rxysin generator (similar to rssb). (rxysin gen (fm 0.0)) 
returns many sines from frequency spaced by frequency * ratio with amplitude r^k."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((x angle)
	       (y (* x ratio)))
	  (set! angle (+ angle fm frequency))
	  (/ (- (sin x)
		(* r (sin (- x y))))
	     (+ rr (* r2 (cos y)))))))))
    
#|
(with-sound (:clipped #f :statistics #t :play #t :scaled-to .5)
  (let ((gen (make-rxysin 1000 0.1 0.5)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (rxysin gen)))))
|#


(define rxycos-methods
  (list
   (cons 'mus-scaler
	 (dilambda
	  (lambda (g) (g 'r))
	  (lambda (g val) 
	    (set! (g 'r) (generator-clamp-r val))
	    (set! (g 'r2) (* -2.0 (g 'r)))
	    (set! (g 'rr) (+ 1.0 (* (g 'r) (g 'r))))
	    (set! (g 'norm) (- 1.0 (abs (g 'r)))))))))

(defgenerator (rxycos
	       :make-wrapper (lambda (g)
			       (convert-frequency g)
			       (set! (g 'r) (generator-clamp-r (g 'r)))
			       (set! (g 'r2) (* -2.0 (g 'r)))
			       (set! (g 'rr) (+ 1.0 (* (g 'r) (g 'r))))
			       (set! (g 'norm) (- 1.0 (abs (g 'r)))) ; abs for negative r
			       g)
	       :methods rxycos-methods)
  (frequency 0.0) (ratio 1.0) (r 0.5) (angle 0.0) fm norm rr r2)


(define rxycos 

  (let ((+documentation+ "(make-rxycos frequency (ratio 1.0) (r 0.5)) creates an rxycos generator.  (rxycos gen (fm 0.0)) 
returns many cosines from frequency spaced by frequency * ratio with amplitude r^k."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((x angle)
	       (y (* x ratio)))
	  (set! angle (+ angle fm frequency))
	  (* (/ (- (cos x)
		   (* r (cos (- x y))))
		(+ rr (* r2 (cos y))))
	     norm))))))

#|
(with-sound (:clipped #f :statistics #t)
  (let ((gen (make-rxycos 1000 0.1 0.5)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (rxycos gen)))))
|#


(define* (clamp-rxycos-r gen (fm 0.0))
  ;; in this case we need to track ratio, as well as r, since the
  ;;   highest frequency goes as x+ky (y=ratio*x); we want the value of k when
  ;;   we reach srate/3, then solve for the corresponding r.
  (let-set! gen 'fm fm)
  (with-let gen
    (let ((maxr (expt cutoff (/ (floor (- (/ two-pi (* 3 ratio (+ fm frequency))) (/ ratio)))))))
      (if (>= r 0.0)
	  (min r maxr)
	  (max r (- maxr))))))

(define safe-rxycos-methods
  (list
   (cons 'mus-scaler
	 (dilambda
	  (lambda (g) (g 'r))
	  (lambda (g val)
	    (set! (g 'r) val)
	    (set! (g 'r) (clamp-rxycos-r g 0.0)))))
   (cons 'mus-frequency
	 (dilambda
	  (lambda (g) (radians->hz (g 'frequency)))
	  (lambda (g val)
	    (set! (g 'frequency) (hz->radians val))
	    (set! (g 'r) (clamp-rxycos-r g 0.0))
	    val)))
   (cons 'mus-offset ; ratio accessor in defgenerator
	 (dilambda
	  (lambda (g) (g 'ratio))
	  (lambda (g val)
	    (set! (g 'ratio) val)
	    (set! (g 'r) (clamp-rxycos-r g 0.0))
	    val)))))

(defgenerator (safe-rxycos
	       :make-wrapper (lambda (g)
			       (convert-frequency g)
			       (set! (g 'r) (clamp-rxycos-r g 0.0))
			       g)
	       :methods safe-rxycos-methods)
  (frequency 0.0) (ratio 1.0) (r 0.5) (angle 0.0) (cutoff 0.001) fm)


(define safe-rxycos 

  (let ((+documentation+ "(make-safe-rxycos frequency (ratio 1.0) (r 0.5)) creates a safe-rxycos generator.  (safe-rxycos gen (fm 0.0)) 
returns many cosines from frequency spaced by frequency * ratio with amplitude r^k where 'r' is restricted to a safe value."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((x angle)
	      (y (* angle ratio)))
	  (set! angle (+ angle fm frequency))
	  
	  (if (not (= fm 0.0))  ;(set! r (clamp-rxycos-r (curlet) fm))
	      (let ((maxr (expt cutoff (/ (floor (- (/ two-pi (* 3 ratio (+ fm frequency))) (/ ratio)))))))
		(set! r (if (>= r 0.0) (min r maxr) (max r (- maxr))))))
	  
	  (* (/ (- (cos x)
		   (* r (cos (- x y))))
		(+ 1.0 
		   (* -2.0 r (cos y))
		   (* r r)))
	     (- 1.0 (abs r)))))))) ; norm, abs for negative r

#|
(with-sound (:clipped #f :statistics #t)
  (let ((gen (make-safe-rxycos 1000 0.1 0.99)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (safe-rxycos gen)))))
|#




;;; --------------------------------------------------------------------------------

;;; inf cosines scaled by e^-r (special case of rcos): ercos, erssb

;;; sndclm.html G&R second col last row (with normalization)

(define ercos-methods
  (list
   (cons 'mus-frequency
	 (dilambda
	  (lambda (g) (mus-frequency (g 'osc)))
	  (lambda (g val) (set! (mus-frequency (g 'osc)) val))))
   (cons 'mus-phase
	 (dilambda
	  (lambda (g) (mus-phase (g 'osc)))
	  (lambda (g val) (set! (mus-phase (g 'osc)) val))))))
  
(defgenerator (ercos
	       :make-wrapper (lambda (g)
			       (if (<= (g 'r) 0.0) (set! (g 'r) 0.00001))
			       (set! (g 'cosh-t) (cosh (g 'r)))
			       (set! (g 'osc) (make-polywave (g 'frequency) (list 0 (g 'cosh-t) 1 -1.0) mus-chebyshev-second-kind))
			       (let ((exp-t (exp (- (g 'r)))))
				 (set! (g 'offset) (/ (- 1.0 exp-t) (* 2.0 exp-t)))
				 (set! (g 'scaler) (* (sinh (g 'r)) (g 'offset))))
			       g)
	       :methods ercos-methods)
  (frequency 0.0) (r 1.0) fm
  (osc #f) scaler offset cosh-t)


(define ercos 

  (let ((+documentation+ "(make-ercos frequency (r 0.5)) creates an ercos generator (a special case of rcos). (ercos gen (fm 0.0)) 
returns many cosines from frequency with amplitude e^(-kr)."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(- (/ scaler (polywave osc fm)) offset)))))

#|
  (with-let gen
    (- (/ scaler 
	  (- cosh-t (oscil osc fm)))
       offset)))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-ercos 100 :r 1.0)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (ercos gen)))))
|#

(definstrument (ercoser beg dur freq amp r)
  (let ((start (seconds->samples beg))
	 (stop (seconds->samples (+ beg dur)))
	 (gen (make-ercos freq :r r))
	 (t-env (make-env '(0 .1 1 2) :duration dur)))
    (with-let
	(varlet gen 
	  (cons 'start start) (cons 'stop stop) (cons 'amp amp) (cons 't-env t-env) (cons 'gen gen))
      (do ((i start (+ i 1)))
	  ((= i stop))
	(set! r (env t-env))
	(set! cosh-t (cosh r))
	(set! ((mus-data osc) 0) cosh-t)
	(let ((exp-t (exp (- r))))
	  (set! offset (/ (- 1.0 exp-t) (* 2.0 exp-t)))
	  (set! scaler (* (sinh r) offset)))
	(outa i (* amp (ercos gen)))))))

#|
;;; same, but slightly slower
(definstrument (ercoser beg dur freq amp r)
  (let ((start (seconds->samples beg))
	 (stop (seconds->samples (+ beg dur)))
	 (gen (make-ercos freq :r r))
	 (t-env (make-env '(0 .1 1 2) :duration dur)))
    (do ((i start (+ i 1)))
	((= i stop))
      (let ((r (env t-env)))
	(set! (gen 'r) r)
	(set! (gen 'cosh-t) (cosh r))
	(set! ((mus-data (gen 'osc)) 0) (gen 'cosh-t))
	(let ((exp-t (exp (- r))))
	  (set! (gen 'offset) (/ (- 1.0 exp-t) (* 2.0 exp-t)))
	  (set! (gen 'scaler) (* (sinh r) (gen 'offset))))
      (outa i (* amp (ercos gen)))))))
|#

#|
;; change "t" during note -- smoothly changing sum-of-cosines spectra (damped "lute-stop" effect)
(with-sound (:play #t)
  (ercoser 0 1 100 .5 0.1))
|#


(defgenerator (erssb :make-wrapper convert-frequency)
  (frequency 0.0) (ratio 1.0) (r 0.5) (angle 0.0) fm)


(define erssb 

  (let ((+documentation+ "(make-erssb frequency (ratio 1.0) (r 0.5)) creates an erssb generator (a special case of rssb).  (erssb gen (fm 0.0)) 
returns many sinusoids from frequency spaced by frequency * ratio with amplitude e^(-kr)."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((cx angle)
	       (mx (* cx ratio)))
	  (let ((cxx (- cx mx))
		(ccmx (- (cosh r) (cos mx))))
	    (set! angle (+ angle fm frequency))
	    (if (< (abs ccmx) nearly-zero)
		1.0
		(/ (- (* (cos cxx)
			 (- (/ (sinh r) ccmx)
			    1.0))
		      (* (sin cxx)
			 (/ (sin mx) ccmx)))
		   (* 2.0 (- (/ 1.0 (- 1.0 (exp (- r)))) 1.0)))))))))) ; normalization

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-erssb 1000.0 0.1 1.0)))
    (do ((i 0 (+ i 1)))
	((= i 20000))
      (outa i (erssb gen)))))
|#




#|
;;; --------------------------------------------------------------------------------
;;; removed 8-May-08 -- not useful or different from (for example) rk!cos

;;; inf sinusoids scaled by r^2: r2cos, r2sin, r2ssb

;;; Jolley second col second row (first row is cos tweak of this)

(defgenerator (r2sin
	       :make-wrapper (lambda (g)
			       (convert-frequency g)
			       (if (>= (* (g 'r) (g 'r)) 1.0)
				   (set! (g 'r) 0.9999999))
			       g))
  (frequency 0.0) (r 0.5) (angle 0.0) fm)


(define r2sin 

  (let ((+documentation+ "(make-r2sin frequency (r 0.5)) creates an r2sin generator. (r2sin gen (fm 0.0)) 
returns many even-numbered sines from frequency with amplitude r^(2k)/(2k)!."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((x angle))
	  (set! angle (+ angle fm frequency))
	  (* (sinh (* r (cos x)))
	     (sin (* r (sin x)))))))))


;;; even harmonics, but we can't push the upper partials past the (2k)! range, so not very flexible

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-r2sin 100.0 :r 0.5)))
    (do ((i 0 (+ i 1)))
	((= i 20000))
      (outa i (r2sin gen)))))



(defgenerator (r2cos
	       :make-wrapper (lambda (g)
			       (convert-frequency g)
			       (if (>= (* (g 'r) (g 'r)) 1.0)
				   (set! (g 'r) 0.9999999))
			       g))
  (frequency 0.0) (r 0.5) (angle 0.0) fm)


(define r2cos 

  (let ((+documentation+ "(make-r2cos frequency (r 0.5)) creates an r2cos generator. (r2cos gen (fm 0.0)) 
returns many even-numbered cosines from frequency with amplitude r^(2k)/(2k)!."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((x angle))
	  (set! angle (+ angle fm frequency))
	  (/ (- (* (cosh (* r (cos x)))
		   (cos (* r (sin x))))
		1.0)                   ; omit DC
	     (- (cosh r) 1.0)))))))      ; normalize

;;; odd harmonics, but we can't push the upper partials past the (2k)! range, so not very flexible

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-r2cos 100.0 :r 0.5)))
    (do ((i 0 (+ i 1)))
	((= i 20000))
      (outa i (r2cos gen)))))



(defgenerator (r2ssb :make-wrapper convert-frequency)
  (frequency 0.0) (ratio 1.0) (r 0.5) (angle 0.0) fm)


(define r2ssb 

  (let ((+documentation+ "(make-r2ssb frequency (ratio 1.0) (r 0.5)) creates an r2ssb generator. (r2ssb gen (fm 0.0)) 
returns many even-numbered sinusoids from frequency spaced by frequency * ratio, if that makes any sense, with amplitude r^(2k)/(2k)!."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((cx angle)
	       (mx (* cx ratio))
	       (a r)
	       (asinx (* a (sin mx)))
	       (acosx (* a (cos mx))))
	  (set! angle (+ angle fm frequency))
	  (/ (- (* (cos cx)
		   (cosh acosx)
		   (cos asinx))
		(* (sin cx)
		   (sinh acosx)
		   (sin asinx)))
	     (cosh a))))))) ; normalization


(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-r2ssb 1000.0 0.1 0.5)))
    (do ((i 0 (+ i 1)))
	((= i 20000))
      (outa i (r2ssb gen)))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-r2ssb 1000.0 0.1 0.5))
	(vib (make-oscil 5)))
    (do ((i 0 (+ i 1)))
	((= i 20000))
      (outa i (r2ssb gen (* (hz->radians 100.0) (oscil vib)))))))
|#




;;; --------------------------------------------------------------------------------
;;;
;;; inf odd cosines scaled by e^-r: eoddcos

;;; Jolley first col second row
;;;   heads toward a square wave as "r" -> 0.0 (odd harmonics, 1/k amp)

;;; this is the cos side of rkoddssb with r=e^-a

(define eoddcos-methods
  (list
   (cons 'mus-frequency 
	 (dilambda
	  (lambda (g) (mus-frequency (g 'osc)))
	  (lambda (g val) (set! (mus-frequency (g 'osc)) val))))
   (cons 'mus-phase 
	 (dilambda
	  (lambda (g) (mus-phase (g 'osc)))
	  (lambda (g val) (set! (mus-phase (g 'osc)) val))))))

(defgenerator (eoddcos 
	       :make-wrapper (lambda (g)
			       (set! (g 'osc) (make-oscil (g 'frequency) (* 0.5 pi)))
			       g)
	       :methods eoddcos-methods)
  (frequency 0.0) (r 1.0) fm
  (osc #f))


(define eoddcos 

  (let ((+documentation+ "(make-eoddcos frequency (r 0.5)) creates an eoddcos generator.  (eoddcos gen (fm 0.0)) 
returns many cosines from spaced by frequency with amplitude e^(-r)."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((sinha (sinh r)))
	  (if (zero? sinha)
	      0.0 ; just a guess
	      (/ (atan (oscil osc fm) sinha)
		 (atan 1.0 sinha)))))))) ; normalization
    
#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-eoddcos 400.0 :r 1.0)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (eoddcos gen)))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-eoddcos 400.0 :r 0.0))
	(a-env (make-env '(0 0 1 1) :length 10000)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (set! (gen 'r) (env a-env))
      (outa i (eoddcos gen)))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen1 (make-eoddcos 400.0 :r 0.0))
	(gen2 (make-oscil 400.0))
	(a-env (make-env '(0 0 1 1) :length 10000)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (set! (gen 'r1) (env a-env))
      (outa i (* .5 (eoddcos gen1 (* .1 (oscil gen2))))))))
|#


#|
;;; --------------------------------------------------------------------------------
;;; removed 6-May-08

;;; inf odd cosines scaled by complicated mess: koddcos

;;; Jolley first col 5th row 

(define make-koddcos make-oscil)

(define koddcos 

  (let ((+documentation+ "(make-koddcos frequency) creates a koddcos generator. (koddcos gen (fm 0.0)) 
returns many cosines from spaced by frequency with amplitude too messy to write down, and the output looks wrong anyway."))
  
    (lambda* (gen (fm 0.0))
      (let ((arg (* 2.0 (oscil gen fm))))
	(if (>= arg 0.0)
	    (/ (acos (- 1.0 arg)) pi)
	    (/ (acos (+ 1.0 arg)) (- pi)))))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-koddcos 400.0)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (* .3 (koddcos gen))))))

;;; as printed in J, this is not usable -- 1-2sin can be 3 so acos will be complex -- looks like we're missing: x < pi
;;; we get odd harmonics but wrong amps
|#



;;; --------------------------------------------------------------------------------

;;; inf cosines scaled by r^k/k: rkcos, rksin, rkssb

;;; G&R second col 6th row, also J 536
;;; r^k/k -- this sums to ln(1/(1-x)) if x<1 (J 118)

(define rkcos-methods
  (list
   (cons 'mus-frequency
	 (dilambda
	  (lambda (g) (mus-frequency (g 'osc)))
	  (lambda (g val) (set! (mus-frequency (g 'osc)) val))))
   (cons 'mus-scaler
	 (dilambda
	  (lambda (g) (g 'r))
	  (lambda (g val) (set! (g 'r) (generator-clamp-r val)))))
   (cons 'mus-phase
	 (dilambda
	  (lambda (g) (mus-phase (g 'osc)))
	  (lambda (g val) (set! (mus-phase (g 'osc)) val))))))

(defgenerator (rkcos 
	       :make-wrapper (lambda (g)
			       (set! (g 'osc) (make-oscil (g 'frequency) (* 0.5 pi)))
			       (set! (g 'r) (generator-clamp-r (g 'r))) ; or clip at 0.0?
			       (set! (g 'norm) (log (- 1.0 (abs (g 'r)))))
			       g)
	       :methods rkcos-methods)
  (frequency 0.0) (r 0.5) norm fm
  (osc #f))

;;; not very flexible, and very similar to others in the r^k mold


(define rkcos 

  (let ((+documentation+ "(make-rkcos frequency (r 0.5)) creates an rkcos generator.  (rkcos gen (fm 0.0)) 
returns many cosines from spaced by frequency with amplitude (r^k)/k."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((cs (oscil osc fm)))
	  (/ (* 0.5 (log (+ 1.0 (* -2.0 r cs) (* r r))))
	     norm))))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-rkcos 440.0 :r 0.5)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (rkcos gen)))))
|#


(define rksin-methods
  (list
   (cons 'mus-scaler
	 (dilambda
	  (lambda (g) (g 'r))
	  (lambda (g val) (set! (g 'r) (generator-clamp-r val)))))))

(defgenerator (rksin :make-wrapper convert-frequency
		     :methods rksin-methods)
  (frequency 0.0) (r 0.5) (angle 0.0) fm)

;;; normalization based on 0 of derivative of atan arg (for max) at cos x = r,
;;;   so we get a maxamp here of (atan (/ (* r (sin (acos r))) (- 1.0 (* r r))))

(define rksin 

  (let ((+documentation+ "(make-rksin frequency (r 0.5)) creates an rksin generator. (rksin gen (fm 0.0)) 
returns many sines from spaced by frequency with amplitude (r^k)/k."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((x angle))
	  (set! angle (+ angle fm frequency))
	  (/ (atan (* r (sin x))
		   (- 1.0 (* r (cos x))))
	     (atan (* r (sin (acos r)))  ; normalization
		   (- 1.0 (* r r)))))))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-rksin 100.0 :r 0.5)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (rksin gen)))))
|#



(define rkssb-methods
  (list
   (cons 'mus-scaler
	 (dilambda
	  (lambda (g) (g 'r))
	  (lambda (g val) (set! (g 'r) (generator-clamp-r val)))))))

(defgenerator (rkssb
	       :make-wrapper convert-frequency
	       :methods rkssb-methods)
  (frequency 0.0) (ratio 1.0) (r 0.5) (angle 0.0) fm)


(define rkssb 

  (let ((+documentation+ "(make-rkssb frequency (ratio 1.0) (r 0.5)) creates an rkssb generator. (rkssb gen (fm 0.0)) 
returns many sinusoids from frequency from spaced by frequency * ratio with amplitude (r^k)/k."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((cx angle)
	       (mx (* cx ratio)))
	  (let ((cxx (* (- 1.0 ratio) cx))
		(rcosmx (* r (cos mx))))
	    (set! angle (+ angle fm frequency))
	    (/ (- (* (cos cxx)
		     -0.5 (log (+ 1.0 (* -2.0 rcosmx) (* r r))))
		  (* (sin cxx)
		     (atan (* r (sin mx))
			   (- 1.0 rcosmx))))
	       (- (log (- 1.0 (abs r))))))))))) ; normalization

#|
(with-sound (:clipped #f :statistics #t :play #t :scaled-to .5)
  (let ((gen (make-rkssb 1000.0 0.5 :r 0.75)) ; (make-rkssb 300.0 3.0 :r 0.5)
	(ampf (make-env '(0 0 1 1 2 1 3 0) :length 20000)))
    (do ((i 0 (+ i 1)))
	((= i 20000))
      (outa i (* (env ampf) 
		 (rkssb gen))))))
|#



;;; --------------------------------------------------------------------------------

;;; inf cosines scaled by r^k/k!: rk!cos, rk!ssb

;;; G&R second col third from last (simplified)

(define rk!cos-methods
  (list
   (cons 'mus-phase 
	 (dilambda
	  (lambda (g) (g 'angle))
	  (lambda (g val) (set! (g 'angle) val))))))

(defgenerator (rk!cos
	       :make-wrapper (lambda (g)
			       (convert-frequency g)
			       (set! (g 'norm) (/ 1.0 (- (exp (abs r)) 1.0)))
			       g)
	       :methods rk!cos-methods)
  (frequency 0.0) (r 0.5) (angle 0.0) fm norm)


(define rk!cos 

  (let ((+documentation+ "(make-rk!cos frequency (r 0.5)) creates an rk!cos generator. (rk!cos gen (fm 0.0)) 
returns many cosines spaced by frequency with amplitude (r^k)/k!."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((x angle))
	  (set! angle (+ angle fm frequency))
	  (* (- (* (exp (* r (cos x)))
		   (cos (* r (sin x))))
		1.0) ; omit DC
	     norm))))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-rk!cos 440.0 :r 0.5)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (* .5 (rk!cos gen))))))
|#

;;; the k! denominator dominates, so r * ratio = formant center approximately; (n!)^(1/n) 
;;;   so freq=100, r=30, the center of the spectrum is around 3kHz:

#|
(with-sound (:clipped #f :statistics #t :play #t :scaled-to .5)
  (let ((gen (make-rk!cos 100.0 :r 40.0)) 
	(r 40.0) 
	(incr (/ -40.0 100000)))
    (do ((i 0 (+ i 1)))
	((= i 100000)) 
      (set! (gen 'r) r) 
      (set! r (+ r incr))
      (outa i (rk!cos gen)))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-rk!cos 300.0 :r 10.0)) 
	(ampf (make-env '(0 0 .1 1 .2 1 3 .5 5 .25 10 0) :scaler .5 :length 10000))
	(r 10.0) 
	(incr (/ -10.0 10000)))
    (do ((i 0 (+ i 1)))
	((= i 10000)) 
      (set! (gen 'r) r) 
      (set! r (+ r incr))
      (outa i (* (env ampf) (rk!cos gen))))))

(with-sound (:clipped #f :statistics #t :play #t :scaled-to .5)
  (let ((gen (make-rk!cos 1000.0 :r 8.0)) 
	(frqf (make-env '(0 1 1 0) :base 32 :scaler (hz->radians 1000) :length 10000)))
    (do ((i 0 (+ i 1)))
	((= i 10000)) 
      (outa i (rk!cos gen (env frqf))))))

(with-sound (:clipped #f :statistics #t :play #t :scaled-to .5)
  (let ((gen (make-rk!cos 3000.0 :r 1.0)) (ampf (make-env '(0 0 1 1 10 1 11 0) :length 10000))
	(frqf (make-env '(0 1 1 0 2 .25 3 0) :base 3 :scaler (hz->radians 2000) :length 10000)))
    (do ((i 0 (+ i 1)))
	((= i 10000)) 
      (outa i (* (env ampf) (rk!cos gen (env frqf)))))))

(with-sound (:play #t :scaled-to .5)
  (do ((k 0 (+ k 1)))
      ((= k 6))
    (let ((gen (make-rk!cos 3000.0 :r 0.6)) (ampf (make-env '(0 0 1 1 2 1 3 0) :length 3000))
	  (frqf (make-env '(0 0 1 1) :base .1 :scaler (hz->radians 2000) :length 3000))) ; '(0 .5  1 1 2 0 3 0) '(0 1 1 0 2 1 6 -1)
      (do ((i 0 (+ i 1)))
	  ((= i 3000)) 
	(outa (+ i (* k 4000)) 
	      (* (env ampf) 
		 (rk!cos gen (env frqf))))))))

(with-sound (:clipped #f :statistics #t :play #t :scaled-to .5)
  (do ((k 0 (+ k 1)))
      ((= k 6))
    (let ((gen (make-rk!cos 1000.0 :r 1.0)) (ampf (make-env '(0 0 1 1 2 1 3 0) :length 3000))
	  (frqf (make-env '(0 .9 1 1 2 -1) :base .1 :scaler (hz->radians 500) :length 3000)))
      (do ((i 0 (+ i 1)))
	  ((= i 3000)) 
	(outa (+ i (* k 10000)) (* (env ampf) (rk!cos gen (env frqf))))))))

(with-sound (:clipped #f :statistics #t :play #t :scaled-to .5)
  (do ((k 0 (+ k 1)))
      ((= k 6))
    (let ((gen (make-rk!cos 500.0 :r 1.5)) (ampf (make-env '(0 0 1 1 2 1 3 0) :length 3000))
	  (frqf (make-env '(0 1 1 1 2 -1) :base .5 :scaler (hz->radians 400) :length 3000)))
      (do ((i 0 (+ i 1)))
	  ((= i 3000)) 
	(outa (+ i (* k 10000)) (* (env ampf) (rk!cos gen (env frqf))))))))
|#


(defgenerator (rk!ssb :make-wrapper convert-frequency)
  (frequency 0.0) (ratio 1.0) (r 1.0) (angle 0.0) fm)


(define rk!ssb 

  (let ((+documentation+ "(make-rk!ssb frequency (ratio 1.0) (r 0.5)) creates an rk!ssb generator. (rk!ssb gen (fm 0.0)) 
returns many sinusoids from frequency spaced by frequency * ratio with amplitude (r^k)/k!."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((cx angle)
	       (mx (* cx ratio)))
	  (let ((ercosmx (exp (* r (cos mx))))
		(rsinmx (* r (sin mx))))
	    (set! angle (+ angle fm frequency))
	    (/ (- (* (cos cx) ercosmx (cos rsinmx))
		  (* (sin cx) ercosmx (sin rsinmx)))
	       (exp (abs r))))))))) ; normalization (keeping DC term here to get "carrier")

#|
(with-sound (:clipped #f :statistics #t :play #t :scaled-to .5)
  (let ((gen (make-rk!ssb 1000.0 0.1 :r 0.5)) ; (make-rk!ssb 200.0 3.0 :r 2)
	(ampf (make-env '(0 0 1 1 2 1 3 0) :length 20000)))
    (do ((i 0 (+ i 1)))
	((= i 20000))
      (outa i (* (env ampf) (rk!ssb gen))))))

					; (make-rk!ssb 0.0 120.0 :r 15) gives a widely separated wave-train of pulses
					;   so (make-rk!ssb 0.0 40.0 :r 70) is insecty (:r 100)
					;      (make-rk!ssb 0.0 10.0 :r 100) -- some bird? (make-rk!ssb 0.0 15.0 :r 300)
					;      (make-rk!ssb 1000.0 25.0 :r 10) (make-rk!ssb 3000.0 25.0 :r 100) -- another bird (5000)
|#

(definstrument (bouncy beg dur freq amp (bounce-freq 5) (bounce-amp 20))
  (let ((len (seconds->samples dur))
	(start (seconds->samples beg)))
    (let ((gen (make-rk!ssb (* freq 4) 1/4 :r 1.0)) 
	  (gen1 (make-oscil bounce-freq)) 
	  (bouncef (make-env '(0 1 1 0) :base 32 :scaler bounce-amp :duration 1.0))
	  (rf (make-env (list 0 0 1 1 (max 2.0 dur) 0) :base 32 :scaler 3 :duration dur))
	  (ampf (make-env (list 0 0 .01 1 .03 1 1 .15 (max 2 dur) 0.0) :base 32 :scaler amp :duration dur))
	  (stop (+ start len))
	  (fv (make-float-vector len)))
      (do ((i 0 (+ i 1)))
	  ((= i len))
	(float-vector-set! fv i (+ (env rf) (abs (* (env bouncef) (oscil gen1))))))
      (do ((i start (+ i 1))
	   (j 0 (+ j 1)))
	  ((= i stop))
	(set! (gen 'r) (float-vector-ref fv j))
	(outa i (* (env ampf)
		   (rk!ssb gen)))))))

#|
(with-sound (:statistics #t :play #t :clipped #f)
  (bouncy 0 2 300 .5 5 10))

(with-sound (:statistics #t :play #t :clipped #f)
  (bouncy 0 2 200 .5 3 2))
|#
			  


#|
;;; --------------------------------------------------------------------------------
;;; rxyk!cos
;;; moved to clm.c 18-Apr-13)

(defgenerator (rxyk!sin :make-wrapper convert-frequency)
  (frequency 0.0) (ratio 1.0) (r 0.5) (angle 0.0) fm)


(define rxyk!sin 
  
  (let ((+documentation+ "(make-rxyk!sin frequency (ratio 1.0) (r 0.5)) creates an rxyk!sin generator. (rxyk!sin gen (fm 0.0))
returns many sines from frequency spaced by frequency * ratio with amplitude r^k/k!."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((x angle)
	       (y (* x ratio)))
	  (set! angle (+ angle fm frequency))
	  (/ (* (exp (* r (cos y)))
		(sin (+ x (* r (sin y))))) ; was cos by mistake (18-Apr-13)
	     (exp (abs r))))))))


(with-sound (:clipped #f :statistics #t :play #t :scaled-to .5)
  (let ((gen (make-rxyk!sin 1000 0.1 0.5)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (rxyk!sin gen)))))



(defgenerator (rxyk!cos
	       :make-wrapper (lambda (g)
			       (convert-frequency g)
			       (set! (g 'ar) (/ 1.0 (exp (abs (g 'r)))))
			       g))
  (frequency 0.0) (ratio 1.0) (r 0.5) (angle 0.0) fm ar)


(define rxyk!cos 

  (let ((+documentation+ "(make-rxyk!cos frequency (ratio 1.0) (r 0.5)) creates an rxyk!cos generator. (rxyk!cos gen (fm 0.0)) 
returns many cosines from frequency spaced by frequency * ratio with amplitude r^k/k!."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((x angle)
	       (y (* x ratio)))
	  (set! angle (+ angle fm frequency))
	  (* (exp (* r (cos y)))
	     (cos (+ x (* r (sin y))))
	     ar))))))


(with-sound (:clipped #f :statistics #t :play #t :scaled-to .5)
  (let ((gen (make-rxyk!cos 1000 0.1 0.5)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (rxyk!cos gen)))))
|#


(definstrument (brassy beg dur freq amp ampf freqf gliss)
  (let ((gen (make-rxyk!cos freq :r 0.0))
	(start (seconds->samples beg))
	(end (seconds->samples (+ beg dur)))
	(amp-env (make-env ampf :duration dur :scaler amp))
	(pitch-env (make-env freqf :scaler (/ gliss freq) :duration dur))
	(slant (make-moving-average (seconds->samples .05)))
	(vib (make-polywave 5 (list 1 (hz->radians 4.0)) mus-chebyshev-second-kind))
	(harmfrq 0.0)
	(harmonic 0)
	(dist 0.0))
    (set! (mus-increment slant) (* (hz->radians freq) (mus-increment slant)))
    (do ((i start (+ i 1)))
	((= i end))
      (set! harmfrq (env pitch-env))
      (set! harmonic (floor harmfrq))
      (set! dist (abs (- harmfrq harmonic)))
      (set! (mus-scaler gen) (* 20.0 (min .1 dist (- 1.0 dist))))
      (outa i (* (env amp-env)
		 (rxyk!cos gen (+ (moving-average slant harmonic)
				  (polywave vib))))))))
#|
(with-sound (:statistics #t :play #t)
  (brassy 0 4 50 .05 '(0 0 1 1 10 1 11 0) '(0 1 1 0) 1000))
|#




;;; --------------------------------------------------------------------------------

;;; inf cosines scaled by complicated mess: r2k!cos

;;; from Askey "Ramanujan and Hypergeometric Series" in Berndt and Rankin "Ramanujan: Essays and Surveys" p283
;;;
;;; this gives a sum of cosines of decreasing amp where the "k" parameter determines
;;;   the "index" (in FM nomenclature) -- higher k = more cosines

(define r2k!cos-methods
  (list 
   (cons 'mus-frequency
	 (dilambda
	  (lambda (g) (mus-frequency (g 'osc)))
	  (lambda (g val) (set! (mus-frequency (g 'osc)) val))))
   (cons 'mus-phase
	 (dilambda
	  (lambda (g) (mus-phase (g 'osc)))
	  (lambda (g val) (set! (mus-phase (g 'osc)) val))))
   (cons 'mus-copy copy)))

(defgenerator (r2k!cos
	       :make-wrapper (lambda (g)
			       (set! (g 'rr1) (+ 1.0 (* (g 'r) (g 'r))))
			       (set! (g 'r2) (* 2.0 (abs (g 'r))))
			       (set! (g 'norm) (expt (- (g 'rr1) (g 'r2)) (g 'k)))
			       (set! (g 'osc) (make-polywave (g 'frequency) (list 0 (g 'rr1) 1 (- (g 'r2))) mus-chebyshev-second-kind))
			       (set! (g 'k) (- (g 'k)))
			       g)
	       :methods r2k!cos-methods)
  (frequency 0.0) (r 0.5) (k 0.0) rr1 r2 norm fm
  (osc #f))


(define r2k!cos 
  
  (let ((+documentation+ "(make-2rk!cos frequency (r 0.5) (k 0.0)) creates an r2k!cos generator. (r2k!cos gen (fm 0.0)) 
returns many cosines spaced by frequency with amplitude too messy to write down."))

    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(* (expt (polywave osc fm) k) norm)))))

#|
  ;;; old form
  (with-let gen
    (let ((rr1 (+ 1.0 (* r r)))
	  (r2 (* 2 (abs r)))) ; abs for negative r
      (* (expt (- rr1
		  (* r2 (oscil osc fm)))
	       (- k))
	 (expt (- rr1 r2) k))))) ; amplitude normalization
|#

;;; there is still noticable DC offset if r != 0.5 -- could precompute it and subtract (and there's lots of DC anyway)

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-r2k!cos 440.0 :r 0.5 :k 3.0)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (r2k!cos gen)))))

(with-sound (:clipped #f :statistics #t :play #t :scaled-to .5)
  (let ((gen (make-r2k!cos 440.0 :r 0.5 :k 3.0)) 
	(indf (make-env '(0 1 1 0 10 0) :length 80000 :scaler 10.0 :offset 1)))
    (do ((i 0 (+ i 1)))
	((= i 80000)) 
      (set! (gen 'k) (env indf))
      (outa i (r2k!cos gen)))))
|#

(definstrument (pianoy beg dur freq amp)
  (let ((gen (make-r2k!cos freq :r 0.5 :k 3.0)) 
	 (ampf (make-env (list 0 0 .01 1 .03 1 1 .15 (max 2 dur) 0.0) :base 32 :scaler amp :duration dur))
	 (start (seconds->samples beg))
	 (stop (seconds->samples (+ beg dur))))
    (do ((i start (+ i 1)))
	((= i stop))
      (outa i (* (env ampf)
		 (r2k!cos gen))))))

;;; (with-sound (:statistics #t :play #t :clipped #f) (pianoy 0 3 100 .5))
;;; this can be combined with bouncy-like changes to get an evolving sound

(definstrument (pianoy1 beg dur freq amp (bounce-freq 5) (bounce-amp 20))
  (let ((len (seconds->samples dur))
	(start (seconds->samples beg)))
    (let ((gen (make-r2k!cos freq :r 0.5 :k 3.0)) 
	  (gen1 (make-oscil bounce-freq)) 
	  (bouncef (make-env '(0 1 1 0) :base 32 :scaler bounce-amp :duration 1.0))
	  (rf (make-env (list 0 0 1 1 (max 2.0 dur) 0) :base 32 :scaler .1 :offset .25 :duration dur))
	  (ampf (make-env (list 0 0 .01 1 .03 1 1 .15 (max 2 dur) 0.0) :base 32 :scaler amp :duration dur))
	  (stop (+ start len))
	  (fv (make-float-vector len)))
      (do ((i 0 (+ i 1)))
	  ((= i len))
	(float-vector-set! fv i (+ (env rf) (abs (* (env bouncef) (oscil gen1))))))

      (do ((i start (+ i 1))
	   (j 0 (+ j 1)))
	  ((= i stop))
	(set! (gen 'r) (float-vector-ref fv j))
	(outa i (* (env ampf)
		   (r2k!cos gen)))))))

#|
(with-sound (:statistics #t :play #t :clipped #f)
  (pianoy1 0 4 200 .5 1 .1))
|#

(definstrument (pianoy2 beg dur freq amp)
  (let ((gen (make-r2k!cos freq :r 0.5 :k 3.0)) 
	 (ampf (make-env (list 0 0 .01 1 .03 1 1 .15 (max 2 dur) 0.0) :base 32 :scaler amp :duration dur))
	 (knock (make-fmssb 10.0 20.0 :index 1.0))
	 (kmpf (make-env '(0 0 1 1 3 1 100 0) :base 3 :scaler .05 :length 30000))
	 (indf (make-env '(0 1 1 0) :length 30000 :base 3 :scaler 10))
	 (start (seconds->samples beg))
	 (stop (seconds->samples (+ beg dur))))
    (do ((i start (+ i 1)))
	((= i stop))
      (set! (knock 'index) (env indf))
      (outa i (+ (* (env ampf)
		    (r2k!cos gen))
		 (* (env kmpf) 
		    (fmssb knock 0.0)))))))

#|
(with-sound (:clipped #f :statistics #t :play #t) 
  (pianoy2 0 1 100 .5))
|#


;;; --------------------------------------------------------------------------------

;;; inf sines scaled by 1/2^k: k2sin

;;; Jolley first col first row

;;; not flexible -- very similar to several others

(defgenerator (k2sin :make-wrapper convert-frequency)
  (frequency 0.0) (angle 0.0) fm)


(define k2sin 

  (let ((+documentation+ "(make-k2sin frequency) creates a k2sin generator. (k2sin gen (fm 0.0)) 
returns many sines spaced by frequency with amplitude 1/(2^k)."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((x angle))
	  (set! angle (+ angle fm frequency))
	  (/ (* 3.0 (sin x)) ; 3 rather than 4 for normalization
	     (- 5.0 (* 4.0 (cos x)))))))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-k2sin 440.0)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (k2sin gen)))))
|#



;;; using the second Sansone formula, we get the sum of cos case by using a=-5b/4 or 3/(4cosx-5)

(defgenerator (k2cos :make-wrapper convert-frequency)
  (frequency 0.0) (angle 0.0) fm)


(define k2cos 

  (let ((+documentation+ "(make-k2cos frequency) creates a k2cos generator. (k2cos gen (fm 0.0)) 
returns many cosines spaced by frequency with amplitude 1/(2^k)."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((x angle))
	  (set! angle (+ angle fm frequency))
	  (* 0.5 (- (/ 3.0
		       (- 5.0 (* 4.0 (cos x))))
		    1.0)))))))

#|
(with-sound (:clipped #f :statistics #t :play #t :scaled-to .5)
  (let ((gen (make-k2cos 440.0)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (k2cos gen)))))
|#



(defgenerator (k2ssb :make-wrapper convert-frequency)
  (frequency 0.0) (ratio 1.0) (angle 0.0) fm)


(define k2ssb 

  (let ((+documentation+ "(make-k2ssb frequency (ratio 1.0)) creates a k2ssb generator. (k2ssb gen (fm 0.0)) 
returns many sinusoids from frequency spaced by frequency * ratio with amplitude 1/(2^k)."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((cx angle)
	       (mx (* cx ratio)))
	  (set! angle (+ angle fm frequency))
	  (/ (- (* 3 (cos cx))
		(* (sin cx) 4.0 (sin mx)))
	     (* 3.0 (- 5.0 (* 4.0 (cos mx))))))))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-k2ssb 1000.0 0.1)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (* .5 (k2ssb gen))))))
|#



;;; --------------------------------------------------------------------------------


;;; this was inspired by Andrews, Askey, Roy "Special Functions" p396, but there's an error somewhere...
;;;   it produces sum r^k sin(2k-1)x
;;;   (not normalized)

(define dblsum-methods
  (list
   (cons 'mus-frequency
	 (dilambda
	  (lambda (g) (radians->hz (* 0.5 (g 'frequency))))
	  (lambda (g val) (set! (g 'frequency) (hz->radians (* 2 val))) val)))))

(defgenerator (dblsum :make-wrapper convert-frequency
		      :methods dblsum-methods)
  (frequency 0.0) (r 0.5) (angle 0.0) fm)


(define dblsum 

  (let ((+documentation+ "(make-dblsum frequency (r 0.5)) creates a dblsum generator. (dblsum gen (fm 0.0)) 
returns many sines from frequency spaced by frequency * (2k -1) with amplitude r^k (this is buggy)."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((x angle))
	  (set! angle (+ angle fm frequency))
	  (/ (* (+ 1 r) (sin (* 0.5 x)))
	     (* (- 1 r) (+ 1.0 (* -2.0 r (cos x)) (* r r)))))))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-dblsum 100 0.5)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (* .25 (dblsum gen))))))
|#




;;; --------------------------------------------------------------------------------

;;; inf odd sinusoids scaled by r^odd-k/odd-k: rkoddssb

;;;  G&R second col rows 7&8 (odd r^k/k) 

(define rkoddssb-methods
  (list
   (cons 'mus-scaler
	 (dilambda
	  (lambda (g) (g 'r))
	  (lambda (g val) 
	    (set! (g 'r) (generator-clamp-r val))
	    (set! (g 'rr1) (+ 1.0 (* (g 'r) (g 'r))))
	    (set! (g 'norm) (/ 1.0 (- (log (+ 1.0 (g 'r))) (log (- 1.0 (g 'r)))))))))))

(defgenerator (rkoddssb
	       :make-wrapper (lambda (g)
			       (convert-frequency g)
			       (set! (g 'r) (generator-clamp-r (g 'r)))
			       (set! (g 'rr1) (+ 1.0 (* (g 'r) (g 'r))))
			       (set! (g 'norm) (/ 1.0 (- (log (+ 1.0 (g 'r))) (log (- 1.0 (g 'r))))))
			       g)
	       :methods rkoddssb-methods)
  (frequency 0.0) (ratio 1.0) (r 0.5) (angle 0.0) fm rr1 norm)


(define rkoddssb 

  (let ((+documentation+ "(make-rkoddssb frequency (ratio 1.0) (r 0.5)) creates an rkoddssb generator. (rkoddssb gen (fm 0.0)) 
returns many sinusoids from frequency spaced by frequency * 2 * ratio with amplitude (r^(2k-1))/(2k-1)."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((cx angle)
	       (mx (* cx ratio)))
	  (let ((cxx (- cx mx))
		(cmx (* 2.0 r (cos mx))))
	    (set! angle (+ angle fm frequency))
	    (* (- (* (cos cxx)
		     0.5
		     (log (/ (+ rr1 cmx) (- rr1 cmx))))
		  (* (sin cxx)
		     (atan (* 2.0 r (sin mx))
			   (- 1.0 (* r r)))))
	       norm)))))))
#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-rkoddssb 1000.0 0.1 0.5)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (* .5 (rkoddssb gen))))))
|#

(definstrument (glassy beg dur freq amp)
  (let ((r (expt .001 (/ (floor (/ *clm-srate* (* 3 freq)))))))
    (let ((start (seconds->samples beg))
	  (stop (seconds->samples (+ beg dur)))
	  (clang (make-rkoddssb (* freq 2) (/ 1.618 2) r))
	  (clangf (make-env (list 0 0 .01 1 .1 1 .2 .4 (max .3 dur) 0) :scaler amp :duration dur))
	  (crf (make-env '(0 1 1 0) :scaler r :duration dur)))
      (do ((i start (+ i 1)))
	  ((= i stop))
	(set! (clang 'r) (env crf))
	(outa i (* (env clangf)
		   (rkoddssb clang 0.0)))))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (glassy 0 .1 1000 .5))

(with-sound (:clipped #f :statistics #t :play #t)
  (do ((i 0 (+ i 1)))
      ((= i 10))
    (glassy (* i .3) .1 (+ 400 (* 100 i)) .5)))

(with-sound (:statistics #t :play #t :scaled-to .5)
  (let ((gen (make-rkoddssb 5000.0 0.1 0.95))
	(ampf (make-env '(0 0 9 1 10 0) :base 32 :length 10000))
	(noi (make-rand 10000 .1)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (* (env ampf) (sin (rkoddssb gen (rand noi))))))))
|#



;;; --------------------------------------------------------------------------------

;;; inf sinusoids scaled by kr^k: krksin

;;; Zygmund first
;;;   this looks interesting, but how to normalize?  sum of sines is bad enough, kr^k -> r/(1-r)^2 if x^2<1 (since n=inf)
;;;   for low n, we could use the Tn roots stuff (clm.c)
;;;   the formula must be assuming r<1.0 -- if greater than 1 it's acting like r2k! above

(defgenerator (krksin :make-wrapper convert-frequency)
  (frequency 0.0) (r 0.5) (angle 0.0) fm)


(define krksin 

  (let ((+documentation+ "(make-krksin frequency (r 0.5)) creates a krksin generator. (krksin gen (fm 0.0)) 
returns many sines spaced by frequency with amplitude kr^k."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((x angle)
	      (r1 (- 1.0 r)))
	  (let ((r3 (if (> r .9) r1 1.0)) ; not right yet...
		(den (+ 1.0 (* -2.0 r (cos x)) (* r r))))
	    (set! angle (+ angle fm frequency))
	    (/ (* r1 r1 r3 (sin x))
	       (* den den))))))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-krksin 440.0 0.5)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (krksin gen)))))

(with-sound (:clipped #f :statistics #t :scaled-to .5 :play #t)
  (let ((gen (make-krksin 6.0 0.965))) ; 60 .6 also
    (do ((i 0 (+ i 1)))
	((= i 100000))
      (outa i (krksin gen)))))

(do ((i 0 (+ i 1)))
    ((= i 10))
  (let ((mx (maxamp (with-sound (:clipped #f :output (make-float-vector 10000))
		      (let ((gen (make-krksin 20.0 (* i 0.1))))
			(do ((i 0 (+ i 1)))
			    ((= i 10000))
			  (outa i (krksin gen))))))))
    (format () ";~A: ~A" (* 0.1 i) mx)))

;;; relation between 1/(1-x)^2 and peak amp:
(with-sound (:clipped #f)
  (do ((i 0 (+ i 1))
       (r 0.0 (+ r .01)))
      ((= i 100))
    (let ((val (/ 1.0 (expt (- 1 r) 2))))
      (let ((pk 0.0))
	(let ((gen (make-krksin 1.0 r)))
	  (do ((k 0 (+ k 1)))
	      ((= k 100000))
	    (let ((x (abs (krksin gen))))
	      (if (> x pk) (set! pk x)))))
	(outa i (/ pk val))))))

;;; r 0: 1.0 (sin(x) in this case)
;;; else min den is (1-2r+r^2) so peak should be around (/ (expt (+ 1 (* - 2 r) (* r r)) 2))
;;;   but at that point sin(x)->0 as x

|#



#|
;;; --------------------------------------------------------------------------------

;;; absolute value of oscil: abssin

;;; Zygmund second -- not actually very useful, but shows cos 2nx of abs

(define abssin-methods
  (list
   (cons 'mus-frequency
	 (dilambda
	  (lambda (g) (mus-frequency (g 'osc)))
	  (lambda (g val) (set! (mus-frequency (g 'osc)) val))))
   (cons 'mus-phase
	 (dilambda
	  (lambda (g) (mus-phase (g 'osc)))
	  (lambda (g val) (set! (mus-phase (g 'osc)) val))))))

(defgenerator (abssin
	       :make-wrapper (lambda (g)
			       (set! (g 'osc) (make-oscil (g 'frequency)))
			       g)	       
	       :methods abssin-methods)
  (frequency 0.0) fm
  (osc #f))


(define abssin 

  (let ((+documentation+ "(make-abssin frequency) creates an abssin generator. (abssin gen (fm 0.0)) returns (abs oscil)."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(/ (- (abs (oscil osc fm))
	      (/ 2.0 pi))
	   (/ 2.0 pi))))))  ; original went from 0 to 1.0, subtract 2/pi, and we get peak at -2/pi

;; DC: sin^2 x = 1/2 - cos 2x, 
;;   so every term in the sum adds 1/(2(4k^2-1)) -> 1/4 (J 397 or 373)
;;   so DC is 2/pi = 0.6366

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-abssin 440.0)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (abssin gen)))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((vib (make-abssin 100.0)) ; spacing will be 200, if FM you get index-proportional amount as constant offset
	(gen (make-oscil 1000.0))
	(ampf (make-env '(0 0 1 1 2 1 3 0) :scaler .5 :length 20000)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i 
	    (* (env ampf)
	       (oscil gen 0.0 (* 3 (abssin vib 0.0))))))))

;;; pitch is 2*freq, 200 1, 400 .203, 600 .087, 800 .049, 1000 .031, 1200 .021
;;;                      1      .2        .086      .048       .030       .021 -- (/ 3.0 (- (* 4 (* 6 6)) 1))
|#



;;; --------------------------------------------------------------------------------

;;; inf cosines, scaled by (-a+sqrt(a^2-b^2))^n/b^n: abcos

;;; from Sansone, p182, assumptions: a not 0, b not 0, b/a real, abs(b/a)<1 (b less than a)

(defgenerator (abcos
	       :make-wrapper (lambda (g)
			       (convert-frequency g)
			       (set! (g 'ab) (sqrt (- (* (g 'a) (g 'a)) (* (g 'b) (g 'b)))))
			       (set! (g 'norm) (/ 0.5 (- (/ 1.0 (- 1.0 (/ (abs (- (g 'ab) (g 'a))) (g 'b)))) 1.0)))
			       ;; i.e. 1/(1-r) -1 because we start at k=1, r=the complicated a/b business
			       g))
  (frequency 0.0) (a 0.5) (b 0.25) (angle 0.0) ab norm fm)


(define abcos 

  (let ((+documentation+ "(make-abcos frequency (a 0.5) (b 0.25)) creates an abcos generator. (abcos gen (fm 0.0)) 
returns many cosines spaced by frequency with amplitude (-a+sqrt(a^2-b^2))^k/b^k."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((x angle))
	  (set! angle (+ angle fm frequency))
	  (* norm (- (/ ab (+ a (* b (cos x)))) 1.0)))))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-abcos 100.0 0.5 0.25)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (abcos gen)))))
|#



(defgenerator (absin
	       :make-wrapper (lambda (g)
			       (convert-frequency g)
			       (set! (g 'ab) (sqrt (- (* (g 'a) (g 'a)) (* (g 'b) (g 'b)))))
			       g))
  (frequency 0.0) (a 0.5) (b 0.25) (angle 0.0) ab fm)


(define absin 

  (let ((+documentation+ "(make-absin frequency (a 0.5) (b 0.25)) creates an absin generator. (absin gen (fm 0.0)) 
returns many sines spaced by frequency with amplitude (-a+sqrt(a^2-b^2))^k/b^k."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((x angle))
	  (set! angle (+ angle fm frequency))
	  (/ (* ab (sin x) )
	     (+ a (* b (cos x)))))))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-absin 100.0 0.5 0.25)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (* .5 (absin gen))))))
|#




;;; --------------------------------------------------------------------------------

;;; inf cosines scaled by 1/(r^2+k^2): r2k2cos

;;; J second col third row

(defgenerator (r2k2cos :make-wrapper convert-frequency)
  (frequency 0.0) (r 1.0) (angle 0.0) fm)


(define (r2k2cos-norm a)
  ;; J 124
  (- (/ (* pi (cosh (* pi a))) 
	(* 2 a (sinh (* pi a)))) 
     (/ 1.0 (* 2 a a))))

(define r2k2cos 

  (let ((+documentation+ "(make-r2k2cos frequency (r 1.0)) creates an r2k2cos generator. (r2k2cos gen (fm 0.0)) 
returns many cosines spaced by frequency with amplitude 1/(r^2+k^2)."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((x angle))
	  (if (> x (* 2 pi))
	      (set! x (modulo x (* 2 pi))))
	  (set! angle (+ x fm frequency))
	  (/ (- (* pi (/ (cosh (* r (- pi x)))
			 (sinh (* r pi))))
		(/ r))
	     (* 2 r (r2k2cos-norm r))))))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-r2k2cos 100.0 1.0))) ; 400 .25 -- this isn't very flexible
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (* .5 (r2k2cos gen))))))
|#




;;; --------------------------------------------------------------------------------

;;; coskx/k = -ln(2sin(x/2)) or 1/2ln(1/(2-2cosx))
;;; sinkx/k = (pi-x)/2 both 0..2pi
;;; similarly -1^k : x/2 and ln(2cos(x/2)) (p44..46)
;;; 2k-1: pi/x and 1/2ln cot (x/2) 0..2pi and 0..pi
;;; but all of these are unbounded, and discontinuous

;;; --------------------------------------------------------------------------------

#|
;;;  from Stilson/Smith apparently -- was named "Discrete Summation Formula" which doesn't convey anything to me
;;;    Alexander Kritov suggests time-varying "a" is good (this is a translation of his code)

(defgenerator (blsaw :make-wrapper convert-frequency)
  (frequency 0.0) (n 1) (r 0.5) (angle 0.0) fm)


(define blsaw 
  (let ((+documentation+ "(make-blsaw frequency (n 1) (r 0.5)) creates a blsaw generator. (blsaw gen (fm 0.0)) returns a band-limited sawtooth wave."))
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((a r)
	       (N n)
	       (x angle)
	       (incr frequency)
	       (den (+ 1.0 (* -2.0 a (cos x)) (* a a))))
	  (set! angle (+ angle fm incr))
	  (if (< (abs den) nearly-zero)
	      0.0
	      (let* ((s1 (* (expt a (- N 1.0)) (sin (+ (* (- N 1.0) x) incr))))
		     (s2 (* (expt a N) (sin (+ (* N x) incr))))
		     (s3 (* a (sin (+ x incr)))))
		(/ (+ (sin incr) 
		      (- s3) 
		      (- s2) 
		      s1) 
		   den))))))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-blsaw 440.0 :r 0.5 :n 3)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (blsaw gen)))))
|#




;;; --------------------------------------------------------------------------------

;;; asymmetric fm gens

(defgenerator (asyfm :make-wrapper convert-frequency)
  (frequency 0.0) (ratio 1.0) (r 1.0) (index 1.0) (phase 0.0) fm)


(define asyfm-J 
  (let ((+documentation+ "(asyfm-J gen fm) is the same as the CLM asymmetric-fm generator (index=1.0), set r != 1.0 to get the asymmetric spectra"))
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((result (let ((r1 (/ r))
			    (one (if (or (> r 1.0) 
					 (< -1.0 r 0.0))
				     -1.0 1.0))
			    (modphase (* ratio phase)))
			(* (exp (* 0.5 index (- r r1) (+ one (cos modphase))))
			   (cos (+ phase (* 0.5 index (+ r r1) (sin modphase)))))))) ; use cos, not sin, to get predictable amp
	  (set! phase (+ phase fm frequency))
	  result)))))

#|
(with-sound (:clipped #f :statistics #t :play #t) 
  (let ((gen (make-asyfm 2000.0 :ratio .1))) 
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (* .5 (asyfm-J gen))))))

(with-sound (:clipped #f :statistics #t :play #t) 
  (let ((gen (make-asyfm 2000.0 :ratio .1 :index 1))
	(r-env (make-env '(0 -4 1 -1) :length 20000)))
    (do ((i 0 (+ i 1)))
	((= i 20000))
      (set! (gen 'r) (env r-env))
      (outa i (asyfm-J gen)))))

(define (val index r)
  (let ((sum 0.0))
    (do ((i -20 (+ i 1)))
	((= i 21))
      (set! sum (+ sum (* (expt r i) (bes-jn i index)))))
    (let ((norm (exp (* 0.5 index (- r (/ r))))))
      (list sum norm))))

(for-each
 (lambda (index)
   (for-each
    (lambda (r)
      (let ((peak (maxamp (with-sound (:clipped #f :output (make-float-vector 1000))
			    (let ((gen (make-asymmetric-fm 2000.0 :ratio .1 :r r)))
			      (do ((i 0 (+ i 1)))
				  ((= i 1000))
				(outa i (asymmetric-fm gen index))))))))
	(if (> (abs (- peak 1.0)) .1)
	    (format () ";asymmetric-fm peak: ~A, index: ~A, r: ~A" peak index r))))
    (list -10.0 -1.5 -0.5 0.5 1.0 1.5 10.0)))
 (list 1.0 3.0 10.0))
|#

(define asyfm-I 
  (let ((+documentation+ "(asyfm-I gen fm) is the I0 case of the asymmetric-fm generator"))
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((result (let ((r1 (/ r))
			    (modphase (* ratio phase)))
			(* (exp (* 0.5 index (+ r r1) (- (cos modphase) 1.0)))
			   (cos (+ phase (* 0.5 index (- r r1) (sin modphase))))))))
	  (set! phase (+ phase fm frequency))
	  result)))))

#|
(with-sound (:clipped #f :statistics #t :play #t) 
  (let ((gen (make-asyfm 2000.0 :ratio .1))) 
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (* .5 (asyfm-I gen))))))
|#




;;; --------------------------------------------------------------------------------

;;; bess (returns bes-jn, like oscil returns sin) normalized to peak at 1.0
;;;   frequency here is the frequency in Hz of the damped sinusoid part of the bessel function

(define bessel-peaks (vector 1.000 0.582 0.487 0.435 0.400 0.375 0.355 0.338 0.325 0.313 0.303 0.294 0.286 0.279 0.273 0.267 0.262 0.257 0.252 0.248))

(defgenerator (bess
	       :make-wrapper (lambda (g)
			       (convert-frequency g)
			       (set! (g 'norm) (if (>= (g 'n) (length bessel-peaks))
						   (/ 0.67 (expt (g 'n) 1/3))
						   ;; this formula comes from V P Krainov, "Selected Mathetical Methods in Theoretical Physics"
						   (bessel-peaks (g 'n))))
			       g))
  (frequency 0.0) (n 0) (angle 0.0) (norm 1.0) fm)


(define bess 
  (let ((+documentation+ "(make-bess frequency (n 0)) creates a bessel function (Jn) generator. (bess gen (fm 0.0)) returns Jn."))
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((result (/ (bes-jn n angle) norm)))
	  (set! angle (+ angle frequency fm))
	  result)))))


#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-bess 100.0 :n 0)))
    (do ((i 0 (+ i 1)))
	((= i 1000))
      (outa i (bess gen)))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen1 (make-bess 400.0 :n 1))
	(gen2 (make-bess 400.0 :n 1))
	(vol (make-env '(0 0 1 1 9 1 10 0) :scaler 2.0 :length 20000)))
    (do ((i 0 (+ i 1)))
	((= i 20000))
      (outa i (bess gen1 (* (env vol) (bess gen2 0.0)))))))

;;; max amps:
(do ((i 1 (+ i 1)))
    ((= i 100))
  (let ((mx 0.0))
    (do ((k 0.0 (+ k .001)))
	((> k 200))
      (let ((val (bes-jn i k)))
	(if (> (abs val) mx)
	    (set! mx (abs val)))))
    (format () ";~A" (+ mx .001))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen1 (make-bess 400.0 :n 1))
	(gen2 (make-oscil 400.0))
	(vol (make-env '(0 1 1 0) :scaler 1.0 :length 20000)))
    (do ((i 0 (+ i 1)))
	((= i 20000))
      (outa i (bess gen1 (* (env vol) (oscil gen2 0.0)))))))

;;; also gen2 800, env scl 0.2
|#




;;; --------------------------------------------------------------------------------

;;; Watson "Bessel Functions" p358 127 128 (J0(k sqrt(r^2+a^2- 2ar cos x)) = sum em Jm(ka)Jm(kr) cos mx
;;;   em here is "Neumann's factor" (p22) = 1 if m=0, 2 otherwise

(defgenerator (jjcos :make-wrapper convert-frequency)
  (frequency 0.0) (r 0.5) (a 1.0) (k 1.0) (angle 0.0) fm)


(define jjcos 

  (let ((+documentation+ "(make-jjcos frequency (r 0.5) (a 1.0) (k 1)) creates a jjcos generator. (jjcos gen (fm 0.0)) 
returns a sum of cosines scaled by a product of Bessel functions."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((x angle)
	      (dc (* (bes-j0 (* k a)) (bes-j0 (* k r)))))
	  (let ((norm (- (bes-j0 (* k (sqrt (+ (* a a) (* r r) (* -2 a r))))) dc)))
	  
	    ;; this norm only works if the a/r/k values all small enough that the initial J0 bump dominates
	    ;;   if they're large (k=10 for example), later maxes come into play.
	    ;; we need a formula for a sum of JJ's
	    ;;
	    ;; the resultant spectra are similar to FM (we can get sharper bumps, or low-passed bumps, etc)
	    
	    (set! angle (+ angle fm frequency))
	    (/ (- (bes-j0 (* k (sqrt (+ (* r r) 
					(* a a)
					(* a -2.0 r (cos x))))))
		  dc)             ; get rid of DC component
	       norm)))))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-jjcos 100.0 :a 1.0 :r 1.0 :k 1)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (* .5 (jjcos gen))))))

;;; example:
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-jjcos 100.0 :a 2.0 :r 1.0 :k 1)))
    (do ((i 0 (+ i 1)))
	((= i 20000))
      (outa i (jjcos gen)))))

:(* (bes-jn 1 1) (bes-jn 1 2))
0.253788089467046
:(* (bes-jn 2 1) (bes-jn 2 2))
0.0405418594904987
:(* (bes-jn 3 1) (bes-jn 3 2))
0.00252256243314325
:(* (bes-jn 4 1) (bes-jn 4 2))
8.41951242883886e-5
which matches perfectly

set k=10
:(* (bes-jn 1 10) (bes-jn 1 20))
0.00290541944296873
:(* (bes-jn 2 10) (bes-jn 2 20))
-0.0408277687368493
:(* (bes-jn 3 10) (bes-jn 3 20))
-0.00577380202685643
:(* (bes-jn 4 10) (bes-jn 4 20))
-0.0286956880041051
:(* (bes-jn 5 10) (bes-jn 5 20))
-0.0353830269096024
:(* (bes-jn 6 10) (bes-jn 6 20))
7.96480491715688e-4
:(* (bes-jn 7 10) (bes-jn 7 20))
-0.0399227881572529
:(* (bes-jn 8 10) (bes-jn 8 20))
-0.0234795438775677
:(* (bes-jn 9 10) (bes-jn 9 20))
0.0365188087949483
:(* (bes-jn 10 10) (bes-jn 10 20))
0.0386925399194178
:(* (bes-jn 11 10) (bes-jn 11 20))
0.00755397504265978
:(* (bes-jn 12 10) (bes-jn 12 20))
-0.00754046620160803
:(* (bes-jn 13 10) (bes-jn 13 20))
-0.00591450759566936
:(* (bes-jn 14 10) (bes-jn 14 20))
-0.00175050411436045
:(* (bes-jn 15 10) (bes-jn 15 20))
-3.66078549147997e-6

which again matches

(define* (jjsin gen (fm 0.0))
  (let-set! gen 'fm fm)
  (with-let gen
    (let ((x angle))
      (set! angle (+ angle fm frequency))
      (* (sin x)
	 (bes-j0 (* k (sqrt (+ (* r r) 
			       (* a a)
			       (* a (* -2.0 r (cos x)))))))))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-jjcos 100.0 :a 1.0 :r 1.0 :k 1)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (jjsin gen)))))

(define* (jjesin gen (fm 0.0))
  (let-set! gen 'fm fm)
  (with-let gen
    (let ((x angle))
      (set! angle (+ angle fm frequency))
      (* (exp (* r (- (cos x) 1.0))) ; -1 for norm , but there's huge DC offset
	 (bes-j0 (* r (sin x)))))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-jjcos 100.0 :a 1.0 :r 1.0 :k 1)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (jjesin gen)))))

|#



;;; --------------------------------------------------------------------------------

;;; check J0(zsinx) formula 
;;; main difference from FM: index is divided by 2, J value is squared, else just like cos(sin)

(defgenerator (j0evencos :make-wrapper convert-frequency)
  (frequency 0.0) (index 1.0) (angle 0.0) fm)


(define j0evencos 

  (let ((+documentation+ "(make-j0evencos frequency (index 1.0)) creates a j0evencos generator. (j0evencos gen (fm 0.0)) 
returns a sum of cosines scaled Jk^2(index/2)."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((x angle)
	      (dc (let ((j0 (bes-j0 (* 0.5 index))))
		    (* j0 j0))))
	  (set! angle (+ angle fm frequency))
	  (if (= dc 1.0)
	      1.0
	      (/ (- (bes-j0 (* index (sin x)))
		    dc)        ; get rid of DC component
		 (- 1.0 dc)))))))) ; normalize

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-j0evencos 100.0 1.0)))
    (do ((i 0 (+ i 1)))
	((= i 30000))
      (outa i (* .5 (j0evencos gen))))))

index 10 (so 10/2 is the bes-jn arg):

(let ((base (* (bes-jn 4 5.0) (bes-jn 4 5.0)))) ; max (fft norms -> 1.0)
  (do ((i 1 (+ i 1)))
      ((= i 11))
    (format () ";~A: ~A ~A" i (* (bes-jn i 5.0) (bes-jn i 5.0)) (/ (* (bes-jn i 5.0) (bes-jn i 5.0)) base))))
					;1: 0.107308091385168 0.701072497819036
					;2: 0.00216831005396058 0.0141661502497507
					;3: 0.133101826831083 0.86958987897572
					;4: 0.153062759870046 1.0
					;5: 0.0681943848279407 0.445532178342005
					;6: 0.0171737701015899 0.112200839160164
					;7: 0.00284904116112987 0.0186135488707298
					;8: 3.38752000110201e-4 0.00221315753353599
					;9: 3.04735259399795e-5 1.99091705688911e-4
					;10: 2.15444461145164e-6 1.4075563600714e-5

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-j0evencos 100.0 0.0)) 
	(indf (make-env '(0 0 1 20) :length 30000)))
    (do ((i 0 (+ i 1)))
	((= i 30000)) 
      (set! (gen 'index) (env indf))
      (outa i (* 0.5 (j0evencos gen))))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-j0evencos 100.0 0.0)) 
	(indf (make-env '(0 0 1 20) :length 30000))
	(carrier (make-oscil 2000.0)))
    (do ((i 0 (+ i 1)))
	((= i 30000)) 
      (set! (gen 'index) (env indf))
      (outa i (* 0.5 (oscil carrier) (j0evencos gen))))))

;;; why no "carrier"?  I subtracted DC out above -- to make this look right, I need to use the bes(sin) without any fixup.

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-j0evencos 100.0 0.0)) 
	(indf (make-env '(0 20 1 0) :length 30000))
	(carrier (make-oscil 2000.0)))
    (do ((i 0 (+ i 1)))
	((= i 30000)) 
      (set! (gen 'index) (env indf))
      (outa i (* 0.5 (j0evencos gen (oscil carrier)))))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-j0evencos 100.0 0.0))                 ; also 20 800, 20 200 (less index mvt), or 200 50 
	(indf (make-env '(0 10 1 0) :length 30000))
	(carrier (make-oscil 2000.0)))
    (do ((i 0 (+ i 1)))
	((= i 30000)) 
      (set! (gen 'index) (env indf))
      (outa i (* 0.5 (j0evencos gen (* .1 (oscil carrier))))))))

(define (j0even beg dur freq amp mc-ratio index)
  (let* ((gen (make-j0evencos (* mc-ratio freq) 0.0)) 
	 (indf (make-env '(0 10 1 0) :duration dur))
	 (carrier (make-oscil freq))
	 (start (seconds->samples beg))
	 (end (+ start (seconds->samples dur))))
    (do ((i start (+ i 1)))
	((= i end))
      (set! (gen 'index) (env indf))
      (outa i (* 0.5 (j0evencos gen (* index (oscil carrier))))))))

(with-sound (:clipped #f :statistics #t :play #t)
  (do ((i 0 (+ i 1)))
      ((= i 10))
    (j0even i 1.0 2000.0 0.5 (+ .1 (* .05 i)) 0.1)))

(define* (jfm beg dur freq amp mc-ratio index (index-env '(0 1 1 1 2 0)))
  (let* ((start (seconds->samples beg))
         (end (+ start (seconds->samples dur)))
         (md (make-j0evencos (* freq mc-ratio)))
	 (cr (make-oscil 2000))
	 (vib (make-oscil 5))
	 (vibamp (hz->radians (* freq .01)))
         (ampf (make-env '(0 0 1 1 20 1 21 0) :scaler amp :duration dur)) 
         (indf (make-env index-env :scaler index :duration dur)))
    (do ((i start (+ i 1)))
	((= i end))
      (let ((vb (* vibamp (oscil vib))))
	(set! (md 'index) (env indf))
	(outa i (* (env ampf)
		   (oscil cr vb)
		   (j0evencos md (* vb mc-ratio))))))))

(with-sound ("test1.snd" :play #t) (jfm 0 3.0 400.0 0.5 .5 4.0 '(0 1  1 2  2 .5)))
|#


;;; --------------------------------------------------------------------------------

(defgenerator (j2cos
	       :make-wrapper (lambda (g)
			       (convert-frequency g)
			       (set! (g 'n) (max (g 'n) 1))
			       g))
  (frequency 0.0) (r 0.5) (n 1) (angle 0.0) fm)


(define j2cos 

  (let ((+documentation+ "(make-j2cos frequency (r 0.5) (n 1)) creates a j2cos generator. (j2cos gen (fm 0.0)) 
returns a sum of cosines scaled in a very complicated way."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((rsinx2 (* 2.0 r (sin (* 0.5 angle)))))
	  (set! angle (+ angle fm frequency))
	  (if (< (abs rsinx2) nearly-zero)
	      1.0
	      (/ (bes-jn n rsinx2)
		 rsinx2)))))))

;;; this goes berserk if n=0, needs normalization, dc omission, doc/test
;;; if n=1, sample 0 = 1, the rest are in the .5 range!
;;; maybe j2cos isn't all that useful...

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-j2cos 100.0 :r 1.0 :n 0)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (* .5 (j2cos gen))))))
|#




;;; --------------------------------------------------------------------------------

(defgenerator (jpcos
	       :make-wrapper (lambda (g)
			       (convert-frequency g)
			       (if (= (g 'r) (g 'a))
				   (begin
				     (snd-warning (format #f ";jpcos r and a can't be equal (~A)" (g 'r)))
				     (set! (g 'r) (+ (g 'a) .01))))
			       g))
  (frequency 0.0) (r 0.5) (a 0.0) (k 1.0) (angle 0.0) fm)


(define jpcos 

  (let ((+documentation+ "(make-jpcos frequency (r 0.5) (a 0.0) (k 1)) creates a jpcos generator. (jpcos gen (fm 0.0)) 
returns a sum of cosines scaled in a very complicated way."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	;; (dc (/ (* (sin (* k a)) (sin (* k r))) (* k a r)))
	;; from P0(x)=1, J[1/2](x)=sqrt(2/(pi x))sin(x), omitting original 1/pi
	;;   G&R 914 (8.464), 974 (8.912), but it's missing some remaining (small) component
	;; also omitting the original divide by (* pi (sqrt arg)) -- it's just an amplitude scaler
	;;   and in this context, we get -1..1 peak amps from the sin anyway.
	(let ((arg (+ (* r r) 
		       (* a a)
		       (* a -2.0 r (cos angle)))))
	  (set! angle (+ angle fm frequency))
	  (if (< (abs arg) nearly-zero) ; r = a, darn it! This will produce a spike, but at least it's not a NaN
	      1.0
	      (sin (* k (sqrt arg)))))))))

#|
(with-sound (:clipped #f :statistics #t)
  (let ((gen (make-jpcos 100.0 :a 1.0 :r 0.5 :k 1)))
    (do ((i 0 (+ i 1)))
	((= i 210000))
      (outa i (jpcos gen)))))

(with-sound (:clipped #f :statistics #t)
  (let* ((gen (make-jpcos 400.0 :a 1.0 :r 0.5 :k 10))
	 (dur 1.0)
	 (samps (seconds->samples dur))
	 (ampf (make-env '(0 0 1 1 10 1 11 0) :duration dur :scaler 0.5))
	 (indf (make-env '(0 0 1 1) :duration dur :scaler 1.0)))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (set! (gen 'r) (env indf))
      (outa i (* (env ampf)
		 (jpcos gen))))))

;;; -.725, 1/.275
(with-sound (:clipped #f :scaled-to .5) 
  (let* ((gen (make-oscil 100.0))) 
    (do ((i 0 (+ i 1))) 
	((= i 44100)) 
      (outa i (sqrt (+ 1.0 (oscil gen)))))))

(with-sound (:clipped #f :scaled-to .5) 
  (let* ((gen (make-oscil 100.0))
	 (indf (make-env '(0 .1 1 .9) :length 44100)))
    (do ((i 0 (+ i 1))) 
	((= i 44100)) 
      (let ((ind (env indf)))
	(outa i (sqrt (+ (* 1.0 1.0) (* ind ind) (* -2 1.0 ind (oscil gen)))))))))

;;; rkcos r=.4 or so (.6?), so rkcos+indf is mostly equivalent? (k=scaler in both)

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-rkcos 440.0 :r 0.6)) 
	(gen1 (make-oscil 440.0)) 
	(indf (make-env '(0 .1 1 .8) :length 50000)))
    (do ((i 0 (+ i 1)))
	((= i 50000)) 
      (set! (gen 'r) (env indf))
      (outa i (oscil gen1 (* (gen 'r) (rkcos gen)))))))
|#



;;; --------------------------------------------------------------------------------

(defgenerator (jncos :make-wrapper (lambda (g)
				     (convert-frequency g)
				     (set! (g 'ra) (+ (* (g 'a) (g 'a)) (* (g 'r) (g 'r))))
				     g))
  (frequency 0.0) (r 0.5) (a 1.0) (n 0) (angle 0.0) ra fm)


(define jncos 

  (let ((+documentation+ "(make-jncos frequency (r 0.5) (a 1.0) (n 0)) creates a jncos generator. (jncos gen (fm 0.0)) 
returns a sum of cosines scaled in a very complicated way."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((arg (sqrt (+ ra (* a -2.0 r (cos angle))))))
	  (set! angle (+ angle fm frequency))
	  (if (< arg nearly-zero)
	      1.0
	      (/ (bes-jn n arg)
		 (expt arg n))))))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-jncos 100.0 :a 0.5 :r 1.0 :n 0)))
    (do ((i 0 (+ i 1)))
	((= i 41000))
      (outa i (jncos gen)))))
|#



;;; --------------------------------------------------------------------------------

;;; use J0(cos)+J1(cos) to get full spectrum

(defgenerator (j0j1cos :make-wrapper convert-frequency)
  (frequency 0.0) (index 1.0) (angle 0.0) fm)


(define j0j1cos 

  (let ((+documentation+ "(make-j0j1cos frequency (index 1.0)) creates a j0j1cos generator. (j0j1cos gen (fm 0.0)) 
returns a sum of cosines scaled in a very complicated way."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((dc (let ((j0 (bes-j0 (* 0.5 index))))
		    (* j0 j0)))
	      (arg (* index (cos angle))))
	  (set! angle (+ angle fm frequency))
	  (/ (- (+ (bes-j0 arg)
		   (bes-j1 arg))
		dc)        ; get rid of DC component
	     1.215))))))   ; not the best...
    
					; need to normalize j0j1cos -- min depends on index, so peak depends on max and min and dc
					;       (max (- 1.2154 dc)
					;	    (- -0.5530 dc)

#|
(let ((mx 0.0) (x 0.0) (saved-x 0.0))
  (do ((i 0 (+ i 1)))
      ((= i 1000))
    (let ((val (+ (bes-j0 x) (bes-j1 x))))
      (if (> (abs val) mx)
	  (begin
	    (set! mx (abs val))
	    (set! saved-x x)))
      (set! x (+ x .001))))
  (list mx saved-x))

(1.21533317877749 0.825000000000001)
(1.21533318495717 0.824863000002882)
(1.21533318495718 0.824863061409846)

(-0.552933995255066 4.57000000000269)
(-0.552933995483144 4.56997100028488)

(do ((i 0 (+ i 1)))
    ((= i 10))
  (let ((pk (maxamp 
	     (with-sound ((make-float-vector 10000))
  	       (let ((gen (make-j0j1cos 100.0 i)))
		 (do ((i 0 (+ i 1)))
		     ((= i 10000))
		   (outa i (j0j1cos gen))))))))
    (format () ";~A: ~A" i pk)))
					;0: 0.0
					;1: 0.555559098720551
					;2: 0.938335597515106
					;3: 0.953315675258636
					;4: 1.16509592533112
					;5: 1.21275520324707
					;6: 1.14727067947388
					;7: 1.07083106040955
					;8: 1.05760526657104
					;9: 1.11238932609558
					;10: 1.1824289560318
					;11: 1.21528387069702
					;12: 1.19094204902649
					;13: 1.14720714092255
					;14: 1.12512302398682

|#

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-j0j1cos 100.0 1.0)))
    (do ((i 0 (+ i 1)))
	((= i 30000))
      (outa i (j0j1cos gen)))))
|#



;;; --------------------------------------------------------------------------------

(defgenerator (jycos
	       :make-wrapper (lambda (g)
			       (convert-frequency g)
			       (set! (g 'r) (max .0001 (g 'r))) ; 0->inf in bes-y0
			       (let ((a (g 'a)) ; "c"
				     (r (g 'r))); "b"
				 (if (<= r a)
				     (format () ";jycos a: ~A must be < r: ~A" a r))
				 (if (<= (+ (* a a) (* r r)) (* 2 a r))
				     (format () ";jycos a: ~A, r: ~A will cause bes-y0 to return -inf!" a r)))
			       g))
  (frequency 0.0) (r 1.0) (a 0.5) ; "b" and "c" in the docs
  (angle 0.0) fm)


(define jycos 

  (let ((+documentation+ "(make-jycos frequency (r 1.0) (a 0.5)) creates a jycos generator. (jycos gen (fm 0.0)) 
returns a sum of cosines scaled by Yn(r)*Jn(r)."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((x angle)
	      (b2c2 (+ (* r r) (* a a)))
	      (dc (* (bes-y0 r) (bes-j0 a))))
	  (let ((norm (abs (- (bes-y0 (sqrt (+ b2c2 (* -2 r a)))) dc))))
	    (set! angle (+ angle fm frequency))
	    (/ (- (bes-y0 (sqrt (+ b2c2 (* -2.0 r a (cos x))))) dc) norm)))))))

;;; oops -- bes-y0(0) is -inf!
;;; norm only works for "reasonable" a and r

#|
(with-sound (:clipped #f :statistics #t :play #f)
  (let ((gen (make-jycos 100.0 1.5 1.0))
	(af (make-env '(0 0 1 1) :length 30000))
	(rf (make-env '(0 3 1 3) :length 30000))
	(ampf (make-env '(0 0 1 1 10 1 11 0) :scaler 0.5 :length 30000)))
    (do ((i 0 (+ i 1)))
	((= i 30000))
      (set! (gen 'a) (env af))
      (set! (gen 'r) (env rf))
      (outa i (* (env ampf)
		 (jycos gen))))))

:(* (bes-yn 1 1.5) (bes-jn 1 1.0))
-0.181436652807559
:(* (bes-yn 2 1.5) (bes-jn 2 1.0))
-0.107112311628537
:(* (bes-yn 3 1.5) (bes-jn 3 1.0))
-0.0405654243875417

:(/ .107 .181)
0.591160220994475  [0.600]
:(/ .040 .181)
0.220994475138122  [0.228]
|#



;;; --------------------------------------------------------------------------------

#|
(defgenerator (jcos :make-wrapper convert-frequency)
  (frequency 0.0) (n 0) (r 1.0) (a 0.5) ; "b" and "c" in the docs
  (angle 0.0) fm)


(define jcos 

  (let ((+documentation+ "(make-jcos frequency (n 0) (r 1.0) (a 0.5)) creates a jcos generator. (jcos gen (fm 0.0)) 
returns a sum of cosines scaled in some complex manner."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((x angle)
	       (b r)
	       (c a)
	       (dc (* (bes-j0 b) (bes-j0 c))))
	  (set! angle (+ angle fm frequency))
	  (- (bes-jn n (* (+ n 1) (sqrt (+ (* b b) (* c c) (* -2.0 b c (cos x))))))
	     dc))))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-jcos 100.0 0 1.0 1.0)))
    (do ((i 0 (+ i 1)))
	((= i 30000))
      (outa i (jcos gen)))))
|#



;;; --------------------------------------------------------------------------------

#|
(defgenerator (sin2n :make-wrapper convert-frequency)
  (frequency 0.0) (n 1) (r 1.0) (angle 0.0) fm)


(define sin2n 
  (let ((+documentation+ "(make-sin2n frequency (n 0) (r 1.0)) creates a sin2n generator. (sin2n gen (fm 0.0)) returns (r*sin)^(2n)"))
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((x angle))
	  (set! angle (+ angle fm frequency))
	  (expt (* r (sin x)) (* 2 n)))))))
    
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-sin2n 100.0 2 1.0)))
    (do ((i 0 (+ i 1)))
	((= i 30000))
      (outa i (sin2n gen)))))
|#



;;; --------------------------------------------------------------------------------

#|
;;; do we need modulo 2*pi for the angles? (it is not used in clm.c)

:(let ((ph 0.0)) (do ((i 0 (+ i 1))) ((= i 22050)) (set! ph (+ ph (hz->radians 100.0)))) ph)
628.31850751536

:(let ((ph (* 2 pi 1000000))) (do ((i 0 (+ i 1))) ((= i 22050)) (set! ph (+ ph (hz->radians 100.0)))) (- ph (* 2 pi 1000000)))
628.318502381444

:(let ((ph (* 2 pi 1000000000))) (do ((i 0 (+ i 1))) ((= i 22050)) (set! ph (+ ph (hz->radians 100.0)))) (- ph (* 2 pi 1000000000)))
628.311109542847

:(let ((ph (* 2 pi 1000000000000))) (do ((i 0 (+ i 1))) ((= i 22050)) (set! ph (+ ph (hz->radians 100.0)))) (- ph (* 2 pi 1000000000000)))
624.462890625

;; similar results from running oscil with 0.0 initial-phase, and 2*pi*1000000000, or running one
;;   oscil for 3 hours at 6000 Hz -- the sinusoid is clean even around an angle of a billion -- worst 
;;   case increment is pi, so we get (say) a billion samples before we may notice a sag => ca. 8 hours.  
;;   I think that's a long enough tone...  (In clm.c and here, the phase and increment are both doubles;
;;   53 bits of mantissa, billion=30, so we still have about 23 bits, which actually matches results above).
|#


;;; --------------------------------------------------------------------------------

;;; blackman as a waveform -- all the other fft windows could be implemented
;;;   perhaps most useful as an amplitude envelope

#|
(defgenerator (blackman
	       :make-wrapper (lambda (g)
			       (let ((n (g 'n)))
				 (set! n (min (max n 1) 10))
				 (convert-frequency g)
				 (case n
				   ((1) (set! (g 'coeffs) (float-vector 0.54 -0.46)))
				   ((2) (set! (g 'coeffs) (float-vector 0.34401 -0.49755 0.15844)))
				   ((3) (set! (g 'coeffs) (float-vector 0.21747 -0.45325 0.28256 -0.04672)))
				   ((4) (set! (g 'coeffs) (float-vector 0.084037 -0.29145 0.375696 -0.20762 0.041194)))
				   ((5) (set! (g 'coeffs) (float-vector 0.097167 -0.3088448 0.3626224 -0.1889530 0.04020952 -0.0022008)))
				   ((6) (set! (g 'coeffs) (float-vector 0.063964353 -0.239938736 0.3501594961 -0.247740954 0.0854382589
								  -0.012320203 0.0004377882)))
				   ((7) (set! (g 'coeffs) (float-vector 0.04210723 -0.18207621 0.3177137375 -0.284437984 0.1367622316
								  -0.033403806 0.0034167722 -0.000081965)))
				   ((8) (set! (g 'coeffs) (float-vector 0.027614462 -0.135382235 0.2752871215 -0.298843294 0.1853193194
								  -0.064888448 0.0117641902 -0.000885987 0.0000148711)))
				   ((9) (set! (g 'coeffs) (float-vector 0.01799071953 -0.098795950 0.2298837751 -0.294112951 0.2243389785
								  -0.103248745 0.0275674108 -0.003839580	0.0002189716 -0.000002630)))
				   ((10) (set! (g 'coeffs) (float-vector 0.0118717384 -0.071953468 0.1878870875 -0.275808066 0.2489042133 
								   -0.141729787 0.0502002984 -0.010458985 0.0011361511 -0.000049617
								   0.0000004343))))
				 g))
	       :methods (list
			 (cons 'mus-reset
			       (lambda (g)
				 (set! (g 'angle) 0.0)))))
  (frequency 0.0) (n 4) (coeffs #f) (angle 0.0) fm)


(define blackman 

  (let ((+documentation+ "(make-blackman frequency (n 4)) creates a blackman generator. (blackman gen (fm 0.0)) 
returns the nth Blackman-Harris fft data window as a periodic waveform. (n <= 10)"))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((x angle))
	  (set! angle (+ angle fm frequency))
	  (polynomial coeffs (cos x)))))))
|#

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((black4 (make-blackman 440.0)))
    (do ((i 0 (+ i 1)))
	((= i 20000))
      (outa i (blackman black4 0.0)))))
|#

;;; but that is the same as polyshape/polywave!

(define blackman polywave)
(define blackman? polywave?)

(define* (make-blackman (frequency 440.0) (n 4))
  (make-polywave frequency 
		 (case n
		   ;; this data is from clm.c
		   ((0) (list 0 0))
		   ((1) (list 0 0.54 1 -0.46))
		   ((2) (list 0 0.42323 1 -0.49755 2 0.078279))
		   ((3) (list 0 0.35875 1 0.48829 2 0.14128 3 -0.01168))
		   ((4) (list 0 0.287333 1 -0.44716 2 0.20844 3 -0.05190 4 0.005149))
		   ((5) (list 0 .293557 1 -.451935 2 .201416 3 -.047926 4 .00502619 5 -.000137555))
		   ((6) (list 0 .2712203 1 -.4334446 2 .2180041 3 -.0657853 4 .010761867 5 -.0007700127 6 .00001368088))
		   ((7) (list 0 .2533176 1 -.4163269 2 .2288396 3 -.08157508 4 .017735924 5 -.0020967027 6 .00010677413 7 -.0000012807))
		   ((8) (list 0 .2384331 1 -.4005545 2 .2358242 3 -.09527918 4 .025373955 5 -.0041524329 6 .00036856041 7 -.00001384355 8 .0000001161808))
		   ((9) (list 0 .2257345 1 -.3860122 2 .2401294 3 -.1070542 4 .03325916 5 -.00687337 
			      6 .0008751673 7 -.0000600859 8 .000001710716 9 -.00000001027272))
		   ((10) (list 0 .2151527 1 -.3731348 2 .2424243 3 -.1166907 4 .04077422 5 -.01000904 
			       6 .0016398069 7 -.0001651660 8 .000008884663 9 -.000000193817 10 .00000000084824)))))




;;; --------------------------------------------------------------------------------


;;; we can add the sin(cos) and sin(sin) cases, using -index in the latter to get 
;;;   asymmetric fm since Jn(-B) = (-1)^n Jn(B)
;;;
;;; the same trick would work in the other two cases -- gapped spectra

(defgenerator (fmssb :make-wrapper convert-frequency)
  (frequency 0.0) (ratio 1.0) (index 1.0) (angle 0.0) fm)


(define fmssb 
  (let ((+documentation+ "(make-fmssb frequency (ratio 1.0) (index 1.0)) creates an fmssb generator. (fmssb gen (fm 0.0)) returns single-sideband FM."))
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((cx angle)
	       (mx (* cx ratio)))
	  (set! angle (+ angle fm frequency))
	  (- (* (cos cx)
		(sin (* index (cos mx))))
	     (* (sin cx)
		(sin (* index (sin mx)))))))))) ; use -index for the other side

;;; FM with complex index
(define* (fpmc beg dur freq amp mc-ratio fm-index interp)
  (let ((start (seconds->samples beg)))
    (let ((end (+ start (seconds->samples dur)))
	  (cr 0.0)
	  (cr-frequency (hz->radians freq))
	  (md-frequency (hz->radians (* freq mc-ratio)))
	  (md 0.0))
      (do ((i start (+ i 1))
	   (val (sin (+ cr (* fm-index (sin md)))) 
		(sin (+ cr (* fm-index (sin md))))))
	  ((= i end))
	(outa i (* amp (+ (* (- 1.0 interp) (real-part val))
			  (* interp (imag-part val)))))
	(set! cr (+ cr cr-frequency))
	(set! md (+ md md-frequency))))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-fmssb 1000.0 0.1 :index 8.0)))  ; 1 3 7 11 ... -- interesting effect
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (* .3 (fmssb gen))))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-fmssb 1000.0 0.1 :index 8.0)) 
	(ampf (make-env '(0 0 1 1 100 0) :base 32 :scaler .3 :length 30000))
	(indf (make-env '(0 1 1 0) :length 30000 :scaler 8)))
    (do ((i 0 (+ i 1)))
	((= i 30000)) 
      (set! (gen 'index) (env indf))
      (outa i (* (env ampf) (fmssb gen))))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-fmssb 1000.0 0.05 :index 1.0)) 
	(ampf (make-env '(0 0 1 1 100 0) :base 32 :scaler .3 :length 30000))
	(indf (make-env '(0 1 1 0) :length 30000 :base 32 :scaler 10)))
    (do ((i 0 (+ i 1)))
	((= i 30000)) 
      (set! (gen 'index) (env indf))
      (outa i (* (env ampf) (fmssb gen))))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-fmssb 100.0 5.4 :index 1.0)) ; also 100 700
	(ampf (make-env '(0 0 1 1 100 0) :base 32 :scaler .3 :length 30000)) ; also 0 0 1 1 3 1 100 0...
	;; '(0 0 1 .75 2 1 3 .95 4 .5 10 0) -> bowed effect, '(0 0 1 .75 2 1 3 .125 4 .25 5 1 6 .8 20 0)
	;; '(0 0 1 .75 2 1 3 .1 4 .7 5 1 6 .8 100 0) -> clickier attack (300 too)
	(indf (make-env '(0 1 1 0) :length 30000 :base 32 :scaler 10)))
    ;; '(0 0 1 1 3 0)
    (do ((i 0 (+ i 1)))
	((= i 30000)) 
      (set! (gen 'index) (env indf))
      (outa i (* (env ampf) (fmssb gen))))))

(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-fmssb 10.0 2.0 :index 1.0)) 
	(ampf (make-env '(0 0 1 1 3 1 100 0) :base 32 :scaler .3 :length 30000))
	(indf (make-env '(0 1 1 0) :length 30000 :base 32 :scaler 10)))
    (do ((i 0 (+ i 1)))
	((= i 30000)) 
      (set! (gen 'index) (env indf))
      (outa i (* (env ampf) (fmssb gen))))))

(with-sound (:statistics #t :scaled-to .5 :play #t)
  (let ((gen1 (make-fmssb 500 1))
	(gen2 (make-fmssb 1000 .2))
	(ampf (make-env '(0 0 1 1 100 0) :base 32 :length 30000))
	(indf (make-env '(0 1 1 1 10 0) :scaler 5.0 :base 32 :length 30000)))
    (do ((i 0 (+ i 1)))
	((= i 30000))
      (let ((ind (env indf)))
	(set! (gen1 'index) ind)
	(set! (gen2 'index) ind)
	(outa i (* (env ampf)
		   (+ (fmssb gen1 0.0)
		      (fmssb gen2 0.0))))))))

;;; imaginary machines (also imaginary beasts)
|#

(definstrument (machine1 beg dur cfreq mfreq amp index gliss)
  (let ((gen (make-fmssb cfreq (/ mfreq cfreq) :index 1.0))
	 (start (seconds->samples beg))
	 (stop (seconds->samples (+ beg dur)))
	 (ampf (make-env '(0 0 1 .75 2 1 3 .1 4 .7 5 1 6 .8 100 0) :base 32 :scaler amp :duration dur))
	 (indf (make-env '(0 0 1 1 3 0) :duration dur :base 32 :scaler index))
	 (frqf (make-env (if (> gliss 0.0) '(0 0 1 1) '(0 1 1 0)) :duration dur :scaler (hz->radians (* (/ cfreq mfreq) (abs gliss))))))
    (do ((i start (+ i 1)))
	((= i stop)) 
      (set! (gen 'index) (env indf))
      (outa i (* (env ampf) (fmssb gen (env frqf)))))))
#|

(with-sound (:statistics #t :play #t)
  (do ((i 0.0 (+ i .5)))
      ((>= i 2.0))
    (machine1 i .3 100 540 0.5 3.0 0.0)
    (machine1 i .1 100 1200 .5 10.0 200.0)
    (machine1 i .3 100 50 .75 10.0 0.0)
    (machine1 (+ i .1) .1 100 1200 .5 20.0 1200.0)
    (machine1 (+ i .3) .1 100 1200 .5 20.0 1200.0)
    (machine1 (+ i .3) .1 100 200 .5 10.0 200.0)
    (machine1 (+ i .36) .1 100 200 .5 10.0 200.0)
    (machine1 (+ i .4) .1 400 300 .5 10.0 -900.0)
    (machine1 (+ i .4) .21 100 50 .75 10.0 1000.0)
    ))

(with-sound (:statistics #t :play #t)
  (do ((i 0.0 (+ i .2)))
      ((>= i 2.0))
    (machine1 i .3 100 540 0.5 4.0 0.0)
    (machine1 (+ i .1) .3 200 540 0.5 3.0 0.0))
  (do ((i 0.0 (+ i .6)))
      ((>= i 2.0))
    (machine1 i .3 1000 540 0.5 6.0 0.0)
    (machine1 (+ i .1) .1 2000 540 0.5 1.0 0.0)
    ))

(with-sound (:statistics #t :play #t :scaled-to .5)
  (let ((gen (make-rkoddssb 1000.0 2.0 0.875))
	(noi (make-rand 15000 .02))
	(gen1 (make-rkoddssb 100.0 0.1 0.9))
	(ampf (make-env '(0 0 1 1 11 1 12 0) :duration 11.0 :scaler .5))
	(frqf (make-env '(0 0 1 1 2 0 10 0 11 1 12 0 20 0) :duration 11.0 :scaler (hz->radians 10.0))))
    (do ((i 0 (+ i 1)))
	((= i (* 12 44100)))
      (outa i (* (env ampf) 
		 (+ (rkoddssb gen1 (env frqf))
		    (* .2 (sin (rkoddssb gen (rand noi)))))))))
  
  (do ((i 0.0 (+ i 2)))
      ((>= i 10.0))
    (machine1 i 3 100 700 0.5 4.0 0.0)
    (machine1 (+ i 1) 3 200 700 0.5 3.0 0.0))
  (do ((i 0.0 (+ i 6)))
      ((>= i 10.0))
    (machine1 i 3 1000 540 0.5 6.0 0.0)
    (machine1 (+ i 1) 1 2000 540 0.5 1.0 0.0)
    ))

(with-sound (:statistics #t :play #t)
  (do ((i 0.0 (+ i .2)))
      ((>= i 2.0))
    (machine1 i .3 1200 540 0.5 40.0 0.0)
    (machine1 (+ i .1) .3 2400 540 0.5 3.0 0.0))
  (do ((i 0.0 (+ i .6)))
      ((>= i 2.0))
    (machine1 i .3 1000 540 0.5 6.0 0.0)
    (machine1 (+ i .1) .1 2000 540 0.5 10.0 100.0)
    ))

;;; same as above but up octave
(with-sound (:statistics #t :play #t)
  (do ((i 0.0 (+ i .1)))
      ((>= i 2.0))
    (machine1 i .15 2400 1080 0.25 40.0 0.0)
    (machine1 (+ i .05) .2 4800 1080 0.5 3.0 0.0))
  (do ((i 0.0 (+ i .3)))
      ((>= i 2.0))
    (machine1 i .15 2000 1080 0.5 6.0 0.0)
    (machine1 (+ i .05) .1 4000 1080 0.5 10.0 100.0)
    ))
|#

(define (fm-cancellation beg dur frequency ratio amp index)
  (let ((start (seconds->samples beg)))
    (let ((cx 0.0)
	  (mx 0.0)
	  (car-frequency (hz->radians frequency))
	  (mod-frequency (hz->radians ratio))
	  (stop (+ start (seconds->samples dur))))
      (do ((i start (+ i 1)))
	  ((= i stop))
	(outa i (* amp (- (* (cos cx)
			     (sin (* index (cos mx))))
			  (* (sin cx)
			     (sin (* index (sin mx))))))
	      ;; use -index for reflection
	      )
	(set! cx (+ cx car-frequency))
	(set! mx (+ mx mod-frequency))))))

					;(with-sound () (fm-cancellation 0 1 1000.0 100.0 0.3 9.0))




;;; --------------------------------------------------------------------------------

;;; k3sin

(define k3sin-methods
  (list
   (cons 'mus-reset
	 (lambda (g)
	   (set! (g 'frequency) 0.0)
	   (set! (g 'angle) 0.0)))))

(defgenerator (k3sin
	       :make-wrapper (lambda (g)
			       (convert-frequency g)
			       (set! (g 'coeffs) (float-vector 0.0
						      (/ (* pi pi) 6.0)
						      (/ pi -4.0)
						      0.08333)) ; (/ 12.0)
			       g)
	       :methods k3sin-methods)
  (frequency 0.0) (angle 0.0) (coeffs #f) fm)


(define k3sin 
  (let ((+documentation+ "(make-k3sin frequency) creates a k3sin generator. (k3sin gen (fm 0.0)) returns a sum of sines scaled by k^3."))
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((x angle))
	  (if (not (<= 0.0 x two-pi))
	      (set! x (modulo x two-pi)))
	  (set! angle (+ x fm frequency))
	  (polynomial coeffs x))))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-k3sin 100.0)))
    (do ((i 0 (+ i 1)))
	((= i 30000))
      (outa i (k3sin gen)))))
|#



;;; --------------------------------------------------------------------------------

;;; I(z) case A&S

(define izcos-methods
  (list
   (cons 'mus-scaler
	 (dilambda
	  (lambda (g) (g 'r))
	  (lambda (g val)
	    (set! (g 'r) val)
	    (set! (g 'dc) (bes-i0 val))
	    (set! (g 'norm) (- (exp val) (g 'dc)))
	    (set! (g 'inorm) (/ (g 'norm)))
	    val)))))

(defgenerator (izcos
	       :make-wrapper (lambda (g)
			       (convert-frequency g)
			       (set! (g 'dc) (bes-i0 (g 'r)))
			       (set! (g 'norm) (- (exp (g 'r)) (g 'dc)))
			       (set! (g 'inorm) (/ (g 'norm)))
			       g)
	       :methods izcos-methods)
  (frequency 0.0) (r 1.0) (angle 0.0)
  (dc 0.0) (norm 1.0) inorm fm)


(define izcos 
  (let ((+documentation+ "(make-izcos frequency (r 1.0)) creates an izcos generator. (izcos gen (fm 0.0)) returns a sum of sines scaled by In(r)."))
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((x angle))
	  (set! angle (+ angle fm frequency))
	  (if (< (abs norm) nearly-zero)
	      1.0
	      (* (- (exp (* r (cos x))) dc) inorm)))))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-izcos 100.0 1.0)))
    (do ((i 0 (+ i 1)))
	((= i 30000))
      (outa i (* .5 (izcos gen))))))

(with-sound (:clipped #f :statistics #t)
  (let ((gen (make-izcos 100.0 1.0))
	(indf (make-env '(0 0 1 3) :length 30000)))
    (do ((i 0 (+ i 1)))
	((= i 30000))
      (set! (mus-scaler gen) (env indf))
      (outa i (izcos gen)))))

|#



;;; --------------------------------------------------------------------------------

(definstrument (organish beg dur freq amp fm-index amp-env)
  ;; this has an organ-style chiff (better than fm index sweep)
  (let ((start (seconds->samples beg))
	(carriers (make-vector 3 #f))
	(fmoscs (make-vector 3 #f))
	(ampfs (make-vector 3 #f))
	(pervib (make-triangle-wave 5 (hz->radians (* freq .003))))
	(ranvib (make-rand-interp 6 (hz->radians (* freq .002))))
	(resc (make-nrssb 340.0 1.0 5 .5))
	(resf (make-env (list 0 0 .05 1  .1 0 dur 0) :scaler (* amp .05) :duration dur)))
    (let ((stop (+ start (seconds->samples dur))))
      (do ((i 0 (+ i 1)))
	  ((= i 3))
	(let ((frq (* freq (expt 2 i))))
	  (let ((index1 (hz->radians (/ (* fm-index frq 5.0) (log frq))))
		(index2 (hz->radians (/ (* fm-index frq 3.0 (- 8.5 (log frq))) (+ 3.0 (* frq 0.001)))))
		(index3 (hz->radians (/ (* fm-index frq 4.0) (sqrt frq)))))
	    (set! (carriers i) (make-oscil frq))
	    (set! (fmoscs i) (make-polywave frq
					    :partials (list 1 index1
							    3 index2
							    4 index3))))))
      
      (set! (ampfs 0) (make-env (or amp-env '(0 0 1 1 2 1 3 0)) :scaler amp :duration dur))
      (set! (ampfs 1) (make-env (list 0 0  .04 1  .075 0 dur 0) :scaler (* amp .0125) :duration dur))
      (set! (ampfs 2) (make-env (list 0 0  .02 1  .05 0 dur 0) :scaler (* amp .025) :duration dur))
      
      ;; also good:
      ;;    (set! (ampfs 1) (make-env (list 0 0  .02 1  .05 0  (- dur .1) 0  (- dur .05) 1 dur 0) :scaler (* amp .025) :duration dur))
      ;;    (set! (ampfs 2) (make-env (list 0 0  .01 1 .025 0  (- dur .15) 0 (- dur .1) 1 dur 0) :scaler (* amp .05) :duration dur))
      
      (do ((i start (+ i 1)))
	  ((= i stop))
	(let ((vib (+ (triangle-wave pervib) (rand-interp ranvib))))
	  (outa i (+ (* (env resf) (nrssb resc 0.0))
		     (* (env (vector-ref ampfs 0))
			(oscil (vector-ref carriers 0)
			       (+ vib (polywave (vector-ref fmoscs 0) vib))))
		     (* (env (vector-ref ampfs 1))
			(oscil (vector-ref carriers 1)
			       (+ (* 2 vib) (polywave (vector-ref fmoscs 1) (* 2 vib)))))
		     (* (env (vector-ref ampfs 2))
			(oscil (vector-ref carriers 2)
			       (+ (* 4 vib) (polywave (vector-ref fmoscs 2) (* 4 vib))))))))))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (do ((i 0 (+ i 1)))
      ((= i 10))
    (organish (* i .3) .4 (+ 100 (* 50 i)) .5 1.0 #f)))

(with-sound (:clipped #f :statistics #t :play #t)
  (do ((i 0 (+ i 1)))
      ((= i 10))
    (organish (* i .3) .4 (+ 100 (* 50 i)) .5 1.0 '(0 0 1 1 2 .5 3 .25 4 .125 10 0))))
|#



;;; --------------------------------------------------------------------------------

(define adjustable-square-wave-methods
  (list
   (cons 'mus-frequency
	 (dilambda
	  (lambda (g) (mus-frequency (g 'p1)))
	  (lambda (g val) (set! (mus-frequency (g 'p1)) val))))
   (cons 'mus-phase
	 (dilambda
	  (lambda (g) (mus-phase (g 'p1)))
	  (lambda (g val) (set! (mus-phase (g 'p1)) val))))
   (cons 'mus-scaler
	 (dilambda
	  (lambda (g) (g 'duty-factor))
	  (lambda (g val)
	    (set! (g 'duty-factor) val)
	    (set! (mus-phase (g 'p2)) (* two-pi (- 1.0 (g 'duty-factor))))
	    val)))))

(defgenerator (adjustable-square-wave 
	       :make-wrapper 
	       (lambda (g)
		 (set! (g 'p1) (make-pulse-train 
				(g 'frequency) 
				(g 'amplitude)))
		 (set! (g 'p2) (make-pulse-train 
				(g 'frequency) 
				(- (g 'amplitude))
				(* two-pi (- 1.0 (g 'duty-factor)))))
		 g)
	       :methods adjustable-square-wave-methods)
  (frequency 0.0) (duty-factor 0.5) (amplitude 1.0)
  (sum 0.0) (p1 #f) (p2 #f) fm)


(define adjustable-square-wave 

  (let ((+documentation+ "(make-adjustable-square-wave frequency (duty-factor 0.5) (amplitude 1.0)) 
creates an adjustable-square-wave generator. (adjustable-square-wave gen (fm 0.0)) returns a square-wave 
where the duty-factor sets the ratio of pulse duration to pulse period."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(set! sum (+ sum
		     (pulse-train p1 fm)
		     (pulse-train p2 fm)))))))

#|
(with-sound ()
  (let ((gen (make-adjustable-square-wave 100 .2 .5)))
    (do ((i 0 (+ i 1)))
	((= i 22050))
      (outa i (adjustable-square-wave gen)))))
|#


(define adjustable-triangle-wave-methods
  (list
   (cons 'mus-frequency
	 (dilambda
	  (lambda (g) (mus-frequency (g 'gen)))
	  (lambda (g val) (set! (mus-frequency (g 'gen)) val))))
   (cons 'mus-phase
	 (dilambda
	  (lambda (g) (mus-phase (g 'gen)))
	  (lambda (g val) (set! (mus-phase (g 'gen)) val))))
   (cons 'mus-scaler
	 (dilambda
	  (lambda (g) (g 'duty-factor))
	  (lambda (g val)
	    (set! (g 'duty-factor) val)
	    (set! (g 'top) (- 1.0 val))
	    (if (not (= val 0.0))
		(set! (g 'scl) (/ (g 'amplitude) val)))
	    val)))))
  
(defgenerator (adjustable-triangle-wave 
	       :make-wrapper 
	       (lambda (g)
		 (let ((df (g 'duty-factor)))
		   (set! (g 'gen) (make-triangle-wave (g 'frequency)))
		   (set! (g 'top) (- 1.0 df))
		   (set! (g 'mtop) (- (g 'top)))
		   (if (not (= df 0.0))
		       (set! (g 'scl) (/ (g 'amplitude) df)))
		   g))
	       :methods adjustable-triangle-wave-methods)
  (frequency 0.0) (duty-factor 0.5) (amplitude 1.0) 
  (gen #f) (top 0.0) (mtop 0.0) (scl 0.0) val fm)


(define adjustable-triangle-wave 

  (let ((+documentation+ "(make-adjustable-triangle-wave frequency (duty-factor 0.5) (amplitude 1.0)) creates an 
adjustable-triangle-wave generator. (adjustable-triangle-wave gen (fm 0.0)) returns a triangle-wave where the 
duty-factor sets the ratio of pulse duration to pulse period."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(set! val (triangle-wave gen fm))
	(* scl (- val (max mtop (min top val))))))))

#|
(with-sound ()
  (let ((gen (make-adjustable-triangle-wave 100 .2 .5)))
    (do ((i 0 (+ i 1)))
	((= i 22050))
      (outa i (adjustable-triangle-wave gen)))))
|#


(define adjustable-sawtooth-wave-methods
  (list
   (cons 'mus-frequency
	 (dilambda
	  (lambda (g) (mus-frequency (g 'gen)))
	  (lambda (g val) (set! (mus-frequency (g 'gen)) val))))
   (cons 'mus-phase
	 (dilambda
	  (lambda (g) (mus-phase (g 'gen)))
	  (lambda (g val) (set! (mus-phase (g 'gen)) val))))
   (cons 'mus-scaler
	 (dilambda
	  (lambda (g) (g 'duty-factor))
	  (lambda (g val)
	    (set! (g 'duty-factor) val)
	    (set! (g 'top) (- 1.0 val))
	    (set! (g 'mtop) (- val 1.0))
	    (if (not (= val 0.0))
		(set! (g 'scl) (/ (g 'amplitude) val)))
	    val)))))
  
(defgenerator (adjustable-sawtooth-wave 
	       :make-wrapper 
	       (lambda (g)
		 (let ((df (g 'duty-factor)))
		   (set! (g 'gen) (make-sawtooth-wave (g 'frequency)))
		   (set! (g 'top) (- 1.0 df))
		   (set! (g 'mtop) (- df 1.0))
		   (if (not (= df 0.0))
		       (set! (g 'scl) (/ (g 'amplitude) df)))
		   g))
	       :methods adjustable-sawtooth-wave-methods)
  (frequency 0.0) (duty-factor 0.5) (amplitude 1.0) 
  (gen #f) (top 0.0) (mtop 0.0) (scl 0.0) val fm)


(define adjustable-sawtooth-wave 

  (let ((+documentation+ "(make-adjustable-sawtooth-wave frequency (duty-factor 0.5) (amplitude 1.0)) creates 
an adjustable-sawtooth-wave generator.  (adjustable-sawtooth-wave gen (fm 0.0)) returns a sawtooth-wave where 
the duty-factor sets the ratio of pulse duration to pulse period."))

    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(set! val (sawtooth-wave gen fm))
	(* scl (- val (max mtop (min top val))))))))

#|
(with-sound ()
  (let ((gen (make-adjustable-sawtooth-wave 100 .2 .5)))
    (do ((i 0 (+ i 1)))
	((= i 22050))
      (outa i (adjustable-sawtooth-wave gen)))))
|#


;;; and just for laughs... (almost anything would fit in this hack)
(define adjustable-oscil-methods
  (let ((copy-func (lambda (g)
		     (let ((e (inlet g))) ; (copy g) without invoking (g 'copy)
		       (let-set! e 'gen (mus-copy (g 'gen)))
		       e))))
    (list
     (cons 'mus-frequency
	   (dilambda
	    (lambda (g) (mus-frequency (g 'gen)))
	    (lambda (g val) (set! (mus-frequency (g 'gen)) val))))
     (cons 'mus-phase
	   (dilambda
	    (lambda (g) (mus-phase (g 'gen)))
	    (lambda (g val) (set! (mus-phase (g 'gen)) val))))
     (cons 'mus-scaler
	   (dilambda
	    (lambda (g) (g 'duty-factor))
	    (lambda (g val)
	      (set! (g 'duty-factor) val)
	      (set! (g 'top) (- 1.0 val))
	      (set! (g 'mtop) (- val 1.0))
	      (if (not (= val 0.0))
		  (set! (g 'scl) (/ val)))
	      val)))
     (cons 'copy copy-func)
     (cons 'mus-copy copy-func))))

  
(defgenerator (adjustable-oscil 
	       :make-wrapper (lambda (g)
			       (let ((df (g 'duty-factor)))
				 (set! (g 'gen) (make-oscil (g 'frequency)))
				 (set! (g 'top) (- 1.0 df))
				 (set! (g 'mtop) (- df 1.0))
				 (if (not (= df 0.0))
				     (set! (g 'scl) (/ df)))
				 g))
	       :methods adjustable-oscil-methods)
  (frequency 0.0) (duty-factor 0.5)
  (gen #f) (top 0.0) (mtop 0.0) (scl 0.0) val fm)


(define adjustable-oscil 

  (let ((+documentation+ "(make-adjustable-oscil frequency (duty-factor 0.5)) creates an adjustable-oscil 
generator. (adjustable-oscil gen (fm 0.0)) returns a sinusoid where the duty-factor sets the ratio of pulse duration to pulse period."))
  
    (lambda* (g (fm 0.0))
      (let-set! g 'fm fm)
      (with-let g
	(set! val (oscil gen fm))
	(* scl (- val (max mtop (min top val))))))))

#|
(with-sound (:statistics #t)
  (let ((gen (make-adjustable-oscil 100 .2)))
    (do ((i 0 (+ i 1)))
	((= i 22050))
      (outa i (adjustable-oscil gen)))))
|#




;;;--------------------------------------------------------------------------------

(define* (make-table-lookup-with-env frequency pulse-env size)
  (let ((len (or size *clm-table-size*)))
    (do ((ve (make-float-vector len))
	 (e (make-env pulse-env :length len))
	 (i 0 (+ i 1)))
	((= i len)
	 (make-table-lookup frequency 0.0 ve len))
      (float-vector-set! ve i (env e)))))
    
(define* (make-wave-train-with-env frequency pulse-env size)
  (let ((len (or size *clm-table-size*)))
    (do ((ve (make-float-vector len))
	 (e (make-env pulse-env :length len))
	 (i 0 (+ i 1)))
	((= i len)
	 (make-wave-train frequency 0.0 ve len)) 
      (float-vector-set! ve i (env e)))))
    


;;; --------------------------------------------------------------------------------

(define round-interp-methods
  (list
   (cons 'mus-frequency
	 (dilambda
	  (lambda (g) (mus-frequency (g 'rnd)))
	  (lambda (g val) (set! (mus-frequency (g 'rnd)) val))))
   (cons 'mus-phase
	 (dilambda
	  (lambda (g) (mus-phase (g 'rnd)))
	  (lambda (g val) (set! (mus-phase (g 'rnd)) val))))))

(defgenerator (round-interp 
	       :make-wrapper (lambda (g)
			       (set! (g 'rnd) (make-rand-interp (g 'frequency) (g 'amplitude)))
			       (set! (g 'flt) (make-moving-average (g 'n)))
			       g)
	       :methods round-interp-methods)
  (frequency 0.0) (n 1) (amplitude 1.0)
  (rnd #f) (flt #f) fm)


(define round-interp 

  (let ((+documentation+ "(make-round-interp frequency (n 1) (amplitude 1.0)) creates a round-interp 
generator. (round-interp gen (fm 0.0)) returns a rand-interp sequence low-pass filtered by a moving-average generator of length n."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(moving-average flt (rand-interp rnd fm))))))

#|
(with-sound (:channels 5)
  (let ((gen0 (make-round-interp 100 1))
	(gen1 (make-round-interp 100 10))
	(gen2 (make-round-interp 100 100))
	(gen3 (make-round-interp 100 1000))
	(gen4 (make-round-interp 100 10000)))
    (do ((i 0 (+ i 1)))
	((= i 100000))
      (out-any i (round-interp gen0 0.0) 0)
      (out-any i (round-interp gen1 0.0) 1)
      (out-any i (round-interp gen2 0.0) 2)
      (out-any i (round-interp gen3 0.0) 3)
      (out-any i (round-interp gen4 0.0) 4))))
|#



;;; --------------------------------------------------------------------------------
;;;
;;; env-any functions

(define (sine-env e)
  (env-any e (lambda (y)
	       (* 0.5 (+ 1.0 (sin (* pi (- y 0.5))))))))

(define (square-env e)
  (env-any e (lambda (y)
	       (* y y))))

(define (blackman4-env e)
  (env-any e (lambda (y)
	       (let ((cx (cos (* pi y))))
		 (+ 0.084037 (* cx (- (* cx (+ 0.375696 (* cx (- (* cx 0.041194) 0.20762)))) 0.29145)))))))

(define (multi-expt-env e expts)
  (env-any e (lambda (y)
	       (let ((b (expts (modulo (channels e) (length expts)))))
		 (/ (- (expt b y) 1.0) (- b 1.0))))))



;;; --------------------------------------------------------------------------------
;;;
;;; pm with any generator that has mus-phase and mus-run:

(define (run-with-fm-and-pm gen fm pm)
  (set! (mus-phase gen) (+ (mus-phase gen) pm))
  (let ((result (mus-run gen fm 0.0)))
    (set! (mus-phase gen) (- (mus-phase gen) pm))
    result))

#|
(let ((gen1 (make-oscil 440.0))
      (gen2 (make-oscil 440.0)))
  (do ((i 0 (+ i 1)))
      ((= i 1000))
    (let* ((pm (mus-random 1.0))
	   (val1 (oscil gen1 0.0 pm))
	   (val2 (run-with-fm-and-pm gen2 0.0 pm)))
      (if (fneq val1 val2)
	  (format () ";run-with-fm-and-pm: ~A ~A" val1 val2)))))
|#



;;; --------------------------------------------------------------------------------

;;; cos^n J 121

(defgenerator (nchoosekcos :make-wrapper convert-frequency)
  (frequency 0.0) (ratio 1.0) (n 1) (angle 0.0) fm)


(define nchoosekcos 

  (let ((+documentation+ "(make-nchoosekcos frequency (ratio 1.0) (n 1)) creates an nchoosekcos generator. (nchoosekcos gen (fm 0.0)) 
returns a sum of cosines scaled by the binomial coeffcients."))

    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((x angle)
	       (y (* x ratio)))
	  (set! angle (+ angle fm frequency))
	  (real-part (* (cos x)
			(expt (cos y) n))))))))

#|
(with-sound (:clipped #f :statistics #t :play #t)
  (let ((gen (make-nchoosekcos 2000.0 0.05 10)))
    (do ((i 0 (+ i 1)))
	((= i 30000))
      (outa i (* .5 (nchoosekcos gen))))))
|#



;;; --------------------------------------------------------------------------------
;;;
;;; sinc-train

(define sinc-train-methods
  (list
   (cons 'mus-order
	 (dilambda
	  (lambda (g) (g 'original-n))
	  (lambda (g val)
	    (if (<= val 0)
		(begin
		  (set! (g 'original-n) 1)
		  (set! (g 'n) 3))
		(begin
		  (set! (g 'original-n) val)
		  (set! (g 'n) (+ 1 (* 2 val)))))
	    (set! (g 'frequency) (* 0.5 (g 'n) (hz->radians (g 'original-frequency))))
	    (g 'original-n))))
   (cons 'mus-frequency
	 (dilambda
	  (lambda (g) (g 'original-frequency))
	  (lambda (g val)
	    (set! (g 'original-frequency) val)
	    (set! (g 'frequency) (* 0.5 (g 'n) (hz->radians val)))
	    val)))))

(defgenerator (sinc-train 
	       :make-wrapper (lambda (g)
			       (if (<= (g 'n) 0)
				   (begin
				     (set! (g 'original-n) 1)
				     (set! (g 'n) 3))
				   (begin
				     (set! (g 'original-n) (g 'n))
				     (set! (g 'n) (+ 1 (* 2 (g 'n)))))) ; mimic ncos
			       (set! (g 'original-frequency) (g 'frequency))
			       (set! (g 'frequency) (* 0.5 (g 'n) (hz->radians (g 'frequency))))
			       g)	       
	       :methods sinc-train-methods)  
  (frequency 0.0) (n 1) (angle 0.0)
  (original-n 1) (original-frequency 0.0) fm)


(define sinc-train 
  (let ((+documentation+ "(make-sinc-train frequency (n 1)) creates a sinc-train generator with n components. (sinc-train gen (fm 0.0)) returns a sinc-train"))
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((x angle))
	  (let ((max-angle (* pi 0.5 n))
		(new-angle (+ x fm frequency))
		(DC (/ 1.0 n))
		(norm (/ n (- n 1))))
	    (if (> new-angle max-angle)
		(set! new-angle (- new-angle (* pi n))))
	    (set! angle new-angle)
	    (if (< (abs x) nearly-zero)
		1.0
		(* norm (- (/ (sin x) x) DC)))))))))

#|
(with-sound (:clipped #f :statistics #t)
  (let* ((g (make-sinc-train 100.0 40)))
    (do ((i 0 (+ i 1)))
	((= i 44100))
      (outa i (* .5 (sinc-train g 0.0))))))
|#



;;; --------------------------------------------------------------------------------
;;;
;;; pink-noise (based on rand-bank idea of Orfanidis)

#|
(defgenerator (pink-noise
	       :make-wrapper (lambda (g)
			       (if (<= (g 'n) 0) (set! (g 'n) 1))
			       (let ((n (g 'n)))
				 (set! (g 'rands) (make-vector n))
				 (do ((i 0 (+ i 1)))
				     ((= i n))
				   (set! ((g 'rands) i) (make-rand :frequency (/ *clm-srate* (expt 2 i))))
				   (set! (mus-phase ((g 'rands) i)) (random pi))))
			       g))
  (n 1) (rands #f))


(define pink-noise 
  
  (let ((+documentation+ "(make-pink-noise (n 1)) creates a pink-noise generator with n octaves of rand (12 is recommended). (pink-noise gen) 
returns the next random value in the 1/f stream produced by gen."))

    (lambda (gen)
      (with-let gen
	(/ (rand-bank rands) (* 2.5 (sqrt n))))))) ; this normalization is not quite right
|#

(define* (make-pink-noise (n 1))
  (let ((v (make-float-vector (* n 2)))
	(amp (/ (* 2.5 (sqrt n)))))
    (set! (v 0) amp)
    (do ((i 2 (+ i 2)))
	((= i (* 2 n)))
      (set! (v i) (mus-random amp))
      (set! (v (+ i 1)) (random 1.0)))
    v))

(define pink-noise? float-vector?)

;;; pink-noise func is in clm2xen.c

#|
(define (pink-noise v)
  (let ((amp (v 0))
	(sum 0.0)
	(p 0.0)
	(len (length v)))
    (do ((i 2 (+ i 2))
	 (x 0.5 (* x 0.5)))
	((= i len) 
	 (+ sum (mus-random amp)))
      (set! sum (+ sum (v i)))
      (set! p (- (v (+ i 1)) x))
      (if (negative? p)
	  (begin
	    (set! (v (+ i 1)) (+ p 1.0))
	    (set! (v i) (mus-random amp)))
	  (set! (v (+ i 1)) p)))))
|#      

#|
(with-sound (:clipped #f :statistics #t)
  (let ((gen (make-pink-noise 12)))
    (do ((i 0 (+ i 1)))
	((= i 44100))
      (outa i (pink-noise gen)))))

(with-sound (:statistics #t) (let ((gen (make-pink-noise 12))) (do ((i 0 (+ i 1))) ((= i 441000)) (outa i (pink-noise gen)))))
|#




;;; --------------------------------------------------------------------------------
;;;
;;; brown-noise


(defgenerator (brown-noise
	       :make-wrapper (lambda (g)
			       (set! (g 'gr) (make-rand (g 'frequency) (g 'amplitude)))
			       g))
  (frequency 0.0) (amplitude 1.0) fm gr (sum 0.0) (prev 0.0))


(define brown-noise 

  (let ((+documentation+ "(make-brown-noise frequency (amplitude 1.0)) returns a generator that produces 
brownian noise. (brown-noise gen (fm 0.0)) returns the next brownian noise sample."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((val (rand gr fm)))
	  (if (not (= val prev))
	      (begin
		(set! prev val)
		(set! sum (+ sum val))))
	  sum)))))

#|
;; this is slightly faster, but ugly
(define* (make-brown-noise (frequency 440.0) (amplitude 1.0))
  (vector 0.0 0.0 (make-rand frequency amplitude)))

(define (brown-noise? g)
  (and (vector? g)
       (= (length g) 3)
       (rand? (g 2))))

(define* (brown-noise g (fm 0.0))
  (let ((val (rand (vector-ref g 2) fm)))
    (if (not (= val (vector-ref g 1)))
	(begin
	  (vector-set! g 1 val)
	  (vector-set! g 0 (+ (vector-ref g 0) val))))
    (vector-ref g 0)))

(with-sound (:clipped #f :statistics #t)
  (let* ((gen (make-brown-noise 1000)))
    (do ((i 0 (+ i 1)))
	((= i 44100))
      (outa i (* .01 (brown-noise gen))))))
|#




;;; --------------------------------------------------------------------------------
;;;
;;; green-noise

(defgenerator (green-noise
	       :make-wrapper (lambda (g)
			       (set! (g 'gr) (make-rand (g 'frequency) (g 'amplitude)))
			       (set! (g 'sum) (* 0.5 (+ (g 'low) (g 'high))))
			       g))
  (frequency 0.0) (amplitude 1.0) (low -1.0) (high 1.0)
  fm gr (sum 0.0) (prev 0.0))


(define green-noise 

  (let ((+documentation+ "(make-green-noise frequency (amplitude 1.0) (low -1.0) (high 1.0)) returns a new 
green-noise (bounded brownian noise) generator. (green-noise gen (fm 0.0)) returns the next sample in a 
sequence of bounded brownian noise samples."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let ((val (rand gr fm)))
	  (if (not (= val prev))
	      (begin
		(set! prev val)
		(set! sum (+ sum val))
		(if (not (<= low sum high))
		    (set! sum (- sum (* 2 val))))))
	  sum)))))


#|
(define* (make-green-noise (frequency 440.0) (amplitude 1.0) (low -1.0) (high 1.0))
  (vector 0.0 0.0 low high (make-rand frequency amplitude)))

(define (green-noise? g)
  (and (vector? g)
       (= (length g) 5)
       (rand? (g 4))))

(define* (green-noise g (fm 0.0))
  (let ((val (rand (g 4) fm)))
    (if (not (= val (g 1)))
	(begin
	  (set! (g 1) val)
	  (set! (g 0) (+ (g 0) val))
	  (if (not (<= (g 2) (g 0) (g 3)))
	      (set! (g 0) (- (g 0) (* 2.0 val))))))
    (g 0)))

(with-sound (:clipped #f :statistics #t)
  (let* ((gen (make-green-noise 1000)))
    (do ((i 0 (+ i 1)))
	((= i 44100))
      (outa i (green-noise gen)))))
|#




;;; --------------------------------------------------------------------------------
;;;
;;; green-noise-interp

(defgenerator (green-noise-interp
	       :make-wrapper (lambda (g)
			       (set! (g 'sum) (* 0.5 (+ (g 'low) (g 'high))))
			       (set! (g 'dv) (/ 1.0 (ceiling (/ *clm-srate* (max 1.0 (g 'frequency))))))
			       (convert-frequency g)
			       (set! (g 'incr) (* (mus-random (g 'amplitude)) dv))
			       g))
  (frequency 0.0) (amplitude 1.0) (low -1.0) (high 1.0)
  (angle 0.0) (sum 0.0) (incr 0.0) fm dv)


(define green-noise-interp 

  (let ((+documentation+ "(make-green-noise-interp frequency (amplitude 1.0) (low -1.0) (high 1.0)) returns a new 
interpolating green noise (bounded brownian noise) generator. (green-noise-interp gen (fm 0.0)) returns the next 
sample in a sequence of interpolated bounded brownian noise samples."))
  
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(if (not (<= 0.0 angle two-pi))
	    (let ((val (mus-random amplitude)))
	      (set! angle (modulo angle two-pi))
	      (if (< angle 0.0) (set! angle (+ angle two-pi)))
	      (if (not (<= low (+ sum val) high))
		  (set! val (min (- high sum)
				 (max (- low sum)
				      (- val))))) ; at least bounce
	      (set! incr (* dv val))))
	(set! angle (+ angle fm frequency))
	(set! sum (+ sum incr))))))

#|
(with-sound (:clipped #f :statistics #t)
  (let* ((gen (make-green-noise-interp 1000)))
    (do ((i 0 (+ i 1)))
	((= i 44100))
      (outa i (green-noise-interp gen)))))


(definstrument (green1 beg end freq amp lo hi)
  (let ((grn (make-green-noise :frequency freq :amplitude amp :high hi :low lo)))
    (do ((i beg (+ i 1)))
	((= i end))
      (outa i (green-noise grn 0.0)))))

(definstrument (green2 beg end freq amp lo hi)
  (let ((grn (make-green-noise-interp :frequency freq :amplitude amp :high hi :low lo)))
    (do ((i beg (+ i 1)))
	((= i end))
      (outa i (green-noise-interp grn 0.0)))))

(with-sound () (green1 0 10000 1000 0.1 -0.5 0.5) (green2 10000 20000 1000 0.1 -0.5 0.5))

(definstrument (green3 start dur freq amp amp-env noise-freq noise-width noise-max-step)
  ;; brownian noise on amp env
  (let ((grn (make-green-noise-interp :frequency noise-freq :amplitude noise-max-step :high (* 0.5 noise-width) :low (* -0.5 noise-width)))
	 (osc (make-oscil freq))
	 (e (make-env amp-env :scaler amp :duration dur))
	 (beg (seconds->samples start))
	 (end (seconds->samples (+ start dur))))
    (do ((i beg (+ i 1)))
	((= i end))
      (outa i (* (env e) 
		 (+ 1.0 (green-noise-interp grn 0.0))
		 (oscil osc))))))

(with-sound () (green3 0 2.0 440 .5 '(0 0 1 1 2 1 3 0) 100 .2 .02))


(definstrument (green4 start dur freq amp freq-env gliss noise-freq noise-width noise-max-step)
  ;; same but on freq env
  (let ((grn (make-green-noise-interp :frequency noise-freq 
				      :amplitude (hz->radians noise-max-step)
				      :high (hz->radians (* 0.5 noise-width))
				      :low (hz->radians (* -0.5 noise-width))))
	 (osc (make-oscil freq))
	 (e (make-env freq-env :scaler (hz->radians gliss) :duration dur))
	 (beg (seconds->samples start))
	 (end (seconds->samples (+ start dur))))
    (do ((i beg (+ i 1)))
	((= i end))
      (outa i (* amp (oscil osc (+ (env e) (green-noise-interp grn 0.0))))))))

(with-sound (:statistics #t) (green4 0 2.0 440 .5 '(0 0 1 1 2 1 3 0) 440 100 100 10))

|#




;;; --------------------------------------------------------------------------------
;;;
;;; moving-sum

(defgenerator (moving-sum
	       :make-wrapper (lambda (g)
			       (let ((dly (make-moving-average (g 'n))))
				 (set! (g 'gen) dly)
				 (set! (mus-increment dly) 1.0) ; this is 1/n by default
				 g)))
  (n 128) (gen #f))


(define moving-sum 
  
  (let ((+documentation+ "(make-moving-sum (n 128)) returns a moving-sum generator. (moving-sum gen input) 
returns the sum of the absolute values in a moving window over the last n inputs."))
  
    (lambda (gen y)
      (moving-average (gen 'gen) (abs y)))))


(define (make-unmoving-sum) (make-one-pole 1.0 -1.0))
(define unmoving-sum one-pole)



;;; --------------------------------------------------------------------------------
;;;
;;; moving-variance
;;;
;;; this taken from the dsp bboard -- untested!

(defgenerator (moving-variance
	       :make-wrapper (lambda (g)
			       (let ((g1 (make-moving-average (g 'n))))
				 (set! (g 'gen1) g1)
				 (set! (mus-increment g1) 1.0))
			       (let ((g2 (make-moving-average (g 'n))))
				 (set! (g 'gen2) g2)
				 (set! (mus-increment g2) 1.0))
			       g))
  (n 128) (gen1 #f) (gen2 #f) y)


(define (moving-variance gen y)
  (let-set! gen 'y y)
  (with-let gen
    (let ((x1 (moving-average gen1 y))
	  (x2 (moving-average gen2 (* y y))))
      (/ (- (* n x2)
	    (* x1 x1))
	 (* n (- n 1))))))


#|
(with-sound (:clipped #f)
  (let ((gen (make-moving-variance 128))) 
    (do ((i 0 (+ i 1))) 
	((= i 10000)) 
      (outa i (moving-variance gen (random 1.0))))))
|#


;;; similarly (moving-inner-product x y) -> (moving-sum (* x y)), 
;;;           (moving-distance x y) -> (sqrt (moving-sum (* (- x y) (- x y))))



;;; --------------------------------------------------------------------------------
;;;
;;; moving-rms

(defgenerator (moving-rms
	       :make-wrapper (lambda (g)
			       (set! (g 'gen) (make-moving-average (g 'n)))
			       g))
  (n 128) (gen #f) y)


(define moving-rms 

  (let ((+documentation+ "(make-moving-rms (n 128) returns a moving-rms generator. (moving-rms gen input) returns 
the rms of the values in a window over the last n inputs."))

    (lambda (gen y)
      (let-set! gen 'y y)
      (with-let gen
	(sqrt (max 0.0 
		   ;; this is tricky -- due to floating point inaccuracy, we can get negative output
		   ;;   from moving-rms even if all the inputs are positive!  The sqrt then returns
		   ;;   a complex number and all hell breaks loose
		   (moving-average gen (* y y))))))))




;;; --------------------------------------------------------------------------------
;;;
;;; moving-length

(defgenerator (moving-length
	       :make-wrapper (lambda (g)
			       (let ((dly (make-moving-average (g 'n))))
				 (set! (g 'gen) dly)
				 (set! (mus-increment dly) 1.0)
				 g)))
  (n 128) (gen #f) y)

(define moving-length moving-rms)
#|
(define moving-length 

  (let ((+documentation+ "(make-moving-length (n 128) returns a moving-length generator. (moving-length gen input) 
returns the length of the values in a window over the last few inputs."))

    (lambda (gen y)
      (moving-rms gen y))))
      (let-set! gen 'y y)
      (with-let gen
	(sqrt (max 0.0 (moving-average gen (* y y))))))))
|#

#|
(let ((ml (make-moving-length 128))
      (rd (make-readin "oboe.snd")))
  (with-sound () 
    (do ((i 0 (+ i 1)))
	((= i 50828))
      (outa i (moving-length ml (readin rd))))))
|#

#|
;; perhaps also use moving-rms gen to avoid amplifying noise-sections (or even squlech them)
(define* (agc (ramp-speed .001) (window-size 512))
  (let ((maxer (make-moving-max window-size))
	(mult 1.0))
    (map-channel
     (lambda (y)
       (let* ((curmax (moving-max maxer y))
	      (diff (- 0.5 (* mult curmax)))
	      (this-incr (* diff ramp-speed)))
	 (set! mult (+ mult this-incr))
	 (* y mult))))))

;;; moving-mean = average
|#



;;; --------------------------------------------------------------------------------
;;;
;;; weighted-moving-average
;;;
;;; arithmetic (1/n) weights

(defgenerator (weighted-moving-average
	       :make-wrapper (lambda (g)
			       (let ((n (g 'n)))
				 (let ((dly (make-moving-average n)))
				   (set! (mus-increment dly) 1.0)
				   (set! (g 'dly) dly))
				 (set! (g 'den) (* 0.5 (+ n 1) n)))
			       g))
  (n 128) (dly #f) (num 0.0) (sum 0.0) y den)


(define weighted-moving-average 
  
  (let ((+documentation+ "(make-weighted-moving-average (n 128)) returns a weighted-moving-average 
generator. (weighted-moving-average gen y) returns the sum of the last n inputs weighted by 1/n"))
  
    (lambda (gen y)
      (let-set! gen 'y y)
      (with-let gen
	(set! num (- (+ num (* n y)) sum))
	(set! sum (moving-average dly y))
	(/ num den)))))



;;; --------------------------------------------------------------------------------
;;;
;;; exponentially-weighted-moving-average
;;;
;;; geometric (r^n) weights

#|
(defgenerator (exponentially-weighted-moving-average
	       :make-wrapper (lambda (g)
			       (let* ((n (g 'n))
				      (flt (make-one-pole (/ 1.0 n) (/ (- n) (+ 1.0 n)))))
				 (set! (g 'gen) flt)
				 g)))
  (n 128) (gen #f))


(define exponentially-weighted-moving-average 
  
  (let ((+documentation+ "(make-exponentially-weighted-moving-average (n 128) returns an 
exponentially-weighted-moving-average generator. (exponentially-weighted-moving-average gen y) 
returns the sum of the last n inputs weighted by (-n/(n+1))^k"))

    (lambda (gen y)
      (one-pole (gen 'gen) y))))
|#

(define* (make-exponentially-weighted-moving-average (n 128)) (make-one-pole (/ 1.0 n) (/ (- n) (+ 1.0 n))))
(define exponentially-weighted-moving-average? one-pole?)
(define exponentially-weighted-moving-average one-pole)



;;; --------------------------------------------------------------------------------
;;;
;;; polyoid -- Tn + Un to get arbitrary initial-phases

#|
;;; old form, now replaced by built-in code (clm.c)

(defgenerator (polyoid
	       :make-wrapper (lambda (g)
			       (let* ((lst (g 'partial-amps-and-phases))
				      (len (length lst))
				      (topk (let ((n 0))
					      (do ((i 0 (+ i 3)))
						  ((>= i len))
						(set! n (max n (floor (lst i)))))
					      n))
				      (sin-amps (make-float-vector (+ topk 1) 0.0))
				      (cos-amps (make-float-vector (+ topk 1) 0.0)))
				 (do ((j 0 (+ j 3)))
				     ((>= j len))
				   (let ((n (floor (lst j)))
					 (amp (lst (+ j 1)))
					 (phase (lst (+ j 2))))
				     (if (> n 0)                                   ; constant only applies to cos side
					 (set! (sin-amps n) (* amp (cos phase))))
				     (set! (cos-amps n) (* amp (sin phase)))))
				 (set! (g 'tn) cos-amps)
				 (set! (g 'un) sin-amps)
				 (convert-frequency g)
				 g))
	       
	       :methods (list
			 (cons 'mus-data
			       (lambda (g) (g 'tn)))
			 (cons 'mus-xcoeffs
			       (lambda (g) (g 'tn)))
			 (cons 'mus-ycoeffs
			       (lambda (g) (g 'un)))
			 (cons 'mus-xcoeff
			       (dilambda
				(lambda (g ind) ((g 'tn) ind))
				(lambda (g ind val) (float-vector-set! (g 'tn) ind val))))
			 (cons 'mus-ycoeff
			       (dilambda
				(lambda (g ind) ((g 'un) ind))
				(lambda (g ind val) (float-vector-set! (g 'un) ind val))))))
  
  (frequency 0.0) (partial-amps-and-phases #f) (angle 0.0)
  (tn #f) (un #f) fm)


(define* (polyoid gen (fm 0.0))
  (let-set! gen 'fm fm)
  (with-let gen
    (let ((x angle))
      (set! angle (+ angle fm frequency))
      (mus-chebyshev-tu-sum x tn un))))
|#

(define polyoid polywave)
(define (polyoid? g) (and (polywave? g) (= (mus-channel g) mus-chebyshev-both-kinds)))
(define polyoid-tn mus-xcoeffs)
(define polyoid-un mus-ycoeffs)

(define* (make-polyoid (frequency 0.0) partial-amps-and-phases)
  (let* ((len (length partial-amps-and-phases))
	 (topk (do ((n 0)
		    (i 0 (+ i 3)))
		   ((>= i len)
		    (+ n 1))
		 (set! n (max n (floor (partial-amps-and-phases i)))))))
    (let ((sin-amps (make-float-vector topk))
	  (cos-amps (make-float-vector topk)))
      (do ((j 0 (+ j 3)))
	  ((>= j len))
	(let ((n (floor (partial-amps-and-phases j)))
	      (amp (partial-amps-and-phases (+ j 1)))
	      (phase (partial-amps-and-phases (+ j 2))))
	  (if (> n 0)                                   ; constant only applies to cos side
	      (set! (sin-amps n) (* amp (cos phase))))
	  (set! (cos-amps n) (* amp (sin phase)))))
      (make-polywave frequency :xcoeffs cos-amps :ycoeffs sin-amps))))


(define (polyoid-env gen fm amps phases original-data)
  ;; amps and phases are the envelopes, one for each harmonic, setting the sample-wise amp and phase
  (let ((data-len (length original-data))
	(amps-len (length amps))
	(tn (polyoid-tn gen))
	(un (polyoid-un gen)))
    (do ((i 0 (+ i 3))
	 (j 0 (+ j 1)))
	((or (= j amps-len)
	     (= i data-len)))
      (let ((hn (floor (original-data i)))
	    (amp (env (amps j)))
	    (phase (env (phases j))))
	(set! (tn hn) (* amp (sin phase)))
	(set! (un hn) (* amp (cos phase)))))
    (polyoid gen fm)))

#|
(with-sound (:clipped #f)
  (let ((samps 44100)
	(gen (make-polyoid 100.0 (vector 1 1 0.0))))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (outa i (polyoid gen)))))

(with-sound (:clipped #f)
  (let ((samps 44100)
	(gen (make-polywave 100.0 '(1 1) mus-chebyshev-second-kind))
	(gen1 (make-oscil 100.0)))
    (set! (mus-phase gen) (* 0.5 pi))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (outa i (* (oscil gen1) (polywave gen))))))

(with-sound (:clipped #f :statistics #t)
  (let ((samps 44100)
	(gen (make-polyoid 100.0 (vector 1 0.5 0.0 51 0.25 0.0 64 .25 (/ pi 2)))))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (outa i (polyoid gen)))))

(define (test-polyoid n)
  (let* ((res (with-sound (:channels 2 :clipped #f)
		(let ((freqs (make-float-vector n))
		      (phases (make-float-vector n))           ; for oscil-bank
		      (cur-phases (make-float-vector (* 3 n))) ; for polyoid
		      (amp (/ 1.0 n)))
		  (do ((i 0 (+ i 1))
		       (j 0 (+ j 3)))
		      ((= i n))
		    (set! (cur-phases j) (+ i 1))
		    (set! (cur-phases (+ j 1)) (/ 1.0 n))
		    (set! (cur-phases (+ j 2)) (random (* 2 pi)))
		    
		    (set! (freqs i) (hz->radians (+ i 1.0)))
		    (set! (phases i) (cur-phases (+ j 2))))
		  
		  (let ((gen (make-polyoid 1.0 cur-phases))
			(obank (make-oscil-bank freqs phases (make-float-vector n 1.0) #t)))
		    (do ((i 0 (+ i 1)))
			((= i 88200))
		      (outa i (* amp (oscil-bank obank))))
		    (do ((i 0 (+ i 1)))
			((= i 88200))
		      (outb i (polyoid gen 0.0)))))))
	 (snd (find-sound res)))
    (channel-distance snd 0 snd 1)))

;;; 0 diff up to 4096 so far (unopt and opt) -- 1.0e-12 at 4096, opt is more than 20 times as fast

;; these won't work as is -- polyoid-env needs the vectors passed to make-polyoid as its "original-data" argument
(with-sound (:clipped #f :channels 2 :statistics #t)
  (let* ((samps 44100)
	 (gen1 (make-polyoid 100.0 (vector 1 0.5 0.0  3 0.25 0.0  4 .25 0.0)))
	 (gen2 (make-polyoid 100.0 (vector 1 0.5 0.0  3 0.25 0.0  4 .25 0.0)))
	 (amps1 (vector (make-env '(0 0 1 1 2 0) :end samps :scaler 0.5)
			(make-env '(0 1 1 0 2 1) :end samps :scaler 0.25)
			(make-env '(0 1 1 0) :end samps :scaler 0.25)))
	 (phases1 (vector (make-env '(0 0 1 1) :end samps :scaler (/ pi 2))
			  (make-env '(0 0 1 1) :end samps :scaler (/ pi 2))
			  (make-env '(0 1 1 0) :end samps :scaler (/ pi 2))))
	 (amps2 (vector (make-env '(0 0 1 1 2 0) :end samps :scaler 0.5)
			(make-env '(0 1 1 0 2 1) :end samps :scaler 0.25)
			(make-env '(0 1 1 0) :end samps :scaler 0.25)))
	 (phases2 (vector (make-env '(0 0 1 0) :end samps)
			  (make-env '(0 0 1 0) :end samps)
			  (make-env '(0 0 1 0) :end samps))))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (outa i (polyoid-env gen1 0.0 amps1 phases1))
      (outb i (polyoid-env gen2 0.0 amps2 phases2)))))


(with-sound (:clipped #f :channels 2 :channels 3 :statistics #t)
  (let* ((samps 44100)
	 (gen1 (make-polyoid 100.0 (vector 1 1 0 2 1 0 3 1 0)))
	 (gen2 (make-polyoid 100.0 (vector 1 1 0 2 1 0 3 1 0)))
	 (gen3 (make-polyoid 100.0 (vector 1 1 (/ pi 2) 2 1 (/ pi 2) 3 1 (/ pi 2))))
	 (amps1 (vector (make-env '(0 1 1 1) :end samps) (make-env '(0 1 1 1) :end samps) (make-env '(0 1 1 1) :end samps)))
	 (amps2 (vector (make-env '(0 1 1 1) :end samps) (make-env '(0 1 1 1) :end samps) (make-env '(0 1 1 1) :end samps)))
	 (amps3 (vector (make-env '(0 1 1 1) :end samps) (make-env '(0 1 1 1) :end samps) (make-env '(0 1 1 1) :end samps)))
	 (phases1 (vector (make-env '(0 0 1 0) :end samps) (make-env '(0 0 1 0) :end samps) (make-env '(0 0 1 0) :end samps)))
	 (phases2 (vector (make-env '(0 0 .1 0 .9 1 1 1) :end samps :scaler (/ pi 2))
			  (make-env '(0 0 .1 0 .9 1 1 1) :end samps :scaler (/ pi 2))
			  (make-env '(0 0 .1 0 .9 1 1 1) :end samps :scaler (/ pi 2))))
	 (phases3 (vector (make-env '(0 1 1 1) :end samps :scaler (/ pi 2)) 
			  (make-env '(0 1 1 1) :end samps :scaler (/ pi 2)) 
			  (make-env '(0 1 1 1) :end samps :scaler (/ pi 2)))))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (outa i (* .1 (polyoid-env gen1 0.0 amps1 phases1)))
      (outb i (* .1 (polyoid-env gen2 0.0 amps2 phases2)))
      (outc i (* .1 (polyoid-env gen3 0.0 amps3 phases3))))))

|#



;;; --------------------------------------------------------------------------------
;;;
;;; noid -- sum of n sinusoids at arbitrary (default=random) initial phases
;;;
;;;   for max peak (all cos), set phases arg to (make-vector n (/ pi 2))
;;;   for min peak, use one of the sets in peak-phases.scm (multiplied through by pi)
;;;
;;; since initial phases are 0 or pi in peak-phases.scm if n>20, this code could be optimized

(define* (make-noid (frequency 0.0) (n 1) phases (choice 'all))
  (make-polyoid frequency
		(let ((amps (make-vector (* 3 n) 0.0)))
		  (do ((i 1 (+ i 1))
		       (j 0 (+ j 3)))
		      ((> i n))
		    
		    (case choice
		      ((all)   (set! (amps j) i))
		      ((odd)   (set! (amps j) (- (* 2 i) 1)))
		      ((prime) (set! (amps j) (some-primes (- i 1)))) ; defined below up to 1024th or so -- probably should use low-primes.scm
		      ((even)  (set! (amps j) (max 1 (* 2 (- i 1))))))
		    
		    (set! (amps (+ j 1)) (/ 1.0 n))
		    (cond ((vector? phases)	  (set! (amps (+ j 2)) (phases (- i 1))))
			  ((not phases)           (set! (amps (+ j 2)) (random (* 2 pi))))
			  ((eq? phases 'max-peak) (set! (amps (+ j 2)) (/ pi 2)))))
		  
		  (when (eq? phases 'min-peak)
		    (let ((vector-find-if (lambda (func vect)
					    (let ((len (length vect))
						  (result #f))
					      (do ((i 0 (+ i 1)))
						  ((or (= i len)
						       result)
						   result)
						(set! result (func (vect i))))))))
		      
		      (if (not (defined? 'noid-min-peak-phases))
			  (load "peak-phases.scm"))
		      
		      (let ((min-dat (vector-find-if 
				      (lambda (val)
					(and (vector? val)
					     (= (val 0) n)
					     (let* ((a-val (val 1))
						    (a-len (length val))
						    (a-data (list a-val (val 2))))
					       (do ((k 2 (+ k 1)))
						   ((= k a-len))
						 (if (and (real? (val k))
							  (< (val k) a-val))
						     (begin
						       (set! a-val (val k))
						       (set! a-data (list a-val (val (+ k 1)))))))
					       a-data)))
				      (case choice
					((all) noid-min-peak-phases)
					((odd) nodd-min-peak-phases)
					((prime) primoid-min-peak-phases)
					((even) neven-min-peak-phases)))))
			(if min-dat
			    (do ((rats (cadr min-dat))
				 (i 1 (+ i 1))
				 (j 0 (+ j 3)))
				((> i n))
			      (set! (amps (+ j 1)) (/ 1.0 n)) ;(/ 0.999 norm)) -- can't decide about this -- I guess it should be consistent with the #f case
			      (set! (amps (+ j 2)) (* pi (rats (- i 1)))))))))
		  amps)))

(define noid polyoid)
(define noid? polyoid?)


(define some-primes (vector 1
			    2    3    5    7   11   13   17   19   23   29   31   37   41   43   47   53   59   61 
			    67   71   73   79   83   89   97  101  103  107  109  113  127  131  137  139  149  151 
			    157  163  167  173  179  181  191  193  197  199  211  223  227  229  233  239  241  251 
			    257  263  269  271  277  281  283  293  307  311  313  317  331  337  347  349  353  359 
			    367  373  379  383  389  397  401  409  419  421  431  433  439  443  449  457  461  463 
			    467  479  487  491  499  503  509  521  523  541  547  557  563  569  571  577  587  593 
			    599  601  607  613  617  619  631  641  643  647  653  659  661  673  677  683  691  701 
			    709  719  727  733  739  743  751  757  761  769  773  787  797  809  811  821  823  827 
			    829  839  853  857  859  863  877  881  883  887  907  911  919  929  937  941  947  953 
			    967  971  977  983  991  997 1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 
			    1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193 1201 1213 
			    1217 1223 1229 1231 1237 1249 1259 1277 1279 1283 1289 1291 1297 1301 1303 1307 1319 1321 
			    1327 1361 1367 1373 1381 1399 1409 1423 1427 1429 1433 1439 1447 1451 1453 1459 1471 1481 
			    1483 1487 1489 1493 1499 1511 1523 1531 1543 1549 1553 1559 1567 1571 1579 1583 1597 1601 
			    1607 1609 1613 1619 1621 1627 1637 1657 1663 1667 1669 1693 1697 1699 1709 1721 1723 1733 
			    1741 1747 1753 1759 1777 1783 1787 1789 1801 1811 1823 1831 1847 1861 1867 1871 1873 1877 
			    1879 1889 1901 1907 1913 1931 1933 1949 1951 1973 1979 1987 1993 1997 1999 2003 2011 2017 
			    2027 2029 2039 2053 2063 2069 2081 2083 2087 2089 2099 2111 2113 2129 2131 2137 2141 2143 
			    2153 2161 2179 2203 2207 2213 2221 2237 2239 2243 2251 2267 2269 2273 2281 2287 2293 2297 
			    2309 2311 2333 2339 2341 2347 2351 2357 2371 2377 2381 2383 2389 2393 2399 2411 2417 2423 
			    2437 2441 2447 2459 2467 2473 2477 2503 2521 2531 2539 2543 2549 2551 2557 2579 2591 2593 
			    2609 2617 2621 2633 2647 2657 2659 2663 2671 2677 2683 2687 2689 2693 2699 2707 2711 2713 
			    2719 2729 2731 2741 2749 2753 2767 2777 2789 2791 2797 2801 2803 2819 2833 2837 2843 2851 
			    2857 2861 2879 2887 2897 2903 2909 2917 2927 2939 2953 2957 2963 2969 2971 2999 3001 3011 
			    3019 3023 3037 3041 3049 3061 3067 3079 3083 3089 3109 3119 3121 3137 3163 3167 3169 3181 
			    3187 3191 3203 3209 3217 3221 3229 3251 3253 3257 3259 3271 3299 3301 3307 3313 3319 3323 
			    3329 3331 3343 3347 3359 3361 3371 3373 3389 3391 3407 3413 3433 3449 3457 3461 3463 3467 
			    3469 3491 3499 3511 3517 3527 3529 3533 3539 3541 3547 3557 3559 3571 3581 3583 3593 3607 
			    3613 3617 3623 3631 3637 3643 3659 3671 3673 3677 3691 3697 3701 3709 3719 3727 3733 3739 
			    3761 3767 3769 3779 3793 3797 3803 3821 3823 3833 3847 3851 3853 3863 3877 3881 3889 3907 
			    3911 3917 3919 3923 3929 3931 3943 3947 3967 3989 4001 4003 4007 4013 4019 4021 4027 4049 
			    4051 4057 4073 4079 4091 4093 4099 4111 4127 4129 4133 4139 4153 4157 4159 4177 4201 4211 
			    4217 4219 4229 4231 4241 4243 4253 4259 4261 4271 4273 4283 4289 4297 4327 4337 4339 4349 
			    4357 4363 4373 4391 4397 4409 4421 4423 4441 4447 4451 4457 4463 4481 4483 4493 4507 4513 
			    4517 4519 4523 4547 4549 4561 4567 4583 4591 4597 4603 4621 4637 4639 4643 4649 4651 4657 
			    4663 4673 4679 4691 4703 4721 4723 4729 4733 4751 4759 4783 4787 4789 4793 4799 4801 4813 
			    4817 4831 4861 4871 4877 4889 4903 4909 4919 4931 4933 4937 4943 4951 4957 4967 4969 4973 
			    4987 4993 4999 5003 5009 5011 5021 5023 5039 5051 5059 5077 5081 5087 5099 5101 5107 5113 
			    5119 5147 5153 5167 5171 5179 5189 5197 5209 5227 5231 5233 5237 5261 5273 5279 5281 5297 
			    5303 5309 5323 5333 5347 5351 5381 5387 5393 5399 5407 5413 5417 5419 5431 5437 5441 5443 
			    5449 5471 5477 5479 5483 5501 5503 5507 5519 5521 5527 5531 5557 5563 5569 5573 5581 5591 
			    5623 5639 5641 5647 5651 5653 5657 5659 5669 5683 5689 5693 5701 5711 5717 5737 5741 5743 
			    5749 5779 5783 5791 5801 5807 5813 5821 5827 5839 5843 5849 5851 5857 5861 5867 5869 5879 
			    5881 5897 5903 5923 5927 5939 5953 5981 5987 6007 6011 6029 6037 6043 6047 6053 6067 6073 
			    6079 6089 6091 6101 6113 6121 6131 6133 6143 6151 6163 6173 6197 6199 6203 6211 6217 6221 
			    6229 6247 6257 6263 6269 6271 6277 6287 6299 6301 6311 6317 6323 6329 6337 6343 6353 6359 
			    6361 6367 6373 6379 6389 6397 6421 6427 6449 6451 6469 6473 6481 6491 6521 6529 6547 6551 
			    6553 6563 6569 6571 6577 6581 6599 6607 6619 6637 6653 6659 6661 6673 6679 6689 6691 6701 
			    6703 6709 6719 6733 6737 6761 6763 6779 6781 6791 6793 6803 6823 6827 6829 6833 6841 6857 
			    6863 6869 6871 6883 6899 6907 6911 6917 6947 6949 6959 6961 6967 6971 6977 6983 6991 6997 
			    7001 7013 7019 7027 7039 7043 7057 7069 7079 7103 7109 7121 7127 7129 7151 7159 7177 7187 
			    7193 7207 7211 7213 7219 7229 7237 7243 7247 7253 7283 7297 7307 7309 7321 7331 7333 7349 
			    7351 7369 7393 7411 7417 7433 7451 7457 7459 7477 7481 7487 7489 7499 7507 7517 7523 7529 
			    7537 7541 7547 7549 7559 7561 7573 7577 7583 7589 7591 7603 7607 7621 7639 7643 7649 7669 
			    7673 7681 7687 7691 7699 7703 7717 7723 7727 7741 7753 7757 7759 7789 7793 7817 7823 7829 
			    7841 7853 7867 7873 7877 7879 7883 7901 7907 7919 7927 7933 7937 7949 7951 7963 7993 8009 
			    8011 8017 8039 8053 8059 8069 8081 8087 8089 8093 8101 8111 8117 8123 8147 8161 8167 8171))


#|
(with-sound (:clipped #f)
  (let ((samps 44100)
	(gen (make-noid 100.0 3)))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (outa i (noid gen)))))

(with-sound (:clipped #f :channels 2)
  (let* ((samps 44100)
	 (n 10)
	 (gen (make-noid 1.0 n 'min-peak))
	 (gen2 (make-oscil n ((polyoid-partial-amps-and-phases gen) (- (length (polyoid-partial-amps-and-phases gen)) 1)))))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (outa i (noid gen))
      (outb i (oscil gen2)))))

(with-sound (:clipped #f)
  (let ((samps 44100)
	(gen (make-noid 100.0 10 'min-peak)))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (outa i (noid gen)))))

(with-sound (:clipped #f :statistics #t)
  (let ((samps 44100)
	(gen (make-noid 10.0 1024 'min-peak)))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (outa i (noid gen)))))

(with-sound (:clipped #f :channels 4)
  (let ((samps 44100)
	(gen1 (make-noid 100.0 32 'max-peak))
	(gen2 (make-noid 100.0 32 (make-vector 32 0.0)))
	(gen3 (make-noid 100.0 32))
	(gen4 (make-noid 100.0 32 'min-peak)))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (outa i (noid gen1 0.0))
      (outb i (noid gen2 0.0))
      (outc i (noid gen3 0.0))
      (outd i (noid gen4 0.0)))))


(do ((i 0 (+ i 1)))
    ((= i 4))
  (with-sound (:clipped #f :output (string-append "test-noid-" (number->string i) ".snd"))
    (let ((samps 44100)
	  (gen (make-noid 100.0 32 (if (= i 0) 'max-peak
				       (if (= i 1) (make-vector 32 0.0)
					   (if (= i 2) #f
					       'min-peak))))))
      (do ((i 0 (+ i 1)))
	  ((= i samps))
	(outa i (noid gen))))))

(define (knoid n)
  (with-sound (:channels 4 :statistics #t) 
    (let ((samps 100000)
	  (gen1 (make-noid 10.0 n 'min-peak 'all))
	  (gen2 (make-noid 10.0 n 'min-peak 'odd))
	  (gen3 (make-noid 10.0 n 'min-peak 'even))
	  (gen4 (make-noid 10.0 n 'min-peak 'prime)))
      (do ((i 0 (+ i 1)))
	  ((= i samps))
	(outa i (* 0.5 (noid gen1 0.0)))
	(outb i (* 0.5 (noid gen2 0.0)))
	(outc i (* 0.5 (noid gen3 0.0)))
	(outd i (* 0.5 (noid gen4 0.0)))))))

(with-sound (:clipped #f)
  (let ((samps 44100)
	(gen (make-noid 100.0 19 (apply vector (map (lambda (n) (* pi n)) (list 0 1 0 0 1 1 1 1 1 1 0 0 1 1 1 0 1 0 1) )))))
    (do ((i 0 (+ i 1))) 
	((= i samps))
      (outa i (noid gen)))))
|#

#|
;;; --------------------------------------------------------------------------------
;;;
;;; roid -- sum of n sinusoids at arbitrary (default=random) initial phases and amp r^n

(define* (make-roid (frequency 0.0) (n 1) (r 1.0) (phases #f))
  (make-polyoid frequency
		(let ((amps (make-vector (* 3 n) 0.0))
		      (rn (/ 1.0 n)))
		  (do ((i 1 (+ i 1))
		       (j 0 (+ j 3)))
		      ((> i n))
		    (set! (amps j) i)
		    (set! (amps (+ j 1)) rn)
		    (set! rn (* rn r))
		    (if (vector? phases)
			(set! (amps (+ j 2)) (phases (- i 1)))
			(if (not phases)
			    (set! (amps (+ j 2)) (random (* 2 pi)))
			    (if (eq? phases 'max-peak)
				(set! (amps (+ j 2)) (/ pi 2))
				;; else min-peak, handled separately
				))))
		  
		  (if (eq? phases 'min-peak)
		      (let ((vector-find-if (lambda (func vect)
					      (let ((len (length vect))
						    (result #f))
						(do ((i 0 (+ i 1)))
						    ((or (= i len)
							 result)
						     result)
						  (set! result (func (vect i))))))))
			
			(if (not (defined? 'roid-min-peak-phases))
			    (load "peak-phases.scm"))
			
			(let ((min-dat (vector-find-if 
					(lambda (val)
					  (and val
					       (vector? val)
					       (= (val 0) n)
					       (let* ((a-val (val 1))
						      (a-len (length val))
						      (a-data (list a-val (val 2))))
						 (do ((k 2 (+ k 1)))
						     ((= k a-len))
						   (if (and (number? (val k))
							    (< (val k) a-val))
						       (begin
							 (set! a-val (val k))
							 (set! a-data (list a-val (val (+ k 1)))))))
						 a-data)))
					roid-min-peak-phases)))
			  (if min-dat
			      (let* ((norm (car min-dat))
				     (rats (cadr min-dat))
				     (rn (/ 0.999 norm)))
				(do ((i 1 (+ i 1))
				     (j 0 (+ j 3)))
				    ((> i n))
				  (set! (amps (+ j 1)) rn)
				  (set! rn (* rn r))
				  (set! (amps (+ j 2)) (* pi (rats (- i 1))))))))))
		  
		  amps)))

(define roid polyoid)
(define roid? polyoid?)
|#

#|
(with-sound (:clipped #f)
  (let ((samps 44100)
	(gen (make-roid 100.0 6 0.5 'min-peak)))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (outa i (roid gen)))))
|#



;;; ---------------- old waveshape generator ----------------

(define waveshape? polyshape?)
(define waveshape polyshape)

(define* (make-waveshape (frequency 0.0) 
			 (partials '(1 1)) 
			 wave 
			 (size *clm-table-size*)) ; size arg is for backwards compatibility
  (make-polyshape frequency (if wave 
				(values :coeffs wave) 
				(values :partials partials))))

(define* (partials->waveshape partials (size *clm-table-size*))
  (partials->polynomial partials))




;;; ---------------- tanh(sin(x)) ----------------

(defgenerator (tanhsin
	       :make-wrapper (lambda (g)
			       (set! (g 'osc) (make-oscil (g 'frequency) (g 'initial-phase)))
			       (set! (g 'frequency) (hz->radians (g 'frequency))) ; so that mus-frequency works at least read side
			       g))
  (frequency 0.0) (r 1.0) (initial-phase 0.0)
  (osc #f) fm)


(define tanhsin 
  
  (let ((+documentation+ "(make-tanhsin (frequency 0.0) (r 1.0) (initial-phase 0.0) returns a tanhsin 
generator. (tanhsin gen (fm 0.0)) produces tanh(r*sin) which approaches a square wave as r increases."))

    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(tanh (* r (oscil osc fm)))))))



;;; ---------------- moving-fft ----------------

(define last-moving-fft-window #f)

(define moving-fft-methods
  (list
   (cons 'mus-data (lambda (g) (g 'data)))
   (cons 'mus-xcoeffs (lambda (g) (g 'rl)))
   (cons 'mus-ycoeffs (lambda (g) (g 'im)))
   (cons 'mus-run (lambda (g arg1 arg2) (moving-fft g)))))

(defgenerator (moving-fft
	       :make-wrapper (lambda (g)
			       (let ((n (g 'n)))
				 (set! (g 'rl) (make-float-vector n))
				 (set! (g 'im) (make-float-vector n))
				 (set! (g 'data) (make-float-vector n))
				 (set! (g 'window) 
				       (if (and last-moving-fft-window
						(= n (length last-moving-fft-window)))
					   last-moving-fft-window
					   (set! last-moving-fft-window (make-fft-window hamming-window n))))
				 (float-vector-scale! (g 'window) (/ 2.0 (* 0.54 n)))
				 (set! (g 'outctr) (+ n 1)) ; first time fill flag
				 g))
	       :methods moving-fft-methods)
  (input #f) (n 512) (hop 128) (outctr 0)
  (rl #f) (im #f) (data #f) 
  (window #f))


(define moving-fft 

  (let ((+documentation+ "(make-moving-fft reader (size 512) (hop 128)) returns a moving-fft generator. (moving-fft gen) 
produces an FFT (polar form) of 'size' samples every 'hop' samples, taking input from the readin generator 'reader'.  
The magnitudes are available as mus-xcoeffs, the phases as mus-ycoeffs, and the current input data as mus-data."))
  
    (lambda (gen)
      (with-let gen
	(let ((new-data #f))
	  (if (>= outctr hop)
	      (let ((fft-window window))
		(if (> outctr n) ; must be first time through -- fill data array
		    (do ((i 0 (+ i 1)))
			((= i n))
		      (float-vector-set! data i (readin input)))
		    (let ((mid (- n hop)))
		      (float-vector-move! data 0 hop)
		      (do ((i mid (+ i 1)))
			  ((= i n))
			(float-vector-set! data i (readin input)))))
		(set! outctr 0)
		(set! new-data #t)
		(fill! im 0.0)
		(float-vector-subseq data 0 n rl)
		(float-vector-multiply! rl fft-window)
		(mus-fft rl im n 1)
		(rectangular->polar rl im)))
	  (set! outctr (+ outctr 1))
	  new-data)))))


#|
(let* ((snd (new-sound))
       (rd (make-readin "oboe.snd"))
       (ft (make-moving-fft rd))
       (data (make-float-vector 256)))
  (set! (lisp-graph?) #t)
  (do ((i 0 (+ i 1)))
      ((= i 10000))
    (if (moving-fft ft)
	(begin
	  (float-vector-subseq (mus-xcoeffs ft) 0 255 data)
	  (graph data "fft" 0.0 11025.0 0.0 0.1 snd 0 #t))))
  (close-sound snd))
|#



;;; ---------------- moving spectrum ----------------

(defgenerator (moving-spectrum
	       :make-wrapper (lambda (g)
			       (let ((n (g 'n)))
				 (set! (g 'amps) (make-float-vector n))
				 (set! (g 'phases) (make-float-vector n))
				 (set! (g 'amp-incs) (make-float-vector n))
				 (set! (g 'freqs) (make-float-vector n))
				 (set! (g 'freq-incs) (make-float-vector n))
				 (set! (g 'new-freq-incs) (make-float-vector n))
				 (set! (g 'data) (make-float-vector n))
				 (set! (g 'fft-window) (make-fft-window hamming-window n))
				 (float-vector-scale! (g 'fft-window) (/ 2.0 (* 0.54 n)))
				 (set! (g 'outctr) (+ n 1)) ; first time fill flag
				 g)))
  (input #f) (n 512) (hop 128) 
  (outctr 0)
  (amps #f) (phases #f) 
  (amp-incs #f) (freqs #f) (freq-incs #f) (new-freq-incs #f)
  (fft-window #f)
  (data #f) (dataloc 0))

(define (moving-spectrum gen)
  (with-let gen
    (when (>= outctr hop)
      (if (> outctr n) ; must be first time through -- fill data array
	  (do ((i 0 (+ i 1)))
	      ((= i n))
	    (float-vector-set! data i (readin input)))
	  (begin
	    (float-vector-move! data 0 hop)
	    (do ((i (- n hop) (+ i 1)))
		((= i n))
	      (float-vector-set! data i (readin input)))))
      
      (set! outctr 0) ; -1??
      (set! dataloc (modulo dataloc n))
      
      (fill! new-freq-incs 0.0)
      (do ((i 0 (+ i 1))
	   (j dataloc (+ j 1)))
	  ((= j n))
	(float-vector-set! amp-incs j (* (float-vector-ref fft-window i) (float-vector-ref data i))))
      
      (if (> dataloc 0)
	  (do ((i (- n dataloc) (+ i 1))
	       (j 0 (+ j 1)))
	      ((= j dataloc))
	    (float-vector-set! amp-incs j (* (float-vector-ref fft-window i) (float-vector-ref data i)))))
      
      (set! dataloc (+ dataloc hop))
      
      (mus-fft amp-incs new-freq-incs n 1)
      (rectangular->polar amp-incs new-freq-incs)
      
      (let ((scl (/ 1.0 hop))
	    (kscl (/ two-pi n)))
	(float-vector-subtract! amp-incs amps)
	(float-vector-scale! amp-incs scl)
	
	(do ((n2 (/ n 2))
	     (i 0 (+ i 1))
	     (ks 0.0 (+ ks kscl)))
	    ((= i n2))
	  (let ((diff (modulo (- (new-freq-incs i) (freq-incs i)) two-pi)))
	    (set! (freq-incs i) (new-freq-incs i))
	    (if (> diff pi) (set! diff (- diff (* 2 pi))))
	    (if (< diff (- pi)) (set! diff (+ diff (* 2 pi))))
	    (set! (new-freq-incs i) (+ (* diff scl) ks))))
	
	(float-vector-subtract! new-freq-incs freqs)
	(float-vector-scale! new-freq-incs scl)))
    
    (set! outctr (+ outctr 1))
    
    (float-vector-add! amps amp-incs)
    (float-vector-add! freqs new-freq-incs)
    (float-vector-add! phases freqs)))


(define (test-sv)
  ;; sv-amps = pv-amps (but len is diff)
  ;; sv-phases = pv-phases
  ;; sv-freqs = pv-phase-increments
  
  (let ((pv (make-phase-vocoder (make-readin "oboe.snd") ))
	(sv (make-moving-spectrum (make-readin "oboe.snd"))))
    (let ((pv-amps (phase-vocoder-amps pv))
	  (pv-incrs (phase-vocoder-phase-increments pv))
	  (sv-amps (sv 'amps))
	  (sv-freqs (sv 'freqs)))
      (call-with-exit
       (lambda (quit)
	 (do ((k 0 (+ k 1)))
	     ((= k 20))
	   (do ((i 0 (+ i 1))) 
	       ((= i 2000)) 
	     (phase-vocoder pv))
	   (do ((i 0 (+ i 1))) 
	       ((= i 2000)) 
	     (moving-spectrum sv))
	   (do ((i 0 (+ i 1)))
	       ((= i 256))
	     (if (fneq (sv-amps i) (pv-amps i))
		 (begin
		   (format *stderr* ";test-sv (generators) ~D amps: ~A ~A" i (sv-amps i) (pv-amps i))
		   (quit)))
	     (if (> (abs (- (sv-freqs i) (pv-incrs i))) .25)
		 (begin
		   (format *stderr* ";test-sv (generators) ~D freqs: ~A ~A" i (sv-freqs i) (pv-incrs i))
		   (quit))))))))))
    
#|
(define* (sine-bank amps phases size)
  (let ((len (or size (length amps)))
	(sum 0.0))
    (do ((i 0 (+ i 1)))
	((= i len))
      (set! sum (+ sum (* (amps i)
			  (sin (phases i))))))
    sum))

(with-sound (:channels 2)
  (let* ((gen (make-moving-spectrum (make-readin "oboe.snd")))
	 (pv (make-phase-vocoder (make-readin "oboe.snd")))
	 (samps (framples "oboe.snd")))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (moving-spectrum gen)
      (outa i (sine-bank (gen 'amps) (gen 'phases) 256)) ; size = n/2 as in pv
      (outb i (phase-vocoder pv)))))

					; :(channel-distance 0 0 0 1)
					; 7.902601100022e-9
|#


;;; moving spectrum returns freqs in radians, and does not try to find the interpolated peak,
;;;   so we need another version that returns current freq/amp pairs that can be used directly in oscil
;;;   This is the main portion of the "pins" instrument (also find-pitch in examp.scm)




;;; ---------------- moving scentroid ----------------

(defgenerator (moving-scentroid
	       :make-wrapper (lambda (g)
			       (let ((n (g 'size)))
				 (set! (g 'rl) (make-float-vector n))
				 (set! (g 'im) (make-float-vector n))
				 (set! (g 'dly) (make-delay n))
				 (set! (g 'rms) (make-moving-rms n))
				 (set! (g 'hop) (floor (/ *clm-srate* (g 'rfreq))))
				 (set! (g 'binwidth) (/ *clm-srate* n))
				 g)))
  (dbfloor -40.0) (rfreq 100.0) 
  (size 4096) (hop 1024) (outctr 0)
  (curval 0.0) (binwidth 1.0)
  (rl #f) (im #f) 
  (dly #f) (rms #f) x)

(define* (moving-scentroid gen (x 0.0))
  (let-set! gen 'x x)
  (with-let gen
    
    (let ((rms (moving-rms rms x)))
      (if (>= outctr hop)
	  (begin
	    (set! outctr 0)	    
	    (if (< (linear->db rms) dbfloor)
		(set! curval 0.0)
		(let* ((data (mus-data dly))
		       (fft2 (/ size 2)))
		  (fill! im 0.0)
		  (float-vector-subseq data 0 (- size 1) rl)
		  (mus-fft rl im size 1)          ; we can use the delay line contents un-reordered because phases are ignored here
		  (rectangular->magnitudes rl im)
		  (do ((numsum 0.0)
		       (densum 0.0)
		       (k 0 (+ k 1)))
		      ((= k fft2)
		       (set! curval (/ (* binwidth numsum) densum)))     
		    (set! numsum (+ numsum (* k (rl k))))
		    (set! densum (+ densum (rl k)))))))))
		  
    (delay dly x)       ; our "sliding window" on the input data
    (set! outctr (+ outctr 1))
    curval))

#|
(let* ((snd (open-sound "oboe.snd"))
       (cur-srate (srate snd))
       (old-srate *clm-srate*))
  (set! *clm-srate* cur-srate)
  
  (let ((scn (make-moving-scentroid -40.0 100.0 128))
	(vals (scentroid "oboe.snd" 0.0 1.1 -40.0 100.0 128))
	(k 0))
    
    (let ((data (channel->float-vector 0 22050 snd 0)))
      (close-sound snd)
      (do ((i 0 (+ i 1)))
	  ((= i (scn 'size)))
	(moving-scentroid scn (data i)))
      (set! (scn 'outctr) (scn 'hop))
      
      (do ((i (scn 'size) (+ i 1))
	   (j 0 (+ j 1)))
	  ((= i 22050))
	(let ((val (moving-scentroid scn (data i))))
	  (if (= (modulo j (scn 'hop)) 0)
	      (begin
		(format () "[~A ~A]~%" val (vals k))
		(set! k (+ k 1)))))))
    (set! *clm-srate* old-srate)))
|#



;;; ---------------- moving-autocorrelation ----------------

(define moving-autocorrelation-methods
  (list
   (cons 'mus-run (lambda (g arg1 arg2) (moving-autocorrelation g)))
   (cons 'mus-data (lambda (g) (g 'rl)))))

(defgenerator (moving-autocorrelation
	       :make-wrapper (lambda (g)
			       (let ((n (g 'n)))
				 (set! (g 'rl) (make-float-vector n))
				 (set! (g 'im) (make-float-vector n))
				 (set! (g 'data) (make-float-vector n))
				 (set! (g 'outctr) (+ n 1)) ; first time fill flag
				 g))
	       :methods moving-autocorrelation-methods)
  (input #f) (n 512) (hop 128) (outctr 0)
  (rl #f) (im #f) (data #f))


(define moving-autocorrelation 

  (let ((+documentation+ "(make-moving-autocorrelation reader (size 512) (hop 128)) returns a moving-autocorrelation 
generator. (moving-autocorrelation gen) produces the autocorrelation of 'size' samples every 'hop' samples, taking 
input from the readin generator 'reader'.  The output data is available via mus-data."))
  
    (lambda (gen)
      (with-let gen
	(let ((new-data #f))
	  (if (>= outctr hop)
	      (begin
		(if (> outctr n) ; must be first time through -- fill data array
		    (do ((i 0 (+ i 1)))
			((= i n))
		      (float-vector-set! data i (readin input)))
		    (begin
		      (float-vector-move! data 0 hop)
		      (do ((i (- n hop) (+ i 1)))
			  ((= i n))
			(float-vector-set! data i (readin input)))))
		(set! outctr 0)
		(set! new-data #t)
		(fill! im 0.0)
		(float-vector-subseq data 0 (- n 1) rl)
		(autocorrelate rl)))
	  (set! outctr (+ outctr 1))
	  new-data)))))




;;; ---------------- moving-pitch ----------------

(define moving-pitch-methods
  (list
   (cons 'mus-run (lambda (g arg1 arg2) (moving-pitch g)))))

(defgenerator (moving-pitch
	       :make-wrapper (lambda (g)
			       (set! (g 'ac) (make-moving-autocorrelation
					      (g 'input)
					      (g 'n)
					      (g 'hop)))
			       g)
	       :methods moving-pitch-methods)
  (input #f) (n 512) (hop 128)
  (ac #f) (val 0.0))


(define (moving-pitch gen)
  (with-let gen
    (when (moving-autocorrelation ac)
      (let ((data (mus-data ac)))
	(let ((peak 0.0)
	      (peak-loc 0)
	      (len (length data)))
	  (do ((i 8 (+ i 1))) ; assume we're not in the top few octaves
	      ((= i len))
	    (let ((apk (abs (data i))))
	      (if (> apk peak)
		  (begin
		    (set! peak apk)
		    (set! peak-loc i)))))
	  (if (or (= peak 0.0)
		  (= peak-loc 0))
	      (set! val 0.0)
	      (let ((la (data (- peak-loc 1)))
		    (ra (data (+ peak-loc 1))))
		(let ((logla (log (/ (max la .0000001) peak) 10))  ; (positive la)?
		      (logra (log (/ (max ra .0000001) peak) 10)))
		  (set! val
			(/ *clm-srate*
			   (+ peak-loc (/ (* 0.5 (- logla logra))
					  (+ logla logra)))))))))))
    val))

#|
(let* ((rd (make-readin "oboe.snd"))
       (cur-srate (srate "oboe.snd"))
       (old-srate *clm-srate*))
  (set! *clm-srate* cur-srate)
  (let* ((scn (make-moving-pitch rd))
	 (last-pitch 0.0)
	 (pitch 0.0))
    (do ((i 0 (+ i 1)))
	((= i 22050))
      (set! last-pitch pitch)
      (set! pitch (moving-pitch scn))
      (if (not (= last-pitch pitch))
	  (format () "~A: ~A~%" (* 1.0 (/ i cur-srate)) pitch))))
  (set! *clm-srate* old-srate))
|#



#|
(define (abel k)
  ;; sum i from 1 to k (-1)^(i + 1) * (sin i) / i
  (with-sound (:clipped #f :statistics #t) 
    (let ((harmonics (make-float-vector (* 2 k))))
      (do ((i 1 (+ i 1))
	   (j 0 (+ j 2))
	   (n -1 (- n))) 
	  ((= i k)) 
	(set! (harmonics j) i)
	(set! (harmonics (+ j 1)) (/ n i)))
      (let ((gen (make-polywave 100.0 :partials (normalize-partials harmonics))))
	(do ((i 0 (+ i 1)))
	    ((= i 100000))
	  (outa i (polywave gen)))))))

(define* (adds num freq e amp v (type mus-chebyshev-first-kind))
  (with-sound (:clipped #f :statistics #t :play #t) 
    (let ((harmonics (make-float-vector (* 2 num)))
	  (freqe (make-env e :length num)))
      (do ((i 1 (+ i 1))
	   (j 0 (+ j 2)))
	  ((= i num)) 
	(set! (harmonics j) i)
	(set! (harmonics (+ j 1)) (env freqe)))
      (let ((gen (make-polywave freq :partials (normalize-partials harmonics) :type type))
	    (vib (make-oscil 5)))
	(do ((i 0 (+ i 1)))
	    ((= i 100000))
	  (outa i (* amp (polywave gen (* (hz->radians v) (oscil vib))))))))))


					;(adds 200 20 '(0 0 10 1 12 0 20 0 24 .2 35 0 46 0 57 .1 68 0) .5 2)
					;(adds 300 15 '(0 0 10 1 12 0 20 0 24 .2 35 0 46 0 57 .1 68 0) .5 3)

|#


#|
(defgenerator (circler :make-wrapper convert-frequency)
  (frequency 0.0) (angle 0.0) fm)

(define circler 
  (let ((+documentation+ "(make-circler (frequency 0.0) returns a circler generator. (circler gen (fm 0.0)) produces a waveform made up of half circles"))
    (lambda* (gen (fm 0.0))
      (let-set! gen 'fm fm)
      (with-let gen
	(let* ((x (modulo angle (* 2 pi)))
	       (xx (/ (* 4 x) (* 2 pi)))
	       (y (if (< xx 2)
		      (sqrt (- 1 (* (- 1 xx) (- 1 xx))))
		      (- (sqrt (- 1 (* (- 3 xx) (- 3 xx))))))))
	  (set! angle (+ x fm frequency))
	  y)))))

(with-sound (:clipped #f :statistics #t)
  (let ((gen (make-circler 10.0)))
    (do ((i 0 (+ i 1)))
	((= i 20000))
      (outa i (circler gen)))))

;;; odd harmonics: 1, .18 .081 .048 .033 .024, .019
|#


#|
;; "extremal trigonometric polynomials"

(define (extremal-trig N freq)
  (with-sound ()
    (let ((tan-scl (tan (/ pi (* 2 (+ N 1)))))
	  (incr (hz->radians freq)))
      (do ((k 1 (+ k 1)))
	  ((= k N))
	(let ((cos-coeff (* tan-scl (sin (/ (* k pi) (+ N 1)))))
	      (kincr (* k incr)))
	  (do ((i 0 (+ i 1))
	       (x 0.0 (+ x kincr)))
	      ((= i 40000))
	    (outa i (* cos-coeff (cos x)))))))))
|#



;;; ---------------- flocsig (flanged locsig) ----------------

(defgenerator (flocsig 
	       ;; assume stereo out/rev 
	       :make-wrapper (lambda (g)
			       (set! (g 'maxd) (ceiling (g 'amplitude))) ; was amplitude?
			       (set! (g 'out1) (make-float-vector (g 'maxd)))
			       (set! (g 'out2) (make-float-vector (g 'maxd)))
			       (set! (g 'ri) (make-rand-interp 
					      :frequency (g 'frequency) 
					      :amplitude (- (g 'amplitude) 1.0)))
			       (if (not (g 'offset))
				   (set! (g 'offset) (mus-random (* 0.3 (g 'amplitude)))))
			       g))
  (reverb-amount 0.0) (frequency 1.0) (amplitude 2.0) offset
  (maxd 0)
  (out1 #f) (out2 #f) (outloc 0)
  (ri #f) samp input)

(define 1/sqrt2 (/ 1.0 (sqrt 2.0)))

(define (flocsig gen samp input)
  ;; signal position and per-channel-delay depends on rand-interp
  (let-set! gen 'samp samp)
  (let-set! gen 'input input)
  (with-let gen
    (let ((pos (min (max (+ (rand-interp ri) offset) 
			 (- amplitude)) 
		    amplitude))
	  (loc outloc))
      (let ((dly1 (abs (min 0.0 pos)))
	    (dly2 (max 0.0 pos)))
	(let ((amp1 (if (<= pos -1.0) 1.0
			(if (>= pos 1.0) 0.0
			    (* (sqrt (- 1.0 pos)) 1/sqrt2))))
	      (amp2 (if (<= pos -1.0) 0.0
			(if (>= pos 1.0) 1.0
			    (* (sqrt (+ 1.0 pos)) 1/sqrt2))))
	      (frac1 (- dly1 (floor dly1)))
	      (frac2 (- dly2 (floor dly2))))
	  (let ((loc10 (modulo (+ loc (floor dly1)) maxd)))
	    (set! (out1 loc10) (+ (out1 loc10) (* amp1 input (- 1.0 frac1)))))
	  (let ((loc11 (modulo (+ loc 1 (floor dly1)) maxd)))
	    (set! (out1 loc11) (+ (out1 loc11) (* amp1 input frac1))))
	  (let ((loc20 (modulo (+ loc (floor dly2)) maxd)))
	    (set! (out2 loc20) (+ (out2 loc20) (* amp2 input (- 1.0 frac2)))))
	  (let ((loc21 (modulo (+ loc 1 (floor dly2)) maxd)))
	    (set! (out2 loc21) (+ (out2 loc21) (* amp2 input frac2))))))
	  
      (let ((val1 (out1 loc))
	    (val2 (out2 loc)))
	(set! (out1 loc) 0.0)
	(set! (out2 loc) 0.0)
	(set! loc (+ loc 1))
	(if (= loc maxd) (set! loc 0))
	(outa samp val1)
	(outb samp val2)
	(if (> reverb-amount 0.0)
	    (begin
	      (outa samp (* reverb-amount val1) *reverb*)
	      (outb samp (* reverb-amount val2) *reverb*)))
	(set! outloc loc)))))



;;; --------------------------------------------------------------------------------
;;; old version of one-pole-all-pass
#|
(defgenerator one-pole-allpass coeff input x1 y1)

(define (one-pole-allpass gen input)
  (let-set! gen 'input input)
  (with-let gen
    (set! y1 (+ x1 (* coeff (- input y1))))
    (set! x1 input)
    y1))

(defgenerator one-pole-allpass-bank coeff input x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 y8) 

(define (one-pole-allpass-bank gen input)
  (let-set! gen 'input input)
  (with-let gen
    (set! y1 (+ x1 (* coeff (- input y1))))
    (set! x1 input)

    (set! y2 (+ x2 (* coeff (- y1 y2))))
    (set! x2 y1)

    (set! y3 (+ x3 (* coeff (- y2 y3))))
    (set! x3 y2)

    (set! y4 (+ x4 (* coeff (- y3 y4))))
    (set! x4 y3)

    (set! y5 (+ x5 (* coeff (- y4 y5))))
    (set! x5 y4)

    (set! y6 (+ x6 (* coeff (- y5 y6))))
    (set! x6 y5)

    (set! y7 (+ x7 (* coeff (- y6 y7))))
    (set! x7 y6)

    (set! y8 (+ x8 (* coeff (- y7 y8))))
    (set! x8 y7)
    y8))


(defgenerator expseg currentValue targetValue r)

(define (expseg gen r)
  (let-set! gen 'r r)
  (with-let gen
    (set! currentValue (+ (* r targetValue) (* (- 1.0 r) currentValue)))))
    ;(set! currentValue (+ currentValue (* r (- targetValue currentValue))))))
    ;; (bil) this is slightly different (getting clicks)


(define (make-one-pole-swept)
  (vector 0.0))

(define (one-pole-swept gen input coef)
  ;; signal controlled one-pole lowpass filter
  (set! (gen 0) (- (* (+ 1.0 coef) input) (* coef (gen 0)))))

(define (make-pnoise)
  (vector 16383))

(define (pnoise gen x)
  ;; very special noise generator
  (set! (gen 0) (logand (floor (+ (* (gen 0) 1103515245) 12345)) #xffffffff))
  ;; (bil) added the logand -- otherwise we get an overflow somewhere
  (* x (- (* (modulo (floor (/ (gen 0) 65536.0)) 65536) 0.0000305185) 1.0)))
  ;; this looks nutty to me -- was it originally running in 32 bits?


(define pn-gen 16383)
(define (pnoise x)
  ;; very special noise generator
  (set! pn-gen (logand (+ (* pn-gen 1103515245) 12345) #xffffffff))
  ;; (bil) added the logand -- otherwise we get an overflow somewhere, also removed floor
  (* x (- (* pn-gen 4.6566128730774e-10) 1.0)))

|#
                              



;;; --------------------------------------------------------------------------------

(define (calling-all-generators)
  ;; for snd-test
  (with-sound (:play #f)
    (lutish 0 1 440 .1)
    (oboish 1 1 300 .1 '(0 0 1 1 2 0))
    (nkssber 2 1 1000 100 5 5 0.5)
    (stringy 3 1 1000 .5)
    (ercoser 4 1 100 .5 0.1)
    (bouncy 5 2 300 .5 5 10)
    (pianoy 6 3 100 .5)
    (pianoy1 7 4 200 .5 1 .1)
    (pianoy2 8 1 100 .5)
    (glassy 9 .1 1000 .5)
    (machine1 10 .3 100 540 0.5 3.0 0.0)
    (organish 11 .4 100 .5 1.0 #f)
    (brassy 12 4 50 .5 '(0 0 1 1 10 1 11 0) '(0 1 1 0) 1000)))