summaryrefslogtreecommitdiff
path: root/numerics.scm
blob: 5054e3d6e7fec7de4c649df30ec725e3fcc10181 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
(provide 'snd-numerics.scm)

(when (provided? 'pure-s7)
  (define (make-polar mag ang)
    (if (and (real? mag) (real? ang))
	(complex (* mag (cos ang)) (* mag (sin ang)))
	(error 'wrong-type-arg "make-polar args should be real"))))

;;; random stuff I needed at one time or another while goofing around...
;;;   there are a lot more in snd-test.scm

(define factorial
  (let* ((num-factorials 128)
	 (factorials (let ((temp (make-vector num-factorials 0)))
		       (set! (temp 0) 1) ; is this correct?
		       (set! (temp 1) 1)
		       temp)))
    (lambda (n)
      (if (> n num-factorials)
	  (let ((old-num num-factorials)
		(old-facts factorials))
	    (set! num-factorials n)
	    (set! factorials (make-vector num-factorials 0))
	    (do ((i 0 (+ i 1)))
		((= i old-num))
	      (set! (factorials i) (old-facts i)))))
      (if (zero? (factorials n))
	  (set! (factorials n) (* n (factorial (- n 1)))))
      (factorials n))))

;; (factorial 3) 6

#|
;;; maxima uses this:

;; From Richard Fateman's paper, "Comments on Factorial Programs",
;; http://www.cs.berkeley.edu/~fateman/papers/factorial.pdf
;;
;; k(n,m) = n*(n-m)*(n-2*m)*...
;;
;; (k n 1) is n!
;;
;; This is much faster (3-4 times) than the original factorial
;; function.

(define (factorial n)
  (define (k n m)
    (if (<= n m)
	n
	(* (k n (* 2 m))
	   (k (- n m) (* 2 m)))))
  (if (zero? n)
      1
      (k n 1)))
|#

(define (binomial-direct n m) 
  (/ (factorial n)
     (* (factorial m) (factorial (- n m)))))

(define n-choose-k 
  (let ((+documentation+ "(n-choose-k n k) computes the binomial coefficient C(N,K)"))
    (lambda (n k)
      (let ((mn (min k (- n k))))
	(if (< mn 0)
	    0
	    (if (= mn 0)
		1
		(let ((mx (max k (- n k))))
		  (do ((cnk (+ 1 mx))
		       (i 2 (+ i 1)))
		      ((> i mn) cnk)
		    (set! cnk (/ (* cnk (+ mx i)) i))))))))))
 
;; (n-choose-k 10 6) 210
;; (n-choose-k 10 9) 10
;; same for binomial-direct
    

;;; --------------------------------------------------------------------------------
;;; from Numerical Recipes
(define (plgndr L m x)			;Legendre polynomial P m/L (x), m and L integer
					;0 <= m <= L and -1<= x <= 1 (x real)
  (if (or (not (<= 0 m L)) 
	  (> (abs x) 1.0))
      (error 'wrong-type-arg "invalid arguments to plgndr: ~A ~A ~A" L m x)
      (let ((pmm 1.0)
	    (fact 0.0) 
	    (somx2 0.0))
	(if (> m 0)
	    (begin
	      (set! somx2 (sqrt (* (- 1.0 x) (+ 1.0 x))))
	      (set! fact 1.0)
	      (do ((i 1 (+ i 1)))
		  ((> i m))
		(set! pmm (* (- pmm) fact somx2))
		(set! fact (+ fact 2.0)))))
	(if (= L m) 
	    pmm
	    (let ((pmmp1 (* x pmm (+ (* 2 m) 1))))
	      (if (= L (+ m 1)) 
		  pmmp1
		  (do ((pk 0.0) ; NR used "ll" which is unreadable
		       (k (+ m 2) (+ k 1)))
		      ((> k L) pk)
		    (set! pk (/ (- (* x (- (* 2 k) 1) pmmp1) 
				   (* (+ k m -1) pmm)) 
				(- k m)))
		    (set! pmm pmmp1)
		    (set! pmmp1 pk))))))))


;;; A&S (bessel.lisp)
(define (legendre-polynomial a x) ; sum of weighted polynomials (m=0)
  (let ((n (- (length a) 1)))
    (if (= n 0) 
	(a 0)
	(let ((r x)
	      (s 1.0)
	      (h 0.0)
	      (sum (a 0)))
	  (do ((k 1 (+ k 1)))
	      ((= k n))
	    (set! h r)
	    (set! sum (+ sum (* r (a k))))
	    (set! r (/ (- (* r x (+ (* 2 k) 1))  (* s k)) (+ k 1)))
	    (set! s h))
	  (+ sum (* r (a n)))))))

(define (legendre n x)
  (legendre-polynomial (let ((v (make-vector (+ 1 n) 0.0)))
			 (set! (v n) 1.0)
			 v)
		       x))

;;; (with-sound (:scaled-to 0.5) (do ((i 0 (+ i 1)) (x 0.0 (+ x .1))) ((= i 10000)) (outa i (legendre 20 (cos x)))))
;; (legendre 3 1.0) 1.0

#|
;; if l odd, there seems to be sign confusion:
(with-sound (:channels 2 :scaled-to 1.0)
  (do ((i 0 (+ i 1))
       (theta 0.0 (+ theta 0.01)))
      ((= i 10000))
    (outa i (plgndr 1 1 (cos theta)))
    (let ((x (sin theta)))
      (outb i (- x)))))

;; this works:
(with-sound (:channels 2 :scaled-to 1.0)
  (do ((i 0 (+ i 1))
       (theta 0.0 (+ theta 0.01)))
      ((= i 10000))
    (let ((x (cos theta)))
      (outa i (plgndr 3 0 x))
      (outb i (* 0.5 x (- (* 5 x x) 3))))))
|#


(define* (gegenbauer n x (alpha 0.0))
  (set! alpha (max alpha -0.5))
  (cond ((= n 0)       1.0)
	((= alpha 0.0) (* (/ 2.0 n) (cos (* n x))))           ; maxima and A&S 22.3.14 (gsl has bogus values here)
	(else
	 (case n
	   ((1)       (* 2 alpha x))                          ; G&R 8.93(2)
	   ((2)       (- (* 2 alpha (+ alpha 1) x x) alpha))  ; G&R 8.93(3)
	   (else
	    (let ((fn1 (* 2 x alpha))
		  (fn 0.0000)
		  (fn2 1.0000))
	      (if (= n 1)
		  fn1
		  (do ((k 2 (+ k 1))
		       (k0 2.0 (+ k0 1.0)))
		      ((> k n) fn)
		    (set! fn (/ (- (* 2 x fn1 (+ k alpha -1.0)) (* fn2 (+ k (* 2 alpha) -2.0))) k0))
		    (set! fn2 fn1)
		    (set! fn1 fn)))))))))

;;; (with-sound (:scaled-to 0.5) (do ((i 0 (+ i 1)) (x 0.0 (+ x .1))) ((= i 10000)) (outa i (gegenbauer 15 (cos x) 1.0))))
;; (gegenbauer 3 1.0) -0.6599949977336302

#|
(with-sound (:scaled-to 0.5)
  (do ((i 0 (+ i 1))
       (theta 0.0 (+ theta 0.05)))
      ((= i 10000))
    (let ((x (cos theta)))
      (outa i (gegenbauer 20 x)))))
|#


(define* (chebyshev-polynomial a x (kind 1))
  (let ((n (- (length a) 1)))
    (if (= n 0) 
	(a 0)
	(let ((r (* kind x))
	      (s 1.0)
	      (h 0.0)
	      (sum (a 0)))
	  (do ((k 1 (+ k 1)))
	      ((= k n))
	    (set! h r)
	    (set! sum (+ sum (* r (a k))))
	    (set! r (- (* 2 r x) s))
	    (set! s h))
	  (+ sum (* r (a n)))))))

(define* (chebyshev n x (kind 1))
  (let ((a (make-vector (+ 1 n) 0.0)))
    (set! (a n) 1.0)
    (chebyshev-polynomial a x kind)))

;; (chebyshev 3 1.0) 1.0


(define (hermite-polynomial a x)
  (let ((n (- (length a) 1)))
    (if (= n 0) 
	(a 0)
	(let ((r (* 2 x))
	      (s 1.0)
	      (h 0.0)
	      (sum (a 0)))
	  (do ((k 1 (+ k 1))
	       (k2 2 (+ k2 2)))
	      ((= k n))
	    (set! h r)
	    (set! sum (+ sum (* r (a k))))
	    (set! r (- (* 2 r x) (* k2 s)))
	    (set! s h))
	  (+ sum (* r (a n)))))))

(define* (hermite n x)
  (let ((a (make-vector (+ 1 n) 0.0)))
    (set! (a n) 1.0)
    (hermite-polynomial a x)))

;; (hermite 3 1.0) -4.0


(define* (laguerre-polynomial a x (alpha 0.0))
  (let ((n (- (length a) 1)))
    (if (= n 0) 
	(a 0)
	(let ((r (- (+ alpha 1.0) x))
	      (s 1.0)
	      (h 0.0)
	      (sum (a 0)))
	  (do ((k 1 (+ k 1)))
	      ((= k n))
	    (set! h r)
	    (set! sum (+ sum (* r (a k))))
	    (set! r (/ (- (* r (- (+ (* 2 k) 1 alpha) x)) 
			  (* s (+ k alpha)))
		       (+ k 1)))
	    (set! s h))
	  (+ sum (* r (a n)))))))

(define* (laguerre n x (alpha 0.0))
  (let ((a (make-vector (+ 1 n) 0.0)))
    (set! (a n) 1.0)
    (laguerre-polynomial a x alpha)))

;; (laguerre 3 1.0) -0.6666666666666666


#|
;;; --------------------------------------------------------------------------------
;;; 
;;; just for my amusement -- apply a linear-fractional or Mobius transformation to the fft data (treated as complex)
;;; 
;;; (automorph 1 0 0 1) is the identity
;;; (automorph 2 0 0 1) scales by 2
;;; (automorph 0.0+1.0i 0 0 1) rotates 90 degrees (so 4 times = identity)
;;; most cases won't work right because we're assuming real output and so on

(define* (automorph a b c d snd chn)
  (let* ((len (framples snd chn))
	 (pow2 (ceiling (log len 2)))
	 (fftlen (floor (expt 2 pow2)))
	 (fftlen2 (/ fftlen 2))
	 (fftscale (/ 1.0 fftlen))
	 (rl (channel->float-vector 0 fftlen snd chn))
	 (im (make-float-vector fftlen)))
    (fft rl im 1)
    (float-vector-scale! rl fftscale)
    (float-vector-scale! im fftscale)
    ;; handle 0 case by itself
    (let* ((c1 (complex (rl 0) (im 0)))
	   (val (/ (+ (* a c1) b)
		   (+ (* c c1) d)))
	   (rval (real-part val))
	   (ival (imag-part val)))
      (set! (rl 0) rval)
      (set! (im 0) ival))
    (do ((i 1 (+ i 1))
	 (k (- fftlen 1) (- k 1)))
	((= i fftlen2))
      (let* ((c1 (complex (rl i) (im i)))
	     (val (/ (+ (* a c1) b)      ; (az + b) / (cz + d)
		     (+ (* c c1) d)))
	     (rval (real-part val))
	     (ival (imag-part val)))
	(set! (rl i) rval)
	(set! (im i) ival)
	(set! (rl k) rval)
	(set! (im k) (- ival))))
    (fft rl im -1)
    (float-vector->channel rl 0 len snd chn #f (format #f "automorph ~A ~A ~A ~A" a b c d))))
|#


#|
;;; --------------------------------------------------------------------------------
;;; these are in snd-xen.c??

(define (bes-i1 x)				;I1(x)
  (if (< (abs x) 3.75)
      (let ((y (expt (/ x 3.75) 2)))
	(* x (+ 0.5
		(* y (+ 0.87890594
			(* y (+ 0.51498869
				(* y (+ 0.15084934
					(* y (+ 0.2658733e-1
						(* y (+ 0.301532e-2
							(* y 0.32411e-3))))))))))))))
      (let* ((ax (abs x))
	     (y (/ 3.75 ax))
	     (ans1 (+ 0.2282967e-1
		      (* y (+ -0.2895312e-1
			      (* y (+ 0.1787654e-1 
				      (* y -0.420059e-2)))))))
	     (ans2 (+ 0.39894228
		      (* y (+ -0.3988024e-1
			      (* y (+ -0.362018e-2
				      (* y (+ 0.163801e-2
					      (* y (+ -0.1031555e-1 (* y ans1)))))))))))
	     (sign (if (< x 0.0) -1.0 1.0)))
	(* (/ (exp ax) (sqrt ax)) ans2 sign))))

(define (bes-in n x)			;return In(x) for any integer n, real x
  (if (= n 0) 
      (bes-i0 x)
      (if (= n 1) 
	  (bes-i1 x)
	  (if (= x 0.0) 
	      0.0
	      (let* ((iacc 40)
		     (bigno 1.0e10)
		     (bigni 1.0e-10)
		     (ans 0.0)
		     (tox (/ 2.0 (abs x)))
		     (bip 0.0)
		     (bi 1.0)
		     (m (* 2 (+ n (truncate (sqrt (* iacc n))))))
		     (bim 0.0))
		(do ((j m (- j 1)))
		    ((= j 0))
		  (set! bim (+ bip (* j tox bi)))
		  (set! bip bi)
		  (set! bi bim)
		  (if (> (abs bi) bigno)
		      (begin
			(set! ans (* ans bigni))
			(set! bi (* bi bigni))
			(set! bip (* bip bigni))))
		  (if (= j n) (set! ans bip)))
		(if (and (< x 0.0) (odd? n)) (set! ans (- ans)))
		(* ans (/ (bes-i0 x) bi)))))))
|#


;;; --------------------------------------------------------------------------------

(define (aux-f x)			;1<=x<inf
  (let ((x2 (* x x)))
    (/ (+ 38.102495 (* x2 (+ 335.677320 (* x2 (+ 265.187033 (* x2 (+ 38.027264 x2)))))))
       (* x (+ 157.105423 (* x2 (+ 570.236280 (* x2 (+ 322.624911 (* x2 (+ 40.021433 x2)))))))))))

(define (aux-g x)
  (let ((x2 (* x x)))
    (/ (+ 21.821899 (* x2 (+ 352.018498 (* x2 (+ 302.757865 (* x2 (+ 42.242855 x2)))))))
       (* x2 (+ 449.690326 (* x2 (+ 1114.978885 (* x2 (+ 482.485984 (* x2 (+ 48.196927 x2)))))))))))

(define (Si x) 
  (if (>= x 1.0)
      (- (/ pi 2) (* (cos x) (aux-f x)) (* (sin x) (aux-g x)))
      (do ((sum x)
	   (fact 2.0)
	   (one -1.0)
	   (xs x)
	   (x2 (* x x))
	   (err .000001)
	   (unhappy #t)
	   (i 3.0 (+ i 2.0)))
	  ((not unhappy) sum)
	(set! xs (/ (* one x2 xs) (* i fact)))
	(set! one (- one))
	(set! fact (+ 1 fact))
	(set! xs (/ xs fact))
	(set! unhappy (> (abs xs) err))
	(set! sum (+ sum xs)))))

(define (Ci x) 
  (if (>= x 1.0)
      (- (* (sin x) (aux-f x)) (* (cos x) (aux-g x)))
      (do ((g .5772156649)
	   (sum 0.0)
	   (fact 1.0)
	   (one -1.0)
	   (xs 1.0)
	   (x2 (* x x))
	   (err .000001)
	   (unhappy #t)
	   (i 2.0 (+ i 2.0)))
	  ((not unhappy) 
	   (+ g (log x) sum))
	(set! xs (/ (* one x2 xs) (* i fact)))
	(set! one (- one))
	(set! fact (+ 1 fact))
	(set! xs (/ xs fact))
	(set! unhappy (> (abs xs) err))
	(set! sum (+ sum xs)))))

;; (Si 1.0) 0.9460830708394717
;; (Ci 1.0) 0.3374039233633503



;;; --------------------------------------------------------------------------------

(define bernoulli3
  (let ((saved-values (copy #(1 -1/2 1/6 0 -1/30 0 1/42 0 -1/30 0 5/66 0 -691/2730
			      0 7/6 0 -3617/510 0 43867/798 0 -174611/330 0
			      854513/138 0 -236364091/2730 0 8553103/6 0
			      -23749461029/870 0 8615841276005/14322 0)
			    (make-vector 100 #f))))
    (lambda (n)
      (if (number? (saved-values n))
	  (saved-values n)
	  (let ((value (if (odd? n) 
			   0.0
			   (let ((sum2 0.0)
				 (itmax 1000)
				 (tol 5.0e-7)
				 (close-enough #f))
			     (do ((i 1 (+ i 1)))
				 ((or close-enough
				      (> i itmax)))
			       (let ((term (/ 1.0 (expt i n))))
				 (set! sum2 (+ sum2 term))
				 (set! close-enough (or (< (abs term) tol)
							(< (abs term) (* tol (abs sum2)))))))
			     (/ (* 2.0 sum2 (factorial n)
				   (if (= (modulo n 4) 0) -1 1))
				(expt (* 2.0 pi) n))))))
	    (set! (saved-values n) value))))))

(define (bernoulli-poly n x)
  (let ((fact 1.0)
	(value (bernoulli3 0)))
    (do ((i 1 (+ i 1)))
	((> i n) value)
      (set! fact (* fact (/ (- (+ n 1) i) i)))
      (set! value (+ (* value x)
		     (* fact (bernoulli3 i)))))))

#|
;; (bernoulli-poly 1 1.0) 0.5

(with-sound (:clipped #f :channels 2)
  (let ((x 0.0)
	(incr (hz->radians 100.0))
	(N 2))
    (do ((i 0 (+ i 1)))
	((= i 44100))
      (outa i (* (expt -1 (- N 1)) 
		 (/ 0.5 (factorial N))
		 (expt (* 2 pi) (+ (* 2 N) 1))
		 (bernoulli-poly (+ (* 2 N) 1) (/ x (* 2 pi)))))
      (outb i (* (expt -1 (- N 1)) 
		 (/ 0.5 (factorial N))
		 (expt (* 2 pi) (+ (* 2 N) 1))
		 (bernoulli-poly (+ (* 2 N) 0) (/ x (* 2 pi)))))
      (set! x (+ x incr))
      (if (> x (* 2 pi)) (set! x (- x (* 2 pi)))))))
|#


;;; --------------------------------------------------------------------------------

(define (sin-m*pi/n m1 n1)

  ;; this returns an expression giving the exact value of sin(m*pi/n), m and n integer
  ;;   if we can handle n -- currently it can be anything of the form 2^a 3^b 5^c 7^d 11^h 13^e 17^f 257^g
  ;;   so (sin-m*pi/n 1 60) returns an exact expression for sin(pi/60).

  (let ((m (numerator (/ m1 n1)))
	(n (denominator (/ m1 n1))))

    (set! m (modulo m (* 2 n)))
    ;; now it's in lowest terms without extra factors of 2*pi

    (cond ((zero? m) 0)

	  ((zero? n) (error 'divide-by-zero "divide by zero (sin-m*pi/n n = 0)"))

	  ((= n 1) 0)

	  ((negative? n)
	   (let ((val (sin-m*pi/n m (- n))))
	     (and val (list '- val))))

	  ((> m n) 
	   (let ((val (sin-m*pi/n (- m n) n)))
	     (and val (list '- val))))

	  ((= n 2) (if (= m 0) 0 1))

	  ((= n 3) `(sqrt 3/4))

	  ((> m 1)
	   (let ((m1 (sin-m*pi/n (- m 1) n))
		 (n1 (sin-m*pi/n 1 n))
		 (m2 (sin-m*pi/n (- m 2) n)))
	     (and m1 m2 n1
		  `(- (* 2 ,m1 (sqrt (- 1 (* ,n1 ,n1)))) ,m2))))

	  ((= n 5) `(/ (sqrt (- 10 (* 2 (sqrt 5)))) 4))

	  ((= n 7) `(let ((A1 (expt (+ -7/3456 (sqrt -49/442368)) 1/3))
			  (A2 (expt (- -7/3456 (sqrt -49/442368)) 1/3)))
		      (sqrt (+ 7/12 (* -1/2 (+ A1 A2)) (* 1/2 0+i (sqrt 3) (- A1 A2))))))

	  ((= n 17) `(let* ((A1 (sqrt (- 17 (sqrt 17))))
			    (A2 (sqrt (+ 17 (sqrt 17))))
			    (A3 (sqrt (+ 34 (* 6 (sqrt 17)) (* (sqrt 2) (- (sqrt 17) 1) A1) (* -8 (sqrt 2) A2)))))
		       (* 1/8 (sqrt 2) (sqrt (- 17 (sqrt 17) (* (sqrt 2) (+ A1 A3)))))))


	  ((= n 11) `(let* ((SQRT5 (* 1/2 (- (sqrt 5) 1)))
			    (B5 (sqrt (+ 2 (* 1/2 (+ (sqrt 5) 1)))))
			    (B6 (+ SQRT5 (* 0+i B5)))
			    (B6_2 (* B6 B6))
			    (B6_3 (* B6 B6 B6))
			    (B6_4 (* B6 B6 B6 B6)) 
			    (D1 (+ 6 (* 3/2 B6) (* 3/4 B6_2)))
			    (D2 (+ SQRT5 (* 0+i B5) (* 1/4 B6_2)))
			    (D3 (* 1/2 (- (+ 1 (* 0+i (sqrt 11))))))
			    (D4 (* 1/2 (- (* 0+i (sqrt 11)) 1)))
			    (D6 (+ 1 (* 1/4 B6_2) (* 1/8 B6_3)))
			    (D7 (+ (* 1/2 B6) (* 1/16 B6_4)))
			    (D8 (+ 2 (* 1/2 B6)))
			    (D9 (+ 13 (* 21 B6) (* 67/4 B6_2) (* 21/4 B6_3) (* 2 B6_4)))
			    (D11 (+ 129 (* 109/2 B6) (* 59/4 B6_2) (* 9/8 B6_3) (* 9/16 B6_4)))
			    (D13 (+ (* 3 B6) B6_2))
			    (D14 (+ (* 3 B6) (* 3/4 B6_2) (* 3/8 B6_3)))
			    (D15 (+ 79 (* 27 B6) (* 39/4 B6_2) (* 37/4 B6_3) (* 21/4 B6_4)))
			    (D16 (+ D11 (* D3 D9) (* D4 D15)))
			    (D17 (+ D11 (* D4 D9) (* D3 D15)))
			    (D30 (/ (* B6_2 (+ (* D3 D6) (* D4 D7))) (* 4 (expt D17 1/5))))
			    (D32 (* 1/2 (+ 1 (* 0+i (sqrt 11)))))
			    (D33 (/ (* B6_3 (+ (* D4 D6) (* D3 D7))) (* 8 (expt D16 1/5))))
			    (D34 (* 1/4 B6_2 (expt D16 1/5)))
			    (D35 (+ 2 (* 1/8 B6_4) (* 1/2 B6 D8) (* 1/8 B6_3 D2)))
			    (D36 (+ SQRT5 (* 0+i B5) (* 1/2 B6_2) (* 1/4 B6_3) (* 1/2 B6 D2) (* 1/4 B6_2 (+ (* 1/4 B6_3) (* 1/16 B6_4)))))
 			    (D38 (* 1/2 (+ -1 (* 0+i (sqrt 11)))))
			    (D39 (* 1/8 B6_3 (expt D17 1/5)))
			    (D40 (+ 3 (* 3/2 B6) (* 9/4 B6_2) (* 7/8 B6_3) (* 3/16 B6_4) (* 1/2 B6 (+ 6 (* 2 B6)))
				    (* 1/16 B6_4 D1) (* 1/4 B6_2 D13) (* 1/8 B6_3 (+ 3 (* 3/4 B6_3) (* 3/16 B6_4)))))
			    (D41 (+ (* 1/4 B6_2 D1) (* 1/8 B6_3 D13) (* 1/16 B6_4 D14) (* 1/2 B6 (+ 4 (* 3/8 B6_4)))))
			    (D42 (+ 3 (* 3/4 B6_3) (* 3/16 B6_4) (* 1/8 B6_3 D1) (* 1/4 B6_2 D14) 
				    (* 1/2 B6 (+ (* 3/2 B6_2) (* 3/8 B6_3) (* 3/16 B6_4))) (* 1/16 B6_4 (+ 3 (* 3/2 B6) (* 3/8 B6_4)))))
			    (D43 (+ (* 1/4 B6_3) (* 1/16 B6_4) (* 1/8 B6_3 D8) (* 1/4 B6_2 D2) 
				    (* 1/2 B6 (+ (* 1/2 B6_2) (* 1/8 B6_3))) (* 1/16 B6_4 (+ 1 (* 1/8 B6_4)))))
			    (D44 (/ (* B6_4 (+ D42 (* D4 D40) (* D3 D41))) (* 16 (expt D16 3/5))))
			    (D45 (/ (* B6 (+ D42 (* D3 D40) (* D4 D41))) (* 2 (expt D17 3/5))))
			    (D48 (/ (* B6 (+ D43 (* D3 D35) (* D4 D36))) (* 2 (expt D16 2/5))))
			    (D49 (/ (* B6_4 (+ D43 (* D4 D35) (* D3 D36))) (* 16 (expt D17 2/5)))))
		       (* -1/2 0+i 
			  (+ (* 1/5 (- D32 D33 D34 D48 D44))
			     (* 1/5 (+ D38 D30 D39 D49 D45))))))
	   
	  ((= n 13)
	   `(let* ((A1 (/ (- -1 (sqrt 13)) 2))
		   (A2 (/ (+ -1 (sqrt 13)) 2))
		   (A3 (/ (+ -1 (* 0+i (sqrt 3))) 2))
		   (A4 (+ -1 (* 0+i (sqrt 3))))
		   (A5 (* 0+i (sqrt (+ 7 (sqrt 13) A2))))
		   (A6 (* 0+i (sqrt (+ 7 (- (sqrt 13)) A1))))
		   (A8  (* 1/2 (- A2 A6)))
		   (A9  (* 1/2 (+ A1 A5)))
		   (A11 (* 1/2 (+ A2 A6)))
		   (A12 (* 1/2 (- A1 A5)))
		   (A13 (* 3/2 A4 A8))
		   (A14 (* 3/2 A4 A11))
		   (A15 (* 3/4 A4 A4 A11))
		   (A16 (* 3/4 A4 A4 A8))
		   (A17 (+ A3 (* 1/4 A4 A4))))
	      (* -1/6 0+i (+ (- A9 A12)
			     (* A4 (+ (/ (+ A8 (* A17 A12)) (* 2 (expt (+ 6 A13 A15 A9) 1/3)))
				      (/ (+ A11 (* A17 A9)) (* -2 (expt (+ 6 A16 A14 A12) 1/3)))
				      (* 1/4 A4 (- (expt (+ 6 A13 A15 A9) 1/3) (expt (+ 6 A16 A14 A12) 1/3)))))))))
	  
	  ((= n 257)
	   `(let* ((A1 (sqrt (- 514 (* 2 (sqrt 257)))))
		   (A2 (- 257 (* 15 (sqrt 257))))
		   (A3 (+ 257 (* 15 (sqrt 257))))
		   (A4 (- 257 (sqrt 257)))
		   (A5 (+ (sqrt 257) 257))
		   (A7 (+ 257 (* 9 (sqrt 257))))
		   (A8 (- 514 (* 18 (sqrt 257))))
		   (AA (sqrt (* 2 A5)))
		   (A9 (sqrt (+ A2 (* 8 A1) (* -7 AA))))
		   (A10 (sqrt (+ A2 (* -8 A1) (* 7 AA))))
		   (A11 (sqrt (+ A3 (* 7 A1) (* 8 AA))))
		   (A12 (sqrt (+ A3 (* -7 A1) (* -8 AA))))
		   (A13 (sqrt (+ A8 (* 6 A1) (* 8 A9) (* -24 A10) (* 12 A11))))
		   (A14 (* 4 (sqrt (+ A8 (* 6 A1) (* -8 A9) (* 24 A10) (* -12 A11)))))
		   (A15 (* 4 (sqrt (+ A8 (* -6 A1) (* -12 A12) (* 24 A9) (* 8 A10)))))
		   (A16 (* 4 (sqrt (* 2 (+ (- 257 (* 9 (sqrt 257))) (* -3 A1) (* 6 A12) (* -12 A9) (* -4 A10))))))
		   (A17 (sqrt (* 2 (+ A7 (* -3 AA) (* -4 A12) (* 6 A9) (* 12 A11)))))
		   (A18 (sqrt (* 2 (+ A7 (* 3 AA) (* 12 A12) (* -6 A10) (* 4 A11)))))
		   (A19 (* 4 (sqrt (* 2 (+ A7 (* 3 AA) (* -12 A12) (* 6 A10) (* -4 A11))))))
		   (A20 (* 4 (sqrt (* 2 (+ A7 (* -3 AA) (* 4 A12) (* -6 A9) (* -12 A11))))))
		   (A22 (+ A4 (* 3 A1) (* -4 AA) (* -4 A12) (* 4 A9) (* -4 A10) (* 2 A11)))
		   (A23 (+ A5 (* -4 A1) (* -3 AA) (* -4 A12) (* 2 A9) (* 4 A10) (* 4 A11)))
		   (A24 (+ A5 (* 4 A1) (* 3 AA) (* 4 A12) (* 4 A9) (* -2 A10) (* 4 A11)))
		   (A26 (sqrt (+ A22 (+ (- A16) (- A19) (* 4 A17) (* -6 A13)))))
		   (A27 (sqrt (+ A22 (+ A16 A19 (* -4 A17) (* 6 A13)))))
		   (A28 (+ 257 (* 7 (sqrt 257)) (* 3 A1) (* -4 A9) (* 4 A10) (* 6 A11)))
		   (A29 (* 8 (sqrt (+ A24 A15 (- A20) (* -6 A18) (* -4 A13)))))
		   (A30 (+ A28 (* -4 A18) (* -4 A17) (* -2 A13)))
		   (A31 (+ (* 8 (sqrt (+ A23 A15 A14 (* 4 A18) (* -6 A17)))) (* 4 A26) A29 (* -8 A27))))
	      (* 1/16 (sqrt (* 1/2 (+ A4 (- A1) (* -2 A11) (* -2 A13) (* -4 A26)
				      (* -4 (sqrt (* 2 (+ A30 (- A31)))))
				      (* -8 (sqrt (+ A4 (- A1) (* -2 A11) (* 6 A13) (* -4 A26) (* -8 A27)
						     (* 4 (sqrt (* 2 (+ A30 A31))))
						     (* -8 (sqrt (* 2 (+ A28 (* 4 A18) (* 4 A17) (* 2 A13) (* -8 A26) (* -4 A27)
									 (* -8 (sqrt (+ A23 (- A15) (- A14) (* -4 A18) (* 6 A17))))
									 (* -8 (sqrt (+ A24 (- A15) A20 (* 6 A18) (* 4 A13)))))))))))))))))
	   
	  ((or (= (modulo n 2) 0) (= (modulo n 3) 0) (= (modulo n 5) 0) (= (modulo n 7) 0) 
	       (= (modulo n 17) 0) (= (modulo n 13) 0) (= (modulo n 257) 0) (= (modulo n 11) 0))
	   (let* ((divisor (cond ((= (modulo n 2) 0) 2)
				 ((= (modulo n 3) 0) 3)
				 ((= (modulo n 5) 0) 5)
				 ((= (modulo n 7) 0) 7)
				 ((= (modulo n 17) 0) 17)
				 ((= (modulo n 13) 0) 13)
				 ((= (modulo n 11) 0) 11)
				 (else 257)))
		  (val (sin-m*pi/n 1 (/ n divisor))))
	     (and val
		  `(let ((ex ,val))
		     (/ (- (expt (+ (sqrt (- 1 (* ex ex))) (* 0+i ex)) (/ 1 ,divisor))
			   (expt (- (sqrt (- 1 (* ex ex))) (* 0+i ex)) (/ 1 ,divisor)))
			0+2i)))))
	  (else #f))))

#|
(let ((maxerr 0.0)
      (max-case #f)
      (cases 0))
  (do ((n 1 (+ n 1)))
      ((= n 10000))
    (do ((m 1 (+ m 1)))
	((= m 4))
      (let ((val (sin (/ (* m pi) n)))
	    (expr (sin-m*pi/n m n)))
	(if expr 
	    (let ((err (magnitude (- val (eval expr)))))
	      (set! cases (+ cases 1))
	      (if (> err maxerr)
		  (begin
		    (set! maxerr err)
		    (set! max-case (/ m n)))))))))
  (format () "sin-m*pi/n (~A cases) max err ~A at ~A~%" cases maxerr max-case))

:(sin (/ pi (* 257 17)))
0.00071906440440859
:(eval (sin-m*pi/n 1 (* 17 257)))
0.00071906440440875

|#


;;; --------------------------------------------------------------------------------

(define show-digits-of-pi-starting-at-digit
  ;; piqpr8.c
  ;;
  ;;    This program implements the BBP algorithm to generate a few hexadecimal
  ;;    digits beginning immediately after a given position id, or in other words
  ;;    beginning at position id + 1.  On most systems using IEEE 64-bit floating-
  ;;    point arithmetic, this code works correctly so long as d is less than
  ;;    approximately 1.18 x 10^7.  If 80-bit arithmetic can be employed, this limit
  ;;    is significantly higher.  Whatever arithmetic is used, results for a given
  ;;    position id can be checked by repeating with id-1 or id+1, and verifying 
  ;;    that the hex digits perfectly overlap with an offset of one, except possibly
  ;;    for a few trailing digits.  The resulting fractions are typically accurate 
  ;;    to at least 11 decimal digits, and to at least 9 hex digits.  
  ;;
  ;;  David H. Bailey     2006-09-08
  ;;
  ;; translated to Scheme 29-Dec-08

  (let ((ihex (lambda (x nhx chx)
		;; This returns, in chx, the first nhx hex digits of the fraction of x.
		(do ((y (abs x))
		     (hx "0123456789ABCDEF")
		     (i 0 (+ i 1)))
		    ((= i nhx) chx)
		  (set! y (* 16.0 (- y (floor y))))
		  (set! (chx i) (hx (floor y))))))
	(series (lambda (m id)
		  ;; This routine evaluates the series  sum_k 16^(id-k)/(8*k+m) using the modular exponentiation technique.
		  (let ((expm (let ((ntp 25))
				(let ((tp1 0)
				      (tp (make-vector ntp)))
				  (lambda (p ak)
				    ;; expm = 16^p mod ak.  This routine uses the left-to-right binary exponentiation scheme.
				    
				    ;; If this is the first call to expm, fill the power of two table tp.
				    (if (= tp1 0)
					(begin
					  (set! tp1 1)
					  (set! (tp 0) 1.0)
					  (do ((i 1 (+ i 1)))
					      ((= i ntp))
					    (set! (tp i) (* 2.0 (tp (- i 1)))))))
				    
				    (if (= ak 1.0)
					0.0
					(let ((pl -1))
					  ;;  Find the greatest power of two less than or equal to p.
					  (do ((i 0 (+ i 1)))
					      ((or (not (= pl -1)) 
						   (= i ntp)))
					    (if (> (tp i) p)
						(set! pl i)))
					  
					  (if (= pl -1) (set! pl ntp))
					  (let ((pt (tp (- pl 1)))
						(p1 p)
						(r 1.0))
					    ;;  Perform binary exponentiation algorithm modulo ak.
					    
					    (do ((j 1 (+ j 1)))
						((> j pl) r)
					      (if (>= p1 pt)
						  (begin
						    (set! r (* 16.0 r))
						    (set! r (- r (* ak (floor (/ r ak)))))
						    (set! p1 (- p1 pt))))
					      (set! pt (* 0.5 pt))
					      (if (>= pt 1.0)
						  (begin
						    (set! r (* r r))
						    (set! r (- r (* ak (floor (/ r ak)))))))))))))))
			(eps 1e-17)
			(s 0.0))
		    (do ((k 0 (+ k 1)))
			((= k id))
		      (let* ((ak (+ (* 8 k) m))
			     (t (expm (- id k) ak)))
			(set! s (+ s (/ t ak)))
			(set! s (- s (floor s)))))
		    
		    ;; Compute a few terms where k >= id.
		    (do ((happy #f)
			 (k id (+ k 1)))
			((or (> k (+ id 100)) happy) s)
		      (let ((t (/ (expt 16.0 (- id k)) (+ (* 8 k) m))))
			(set! happy (< t eps))
			(set! s (+ s t))
			(set! s (- s (floor s)))))))))
    (lambda (id)  
      ;; id is the digit position.  Digits generated follow immediately after id.
      (let ((chx (make-string 17))
	    (pid (let ((s1 (series 1 id))
		       (s2 (series 4 id))
		       (s3 (series 5 id))
		       (s4 (series 6 id)))
		   (- (+ (* 4.0 s1) (* -2.0 s2)) s3 s4))))
	(set! pid (- (+ 1.0 pid) (floor pid)))
	(ihex pid 10 chx)
	(format #f " position = ~D~% fraction = ~,15F~% hex digits =  ~S~%" id pid chx)))))
  
#|
(show-digits-of-pi-starting-at-digit 0)
" position = 0
 fraction = 1.141592653589793
 hex digits =  \"243F6A8885       \"
"
(show-digits-of-pi-starting-at-digit 1000)
" position = 1000
 fraction = 1.288845098351256
 hex digits =  \"49F1C09B07       \"
"
|#

#|
;;; from the CL bboard, perhaps written by Justin Grant
;;;   requires gmp (bignums)

(define (machin-pi digits)

  (define (arccot-minus xsq n xpower)
    (let ((term (floor (/ xpower n))))
      (if (= term 0)
        0
        (- (arccot-plus xsq (+ n 2) (floor (/ xpower xsq)))
           term))))       

  (define (arccot-plus xsq n xpower)
    (let ((term (floor (/ xpower n))))
      (if (= term 0)
        0
        (+ (arccot-minus xsq (+ n 2) (floor (/ xpower xsq)))
           term))))

  (define (arccot x unity)
    (let ((xpower (floor (/ unity x))))
      (arccot-plus (* x x) 1 xpower)))

  (let* ((unity (expt 10 (+ digits 10)))
         (thispi (* 4 (- (* 4 (arccot 5 unity)) (arccot 239 unity)))))
    (floor (/ thispi (expt 10 10)))))
|#



;;; --------------------------------------------------------------------------------

(define* (sin-nx-peak n (err 1e-12))
  ;; return the min peak amp and its location for sin(x)+sin(nx+a)
  (let ((size (* n 100)))
    (let ((incr (/ (* 2 pi) size))
	  (peak 0.0)
	  (location 0.0)
	  (offset (if (= (modulo n 4) 3) 0 pi)))
      (do ((i 0 (+ i 1))
	   (x 0.0 (+ x incr)))
	  ((= i size))
	(let ((val (abs (+ (sin x) (sin (+ offset (* n x)))))))
	  (if (> val peak)
	      (begin
		(set! peak val)
		(set! location x)))))
      ;; now narrow it by zigzagging around the peak
      (do ((x location)
	   (zig-size (* incr 2) (/ zig-size 2)))
	  ((< zig-size err)
	   (list (abs (+ (sin x) (sin (+ (* n x) offset)))) x))   
	(let ((cur (abs (+ (sin x) (sin (+ offset (* n x))))))
	      (left (abs (+ (sin (- x zig-size)) (sin (+ (* n (- x zig-size)) offset))))))
	  (if (< left cur)
	      (let ((right (abs (+ (sin (+ x zig-size)) (sin (+ (* n (+ x zig-size)) offset))))))
		(if (> right cur)
		    (set! x (+ x zig-size))))
	      (set! x (- x zig-size))))))))

;; (sin-nx-peak 100) (1.999876644816418 1.555089933857112)
;; (sin-nx-peak 1) (5.551115123125783e-16 2.576105496457603)

	

;;; --------------------------------------------------------------------------------
#|
;;; built-in as an experiment
(define (exptmod a b n) ; from the net somewhere: (modulo (expt a b) n)
  (cond ((zero? b) 1)
        ((even? b) (exptmod (modulo (* a a) n) (quotient b 2) n))
        (else (modulo (* a (exptmod (modulo (* a a) n) (quotient b 2) n)) n))))

;; (exptmod 3 100 5) 1
;; (exptmod 3 101 5) 3
;; (exptmod 3 100 3) 0
|#