summaryrefslogtreecommitdiff
path: root/poly.rb
blob: a84fdd4ba2e36b3950fde86005960fea24881357 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
# poly.rb -- polynomial-related stuff; poly.scm --> poly.rb

# Translator: Michael Scholz <mi-scholz@users.sourceforge.net>
# Created: 05/04/09 23:55:07
# Changed: 17/11/30 22:57:04

# class Complex
#  to_f
#  to_f_or_c
#  
# class Poly < Vec
#  inspect
#  to_poly
#  reduce
#  +(other)
#  *(other)
#  /(other)
#  derivative
#  resultant(other)
#  discriminant
#  gcd(other)
#  roots
#  eval(x)
#
# class Float
#  +(other)
#  *(other)
#  /(other)
#
# class String
#  to_poly
#
# class Array
#  to_poly
#
# class Vct
#  to_poly
#
# Poly(obj)
# make_poly(len, init, &body)
# poly?(obj)
# poly(*vals)
# poly_reduce(obj)
# poly_add(obj1, obj2)
# poly_multiply(obj1, obj2)
# poly_div(obj1, obj2)
# poly_derivative(obj)
# poly_gcd(obj1, obj2)
# poly_roots(obj)

require "clm"
require "mix"
include Math

class Complex
  # XXX: attr_writer :real, :imag
  #      Doesn't work any longer.
  #      Complex objects are now frozen objects.
  #      (Thu Nov 30 21:29:10 CET 2017)
  with_silence do
    def to_f
      self.real.to_f
    end
  end

  def to_f_or_c
    self.imag.zero? ? self.to_f : self
  end
end

class Poly < Vec
  Poly_roots_epsilon = 1.0e-6

  def inspect
    @name = "poly"
    super
  end
  
  def to_poly
    self
  end
  
  def reduce
    if self.last.zero?
      i = self.length - 1
      while self[i].zero? and i > 0
        i -= 1
      end
      self[0, i + 1]
    else
      self
    end
  end
  # [1, 2, 3].to_poly.reduce             ==> poly(1.0, 2.0, 3.0)
  # poly(1, 2, 3, 0, 0, 0).reduce        ==> poly(1.0, 2.0, 3.0)
  # vct(0, 0, 0, 0, 1, 0).to_poly.reduce ==> poly(0.0, 0.0, 0.0, 0.0, 1.0)
  
  def poly_add(other)
    assert_type((array?(other) or vct?(other) or number?(other)),
                other, 0, "a poly, a vct an array, or a number")
    if number?(other)
      v = self.dup
      v[0] += other
      v
    else
      if self.length > other.length
        self.add(other)
      else
        Poly(other).add(self)
      end
    end
  end
  alias + poly_add
  # poly(0.1, 0.2, 0.3) + poly(0, 1, 2, 3, 4) ==> poly(0.1, 1.2, 2.3, 3.0, 4.0)
  # poly(0.1, 0.2, 0.3) + 0.5                 ==> poly(0.6, 0.2, 0.3)
  # 0.5 + poly(0.1, 0.2, 0.3)                 ==> poly(0.6, 0.2, 0.3)

  def poly_multiply(other)
    assert_type((array?(other) or vct?(other) or number?(other)),
                other, 0, "a poly, a vct, an array, or a number")
    if number?(other)
      Poly(self.scale(Float(other)))
    else
      len = self.length + other.length
      m = Poly.new(len, 0.0)
      self.each_with_index do |val1, i|
        other.each_with_index do |val2, j|
          m[i + j] = m[i + j] + val1 * val2
        end
      end
      m
    end
  end
  alias * poly_multiply
  # poly(1, 1) * poly(-1, 1)        ==> poly(-1.0, 0.0, 1.0, 0.0)
  # poly(-5, 1) * poly(3, 7, 2)     ==> poly(-15.0, -32.0, -3.0, 2.0, 0.0)
  # poly(-30, -4, 2) * poly(0.5, 1) ==> poly(-15.0, -32.0, -3.0, 2.0, 0.0)
  # poly(-30, -4, 2) * 0.5          ==> poly(-15.0, -2.0, 1.0)
  # 2.0 * poly(-30, -4, 2)          ==> poly(-60.0, -8.0, 4.0)

  def poly_div(other)
    assert_type((array?(other) or vct?(other) or number?(other)),
                other, 0, "a poly, a vct, an array, or a number")
    if number?(other)
      [self * (1.0 / other), poly(0.0)]
    else
      if other.length > self.length
        [poly(0.0), other.to_poly]
      else
        r = self.dup
        q = Poly.new(self.length, 0.0)
        n = self.length - 1
        nv = other.length - 1
        (n - nv).downto(0) do |i|
          q[i] = r[nv + i] / other[nv]
          (nv + i - 1).downto(i) do |j|
            r[j] = r[j] - q[i] * other[j - i]
          end
        end
        nv.upto(n) do |i|
          r[i] = 0.0
        end
        [q, r]
      end
    end
  end
  alias / poly_div
  # poly(-1.0, 0.0, 1.0) / poly(1.0, 1.0)
  #   ==> [poly(-1.0, 1.0, 0.0),       poly(0.0, 0.0, 0.0)]
  # poly(-15, -32, -3, 2) / poly(-5, 1)
  #   ==> [poly(3.0, 7.0, 2.0, 0.0),   poly(0.0, 0.0, 0.0, 0.0)]
  # poly(-15, -32, -3, 2) / poly(3, 1)
  #   ==> [poly(-5.0, -9.0, 2.0, 0.0), poly(0.0, 0.0, 0.0, 0.0)]
  # poly(-15, -32, -3, 2) / poly(0.5, 1)
  #   ==> [poly(-30.0, -4.0, 2.0, 0.0), poly(0.0, 0.0, 0.0, 0.0)]
  # poly(-15, -32, -3, 2) / poly(3, 7, 2)
  #   ==> [poly(-5.0, 1.0, 0.0, 0.0),  poly(0.0, 0.0, 0.0, 0.0)]
  # poly(-15, -32, -3, 2) / 2.0
  #   ==> [poly(-7.5, -16.0, -1.5, 1.0), poly(0.0)]

  def derivative
    len = self.length - 1
    pl = Poly.new(len, 0.0)
    j = len
    (len - 1).downto(0) do |i|
      pl[i] = self[j] * j
      j -= 1
    end
    pl
  end
  # poly(0.5, 1.0, 2.0, 4.0).derivative ==> poly(1.0, 4.0, 12.0)

  def resultant(other)
    m = self.length
    m1 = m - 1
    n = other.length
    n1 = n - 1
    d = n1 + m1
    mat = Array.new(d) do
      Vct.new(d, 0.0)
    end
    n1.times do |i|
      m.times do |j|
        mat[i][i + j] = self[m1 - j]
      end
    end
    m1.times do |i|
      n.times do |j|
        mat[i + n1][i + j] = other[n1 - j]
      end
    end
    determinant(mat)
  end
  # poly(-1, 0, 1).resultant([1, -2, 1]) ==> 0.0
  # poly(-1, 0, 2).resultant([1, -2, 1]) ==> 1.0
  # poly(-1, 0, 1).resultant([1, 1])     ==> 0.0
  # poly(-1, 0, 1).resultant([2, 1])     ==> 3.0

  def discriminant
    self.resultant(self.derivative)
  end
  # poly(-1, 0, 1).discriminant ==> -4.0
  # poly(1, -2, 1).discriminant ==>  0.0
  # (poly(-1, 1) * poly(-1, 1) * poly(3, 1)).reduce.discriminant
  #   ==> 0.0
  # (poly(-1, 1) * poly(-1, 1) * poly(3, 1) * poly(2, 1)).reduce.discriminant
  #   ==> 0.0
  # (poly(1, 1) * poly(-1, 1) * poly(3, 1) * poly(2, 1)).reduce.discriminant
  #   ==> 2304.0
  # (poly(1, 1) * poly(-1, 1) * poly(3, 1) * poly(3, 1)).reduce.discriminant
  #   ==> 0.0
  
  def gcd(other)
    assert_type((array?(other) or vct?(other)), other, 0,
                "a poly, a vct or an array")
    if self.length < other.length
      poly(0.0)
    else
      qr = self.poly_div(other).map do |m|
        m.reduce
      end
      if qr[1].length == 1
        if qr[1][0].zero?
          Poly(other)
        else
          poly(0.0)
        end
      else
        qr[0].gcd(qr[1])
      end
    end
  end
  # (poly(2, 1) * poly(-3, 1)).reduce.gcd(poly(2, 1))
  #   ==> poly(2.0, 1.0)
  # (poly(2, 1) * poly(-3, 1)).reduce.gcd(poly(3, 1))
  #   ==> poly(0.0)
  # (poly(2, 1) * poly(-3, 1)).reduce.gcd(poly(-3, 1))
  #   ==> poly(-3.0, 1.0)
  # (poly(8, 1) * poly(2, 1) * poly(-3, 1)).reduce.gcd(poly(-3, 1))
  #   ==> poly(-3.0, 1.0)
  # (poly(8, 1) * poly(2, 1) *
  #  poly(-3, 1)).reduce.gcd((poly(8, 1) * poly(-3, 1)).reduce)
  #   ==> poly(-24.0, 5.0, 1.0)
  # poly(-1, 0, 1).gcd(poly(2, -2, -1, 1))
  #   ==> poly(0.0)
  # poly(2, -2, -1, 1).gcd(poly(-1, 0, 1))
  #   ==> poly(1.0, -1.0)
  # poly(2, -2, -1, 1).gcd(poly(-2.5, 1))
  #   ==> poly(0.0)

  def roots
    rts = poly()
    deg = self.length - 1
    if deg.zero?
      rts
    else
      if self[0].zero?
        if deg == 1
          poly(0.0)
        else
          Poly.new(deg) do |i|
            self[i + 1]
          end.roots.unshift(0.0)
        end
      else
        if deg == 1
          linear_root(self[1], self[0])
        else
          if deg == 2
            quadratic_root(self[2], self[1], self[0])
          else
            if deg == 3 and
               (rts = cubic_root(self[3], self[2], self[1], self[0]))
              rts
            else
              if deg == 4 and
                 (rts = quartic_root(self[4], self[3],
                                     self[2], self[1], self[0]))
                rts
              else
                ones = 0
                1.upto(deg) do |i|
                  if self[i].nonzero?
                    ones += 1
                  end
                end
                if ones == 1
                  nth_root(self[deg], self[0], deg)
                else
                  if ones == 2 and deg.even? and self[deg / 2].nonzero?
                    n = deg / 2
                    poly(self[0], self[deg / 2], self[deg]).roots.each do |qr|
                      rts.push(*nth_root(1.0, -qr, n.to_f))
                    end
                    rts
                  else
                    if deg > 3 and
                        ones == 3 and
                        (deg % 3).zero? and
                        self[deg / 3].nonzero? and
                        self[(deg * 2) / 3].nonzero?
                      n = deg / 3
                      poly(self[0],
                           self[deg / 3],
                           self[(deg * 2) / 3],
                           self[deg]).roots.each do |qr|
                        rts.push(*nth_root(1.0, -qr, n.to_f))
                      end
                      rts
                    else
                      q = self.dup
                      pp = self.derivative
                      qp = pp.dup
                      n = deg
                      x = Complex(1.3, 0.314159)
                      v = q.eval(x)
                      m = v.abs * v.abs
                      20.times do # until c_g?
                        if (dx = v / qp.eval(x)).abs <= Poly_roots_epsilon
                          break
                        end
                        20.times do
                          if dx.abs <= Poly_roots_epsilon
                            break
                          end
                          y = x - dx
                          v1 = q.eval(y)
                          if (m1 = v1.abs * v1.abs) < m
                            x = y
                            v = v1
                            m = m1
                            break
                          else
                            dx /= 4.0
                          end
                        end
                      end
                      x = x - self.eval(x) / pp.eval(x)
                      x = x - self.eval(x) / pp.eval(x)
                      if x.imag < Poly_roots_epsilon
                        q = q.poly_div(poly(-x.real, 1.0))
                        n -= 1
                      else
                        q = q.poly_div(poly(x.abs, 0.0, 1.0))
                        n -= 2
                      end
                      rts = if n > 0
                              q.car.reduce.roots
                            else
                              poly()
                            end
                      rts << x.to_f_or_c
                      rts
                    end
                  end
                end
              end
            end
          end
        end
      end
    end
  end
  
  def eval(x)
    sum = self.last
    self.reverse[1..-1].each do |val|
      sum = sum * x + val
    end
    sum
  end

  private
  def submatrix(mx, row, col)
    nmx = Array.new(mx.length - 1) do
      Vct.new(mx.length - 1, 0.0)
    end
    ni = 0
    mx.length.times do |i|
      if i != row
        nj = 0
        mx.length.times do |j|
          if j != col
            nmx[ni][nj] = mx[i][j]
            nj += 1
          end
        end
        ni += 1
      end
    end
    nmx
  end

  def determinant(mx)
    if mx.length == 1
      mx[0][0]
    else
      if mx.length == 2
        mx[0][0] * mx[1][1] - mx[0][1] * mx[1][0]
      else
        if mx.length == 3
          ((mx[0][0] * mx[1][1] * mx[2][2] +
            mx[0][1] * mx[1][2] * mx[2][0] +
            mx[0][2] * mx[1][0] * mx[2][1]) -
           (mx[0][0] * mx[1][2] * mx[2][1] +
            mx[0][1] * mx[1][0] * mx[2][2] +
            mx[0][2] * mx[1][1] * mx[2][0]))
        else
          sum = 0.0
          sign = 1
          mx.length.times do |i|
            mult = mx[0][i]
            if mult != 0.0
              sum = sum + sign * mult * determinant(submatrix(mx, 0, i))
            end
            sign = -sign
          end
          sum
        end
      end
    end
  end

  # ax + b
  def linear_root(a, b)
    poly(-b / a)
  end

  # ax^2 + bx + c
  def quadratic_root(a, b, c)
    d = sqrt(b * b - 4.0 * a * c)
    poly((-b + d) / (2.0 * a), (-b - d) / (2.0 * a))
  end

  # ax^3 + bx^2 + cx + d
  def cubic_root(a, b, c, d)
    # Abramowitz & Stegun 3.8.2
    a0 = d / a
    a1 = c / a
    a2 = b / a
    q = (a1 / 3) - ((a2 * a2) / 9)
    r = ((a1 * a2 - 3 * a0) / 6) - ((a2 * a2 * a2) / 27)
    sq3r2 = sqrt(q * q * q + r * r)
    r1 = (r + sq3r2) ** (1 / 3.0)
    r2 = (r - sq3r2) ** (1 / 3.0)
    incr = (TWO_PI * Complex::I) / 3
    pl = poly(a0, a1, a2, 1)
    sqrt3 = sqrt(-3)
    3.times do |i|
      3.times do |j|
        s1 = r1 * exp(i * incr)
        s2 = r2 * exp(j * incr)
        z1 = simplify_complex((s1 + s2) - (a2 / 3))
        if pl.eval(z1).abs < Poly_roots_epsilon
          z2 = simplify_complex((-0.5 * (s1 + s2)) +
                                (a2 / -3) +
                                ((s1 - s2) * 0.5 * sqrt3))
          if pl.eval(z2).abs < Poly_roots_epsilon
            z3 = simplify_complex((-0.5 * (s1 + s2)) +
                                  (a2 / -3) +
                                  ((s1 - s2) * -0.5 * sqrt3))
            if pl.eval(z3).abs < Poly_roots_epsilon
              return poly(z1, z2, z3)
            end
          end
        end
      end
    end
    false
  end

  # ax^4 + bx^3 + cx^2 + dx + e
  def quartic_root(a, b, c, d, e)
    # Weisstein, "Encyclopedia of Mathematics"
    a0 = e / a
    a1 = d / a
    a2 = c / a
    a3 = b / a
    if yroot = poly((4 * a2 * a0) + -(a1 * a1) + -(a3 * a3 * a0),
                    (a1 * a3) - (4 * a0),
                    -a2,
                    1).roots
      yroot.each do |y1|
        r = sqrt((0.25 * a3 * a3) + (-a2 + y1))
        dd = if r.zero?
              sqrt((0.75 * a3 * a3) +
                   (-2 * a2) +
                   (2 * sqrt(y1 * y1 - 4 * a0)))
            else
              sqrt((0.75 * a3 * a3) + (-2 * a2) + (-(r * r)) +
                   (0.25 * ((4 * a3 * a2) + (-8 * a1) + (-(a3 * a3 * a3)))) / r)
            end
        ee = if r.zero?
              sqrt((0.75 * a3 * a3) +
                   (-2 * a2) +
                   (-2 * sqrt((y1 * y1) - (4 * a0))))
            else
              sqrt((0.75 * a3 * a3) + (-2 * a2) + (-(r * r)) +
                   (-0.25 *
                    ((4 * a3 * a2) + (-8 * a1) + (-(a3 * a3 * a3)))) / r)
            end
        z1 = (-0.25 * a3) + ( 0.5 * r) + ( 0.5 * dd)
        z2 = (-0.25 * a3) + ( 0.5 * r) + (-0.5 * dd)
        z3 = (-0.25 * a3) + (-0.5 * r) + ( 0.5 * ee)
        z4 = (-0.25 * a3) + (-0.5 * r) + (-0.5 * ee)
        if poly(e, d, c, b, a).eval(z1).abs < Poly_roots_epsilon
          return poly(z1, z2, z3, z4)
        end
      end
    end
    false
  end
  
  # ax^n + b
  def nth_root(a, b, deg)
    n = (-b / a) ** (1.0 / deg)
    incr = (TWO_PI * Complex::I) / deg
    rts = poly()
    deg.to_i.times do |i|
      rts.unshift(simplify_complex(exp(i * incr) * n))
    end
    rts
  end

  Poly_roots_epsilon2 = 1.0e-6
  def simplify_complex(a)
    if a.imag.abs < Poly_roots_epsilon2
      (a.real.abs < Poly_roots_epsilon2) ? 0.0 : a.real.to_f
    else
      if a.real.abs < Poly_roots_epsilon2
        # XXX: a.real = 0.0
        #      Doesn't work any longer (see above, class Complex).
        a = Complex(0.0, a.imag)
      end
      a
    end
  end
end

class Float
  unless defined? 0.0.poly_plus
    alias fp_plus +
    def poly_plus(other)
      case other
      when Poly
        other[0] += self
        other
      else
        self.fp_plus(other)
      end
    end
    alias + poly_plus
  end

  unless defined? 0.0.poly_times
    alias fp_times *
    def poly_times(other)
      case other
      when Poly
        Poly(other.scale(self))
      else
        self.fp_times(other)
      end
    end
    alias * poly_times
  end

  unless defined? 0.0.poly_div
    alias fp_div /
    def poly_div(other)
      case other
      when Poly
        [poly(0.0), other]
      else
        self.fp_div(other)
      end
    end
    alias / poly_div
  end
end

class String
  def to_poly
    if self.scan(/^poly\([-+,.)\d\s]+/).null?
      poly()
    else
      eval(self)
    end
  end
end

class Array
  def to_poly
    poly(*self)
  end
end

class Vct
  def to_poly
    poly(*self.to_a)
  end
end

def Poly(obj)
  if obj.nil?
    obj = []
  end
  assert_type(obj.respond_to?(:to_poly), obj, 0,
              "an object containing method 'to_poly'")
  obj.to_poly
end

def make_poly(len, init = 0.0, &body)
  Poly.new(len, init, &body)
end

def poly?(obj)
  obj.instance_of?(Poly)
end

def poly(*vals)
  Poly.new(vals.length) do |i|
    if integer?(val = vals[i])
      Float(val)
    else
      val
    end
  end
end

def poly_reduce(obj)
  assert_type(obj.respond_to?(:to_poly), obj, 0,
              "an object containing method 'to_poly'")
  Poly(obj).reduce
end

def poly_add(obj1, obj2)
  if number?(obj1)
    assert_type(obj2.respond_to?(:to_poly), obj2, 1,
                "an object containing method 'to_poly'")
    Float(obj1) + Poly(obj2)
  else
    assert_type(obj1.respond_to?(:to_poly), obj1, 0,
                "an object containing method 'to_poly'")
    Poly(obj1) + obj2
  end
end

def poly_multiply(obj1, obj2)
  if number?(obj1)
    assert_type(obj2.respond_to?(:to_poly), obj2, 1,
                "an object containing method 'to_poly'")
    Float(obj1) * Poly(obj2)
  else
    assert_type(obj1.respond_to?(:to_poly), obj1, 0,
                "an object containing method 'to_poly'")
    Poly(obj1) * obj2
  end
end

def poly_div(obj1, obj2)
  if number?(obj1)
    assert_type(obj2.respond_to?(:to_poly), obj2, 1,
                "an object containing method 'to_poly'")
    Float(obj1) / Poly(obj2)
  else
    assert_type(obj1.respond_to?(:to_poly), obj1, 0,
                "an object containing method 'to_poly'")
    Poly(obj1) / obj2
  end
end

def poly_derivative(obj)
  assert_type(obj.respond_to?(:to_poly), obj, 0,
              "an object containing method 'to_poly'")
  Poly(obj).derivative
end

def poly_gcd(obj1, obj2)
  assert_type(obj.respond_to?(:to_poly), obj, 0,
              "an object containing method 'to_poly'")
  Poly(obj1).gcd(obj2)
end

def poly_roots(obj)
  assert_type(obj.respond_to?(:to_poly), obj, 0,
              "an object containing method 'to_poly'")
  Poly(obj).roots
end

# poly.rb ends here