summaryrefslogtreecommitdiff
path: root/pvoc.rb
blob: 5f028397b154be4a7dd050a39f39fbef9c37f4fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# pvoc.rb -- pvoc.scm -> pvoc.rb -*- snd-ruby -*-

# Translator: Michael Scholz <mi-scholz@users.sourceforge.net>
# Created: Sat Mar 27 00:19:51 CET 2004
# Changed: Thu Nov 26 18:15:00 CET 2009

# Comment:
# 
# versions of the Moore-Klingbeil-Trevisani-Edwards phase-vocoder
#
# class Pvocoder
#   initialize(fftsize, overlap, interp, analyze, edit, synthesize)
#   inspect
#   pvocoder(input)
#
#  make_pvocoder(fftsize, overlap, interp, analyze, edit, synthesize)
#  pvocoder(pv, input)
#
#  test_pv_1
#  test_pv_2(freq)
#  test_pv_3(time)
#  test_pv_4(gate)
#  
#  pvoc(*rest)
#  
# Code:

require "ws"

class Pvocoder
  def initialize(fftsize, overlap, interp, analyze, edit, synthesize)
    @output     = interp
    @interp     = interp
    @hop        = overlap
    @filptr     = 0
    @N          = fftsize
    @window     = vct_scale!(make_fft_window(Hamming_window, fftsize), 2.0 / (0.54 * fftsize))
    @D          = fftsize / overlap
    @in_data    = nil
    @ampinc     = make_vct(fftsize)
    @freqs      = make_vct(fftsize)
    @amps       = make_vct(fftsize / 2)
    @phaseinc   = make_vct(fftsize / 2)
    @phases     = make_vct(fftsize / 2)
    @lastphase  = make_vct(fftsize / 2)
    @analyze    = analyze
    @edit       = edit
    @synthesize = synthesize
  end

  def inspect
    format("#<%s outctr: %d, interp: %d, filptr: %d, N: %d, D: %d, in_data: %s>",
           self.class, @output, @interp, @filptr, @N, @D, @in_data.inspect)
  end
  
  def pvocoder(input)
    if @output >= @interp
      if @analyze
        @analyze.call(self, input)
      else
        vct_fill!(@freqs, 0.0)
        @output = 0
        if (not vct?(@in_data))
          @in_data = make_vct!(@N) do input.call end
        else
          vct_move!(@in_data, 0, @D)
          ((@N - @D)...@N).each do |i| @in_data[i] = input.call end
        end
        buf = @filptr % @N
        if buf.zero?
          vct_fill!(@ampinc, 0.0)
          vct_add!(@ampinc, @in_data)
          vct_multiply!(@ampinc, @window)
        else
          @N.times do |k|
            @ampinc[buf] = @window[k] * @in_data[k]
            buf += 1
            if buf >= @N
              buf = 0
            end
          end
        end
        @filptr += @D
        mus_fft(@ampinc, @freqs, @N, 1)
        rectangular2polar(@ampinc, @freqs)
      end
      if @edit
        @edit.call(self)
      else
        pscl = 1.0 / @D
        kscl = TWO_PI / @N
        (@N / 2).times do |k|
          phasediff = @freqs[k] - @lastphase[k]
          @lastphase[k] = @freqs[k]
          while phasediff > PI
            phasediff -= TWO_PI
          end
          while phasediff < -TWO_PI
            phasediff += TWO_PI
          end
          @freqs[k] = pscl * phasediff + k * kscl
        end
      end
      scl = 1.0 / @interp
      vct_subtract!(@ampinc, @amps)
      vct_subtract!(@freqs, @phaseinc)
      vct_scale!(@ampinc, scl)
      vct_scale!(@freqs, scl)
    end
    @output += 1
    if @synthesize
      @synthesize.call
    else
      vct_add!(@amps, @ampinc)
      vct_add!(@phaseinc, @freqs)
      vct_add!(@phases, @phaseinc)
      sine_bank(@amps, @phases)
    end
  end
end

add_help(:make_pvocoder,
         "make_pvocoder(fftsize, overlap, interp, [analyze=false, [edit=false, [synthesize=false]]])
makes a new (Ruby-based, not CLM) phase-vocoder generator")
def make_pvocoder(fftsize = 512,
                  overlap = 4,
                  interp = 128,
                  analyze = false,
                  edit = false,
                  synthesize = false)
  Pvocoder.new(fftsize, overlap, interp, analyze, edit, synthesize)
end

add_help(:pvocoder,
         "pvocoder(pv, input) is the phase-vocoder generator associated with make_pvocoder")
def pvocoder(pv, input)
  pv.pvocoder(input)
end

=begin
let(open_sound("oboe.snd"),
    make_pvocoder(256, 4, 64),
    make_sampler(0)) do |ind, pv, rd|
  map_channel(lambda do |y| pvocoder(pv, rd) end)
  play(ind, :wait, true)
  save_sound_as("pvoc.snd", ind)
  revert_sound(ind)
  close_sound(ind)
  open_sound("pvoc.snd")
end
=end

def test_pv_1
  pv = make_phase_vocoder(false, 512, 4, 128, 1.0, false, false, false)
  rd = make_sampler(0)
  map_channel(lambda do |y| phase_vocoder(pv, lambda do |dir| next_sample(rd) end) end)
  free_sampler(rd)
end

def test_pv_2(freq)
  pv = make_phase_vocoder(false, 512, 4, 128, freq, false, false, false)
  rd = make_sampler(0)
  map_channel(lambda do |y| phase_vocoder(pv, lambda do |dir| next_sample(rd) end) end)
  free_sampler(rd)
end

def test_pv_3(time)
  pv = make_phase_vocoder(false, 512, 4, (time * 128.0).floor, 1.0, false, false, false)
  rd = make_sampler(0)
  len = (time * frames).floor
  data = make_vct!(len) do phase_vocoder(pv, lambda do |dir| next_sample(rd) end) end
  free_sampler(rd)
  vct2channel(data, 0, len)
end

def test_pv_4(gate)
  pv = make_phase_vocoder(false,
                          512, 4, 128, 1.0,
                          false,
                          lambda { |v|
                            phase_vocoder_amp_increments(v).map! do |val|
                              if val < gate
                                0.0
                              else
                                val
                              end
                              true
                            end
                          }, false)
  rd = make_sampler(0)
  map_channel(lambda do |y| phase_vocoder(pv, lambda do |dir| next_sample(rd) end) end)
  free_sampler(rd)
end

# another version of the phase vocoder

add_help(:pvoc,
         "(pvoc, *rest) [fftsize, overlap, time, pitch, gate, hoffset, snd, chn] \
applies the phase vocoder algorithm to the current sound (i.e. fft analysis, \
oscil bank resynthesis). 'pitch' specifies the pitch transposition ratio, 'time' - \
specifies the time dilation ratio, 'gate' specifies a resynthesis gate in dB (partials \
with amplitudes lower than the gate value will not be synthesized), \
'hoffset is a pitch offset in Hz.")
def pvoc(*rest)
  fftsize, overlap, time, pitch, gate, hoffset, snd, chn = nil
  optkey(rest, binding,
         [:fftsize, 512],
         [:overlap, 4],
         [:time, 1.0],
         [:pitch, 1.0],
         [:gate, 0.0],
         [:hoffset, 0.0],
         [:snd, false],
         [:chn, false])
  len = frames(snd, chn)
  filptr = 0
  sr = srate(snd)
  fftsize2 = fftsize / 2
  d = fftsize / overlap
  interp = d * time
  syngate = gate.zero? ? 0.0 : (10 ** (-gate.abs / 20.0))
  poffset = hz2radians(hoffset)
  window = make_fft_window(Hamming_window, fftsize)
  fdr = make_vct(fftsize)
  fdi = make_vct(fftsize)
  lastphase = make_vct(fftsize2)
  lastamp = make_vct(fftsize2)
  lastfreq = make_vct(fftsize2)
  ampinc = make_vct(fftsize2)
  freqinc = make_vct(fftsize2)
  fundamental = TWO_PI / fftsize
  output = interp
  resynth_oscils = make_array(fftsize2) do make_oscil(:frequency, 0) end
  nextpct = 10.0
  outlen = (time * len).floor
  in_data = channel2vct(0, fftsize * 2, snd, chn)
  in_data_beg = 0
  vct_scale!(window, 2.0 / (0.54 * fftsize))
  out_data = make_vct([len, outlen].max)
  out_data.length.times do |i|
    if output >= interp
      break if c_g?
      output = 0
      buffix = filptr % fftsize
      vct_fill!(lastamp, 0.0)
      vct_fill!(lastfreq, 0.0)
      vct_add!(lastamp, fdr)
      vct_add!(lastfreq, fdi)
      fftsize.times do |k|
        fdr[buffix] = window[k] * in_data[filptr - in_data_beg]
        filptr += 1
        buffix += 1
        if buffix >= fftsize
          buffix = 0
        end
      end
      filptr -= fftsize - d
      if filptr > in_data_beg + fftsize
        in_data_beg = filptr
        in_data = channel2vct(in_data_beg, fftsize * 2, snd, chn)
      end
      vct_fill!(fdi, 0.0)
      mus_fft(fdr, fdi, fftsize, 1)
      fftsize2.times do |k|
        a = fdr[k]
        b = fdi[k]
        mag = sqrt(a * a + b * b)
        phase = 0
        phasediff = 0
        fdr[k] = mag
        if mag > 0
          phase = -atan2(b, a)
          phasediff = phase - lastphase[k]
          lastphase[k] = phase
          while phasediff > PI
            phasediff -= TWO_PI
          end
          while phasediff < -PI
            phasediff += TWO_PI
          end
        end
        fdi[k] = pitch * ((phasediff * sr) / (d * sr) + k * fundamental + poffset)
        if fdr[k] < syngate
          fdr[k] = 0.0
        end
        ampinc[k] = (fdr[k] - lastamp[k]) / interp
        freqinc[k] = (fdi[k] - lastfreq[k]) / interp
      end
    end
    output += 1
    vct_add!(lastamp, ampinc)
    vct_add!(lastfreq, freqinc)
    out_data[i] = oscil_bank(lastamp, resynth_oscils, lastfreq)
  end
  vct2channel(out_data, 0, out_data.length)
end

# pvoc.rb ends here