summaryrefslogtreecommitdiff
path: root/passes/sat/sat.cc
diff options
context:
space:
mode:
Diffstat (limited to 'passes/sat/sat.cc')
-rw-r--r--passes/sat/sat.cc753
1 files changed, 753 insertions, 0 deletions
diff --git a/passes/sat/sat.cc b/passes/sat/sat.cc
new file mode 100644
index 00000000..a13f8318
--- /dev/null
+++ b/passes/sat/sat.cc
@@ -0,0 +1,753 @@
+/*
+ * yosys -- Yosys Open SYnthesis Suite
+ *
+ * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ */
+
+// [[CITE]] Temporal Induction by Incremental SAT Solving
+// Niklas Een and Niklas Sörensson (2003)
+// http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.8161
+
+#include "kernel/register.h"
+#include "kernel/celltypes.h"
+#include "kernel/sigtools.h"
+#include "kernel/log.h"
+#include "kernel/satgen.h"
+#include "frontends/verilog/verilog_frontend.h"
+#include <stdlib.h>
+#include <stdio.h>
+#include <algorithm>
+
+static void split(std::vector<std::string> &tokens, const std::string &text, char sep)
+{
+ size_t start = 0, end = 0;
+ while ((end = text.find(sep, start)) != std::string::npos) {
+ tokens.push_back(text.substr(start, end - start));
+ start = end + 1;
+ }
+ tokens.push_back(text.substr(start));
+}
+
+static bool parse_sigstr(RTLIL::SigSpec &sig, RTLIL::Module *module, std::string str)
+{
+ std::vector<std::string> tokens;
+ split(tokens, str, ',');
+
+ sig = RTLIL::SigSpec();
+ for (auto &tok : tokens)
+ {
+ std::string netname = tok;
+ std::string indices;
+
+ if (netname.size() == 0)
+ continue;
+
+ if ('0' <= netname[0] && netname[0] <= '9') {
+ AST::AstNode *ast = VERILOG_FRONTEND::const2ast(netname);
+ if (ast == NULL)
+ return false;
+ sig.append(RTLIL::Const(ast->bits));
+ delete ast;
+ continue;
+ }
+
+ if (netname[0] != '$' && netname[0] != '\\')
+ netname = "\\" + netname;
+
+ if (module->wires.count(netname) == 0) {
+ size_t indices_pos = netname.size()-1;
+ if (indices_pos > 2 && netname[indices_pos] == ']')
+ {
+ indices_pos--;
+ while (indices_pos > 0 && ('0' <= netname[indices_pos] && netname[indices_pos] <= '9')) indices_pos--;
+ if (indices_pos > 0 && netname[indices_pos] == ':') {
+ indices_pos--;
+ while (indices_pos > 0 && ('0' <= netname[indices_pos] && netname[indices_pos] <= '9')) indices_pos--;
+ }
+ if (indices_pos > 0 && netname[indices_pos] == '[') {
+ indices = netname.substr(indices_pos);
+ netname = netname.substr(0, indices_pos);
+ }
+ }
+ }
+
+ if (module->wires.count(netname) == 0)
+ return false;
+
+ RTLIL::Wire *wire = module->wires.at(netname);
+ if (!indices.empty()) {
+ std::vector<std::string> index_tokens;
+ split(index_tokens, indices.substr(1, indices.size()-2), ':');
+ if (index_tokens.size() == 1)
+ sig.append(RTLIL::SigSpec(wire, 1, atoi(index_tokens.at(0).c_str())));
+ else {
+ int a = atoi(index_tokens.at(0).c_str());
+ int b = atoi(index_tokens.at(1).c_str());
+ if (a > b) {
+ int tmp = a;
+ a = b, b = tmp;
+ }
+ sig.append(RTLIL::SigSpec(wire, b-a+1, a));
+ }
+ } else
+ sig.append(wire);
+ }
+
+ return true;
+}
+
+struct SatHelper
+{
+ RTLIL::Design *design;
+ RTLIL::Module *module;
+
+ ezDefaultSAT ez;
+ SigMap sigmap;
+ CellTypes ct;
+ SatGen satgen;
+
+ // additional constraints
+ std::vector<std::pair<std::string, std::string>> sets, prove;
+ std::map<int, std::vector<std::pair<std::string, std::string>>> sets_at;
+ std::map<int, std::vector<std::string>> unsets_at;
+
+ // model variables
+ std::vector<std::string> shows;
+ SigPool show_signal_pool;
+ SigSet<RTLIL::Cell*> show_drivers;
+ int max_timestep;
+
+ SatHelper(RTLIL::Design *design, RTLIL::Module *module) :
+ design(design), module(module), sigmap(module), ct(design), satgen(&ez, design, &sigmap)
+ {
+ max_timestep = -1;
+ }
+
+ void setup(int timestep = -1)
+ {
+ if (timestep > 0)
+ log ("\nSetting up time step %d:\n", timestep);
+ else
+ log ("\nSetting up SAT problem:\n");
+
+ if (timestep > max_timestep)
+ max_timestep = timestep;
+
+ RTLIL::SigSpec big_lhs, big_rhs;
+
+ for (auto &s : sets)
+ {
+ RTLIL::SigSpec lhs, rhs;
+
+ if (!parse_sigstr(lhs, module, s.first))
+ log_cmd_error("Failed to parse lhs set expression `%s'.\n", s.first.c_str());
+ if (!parse_sigstr(rhs, module, s.second))
+ log_cmd_error("Failed to parse rhs set expression `%s'.\n", s.second.c_str());
+ show_signal_pool.add(sigmap(lhs));
+ show_signal_pool.add(sigmap(rhs));
+
+ if (lhs.width != rhs.width)
+ log_cmd_error("Set expression with different lhs and rhs sizes: %s (%s, %d bits) vs. %s (%s, %d bits)\n",
+ s.first.c_str(), log_signal(lhs), lhs.width, s.second.c_str(), log_signal(rhs), rhs.width);
+
+ log("Import set-constraint: %s = %s\n", log_signal(lhs), log_signal(rhs));
+ big_lhs.remove2(lhs, &big_rhs);
+ big_lhs.append(lhs);
+ big_rhs.append(rhs);
+ }
+
+ for (auto &s : sets_at[timestep])
+ {
+ RTLIL::SigSpec lhs, rhs;
+
+ if (!parse_sigstr(lhs, module, s.first))
+ log_cmd_error("Failed to parse lhs set expression `%s'.\n", s.first.c_str());
+ if (!parse_sigstr(rhs, module, s.second))
+ log_cmd_error("Failed to parse rhs set expression `%s'.\n", s.second.c_str());
+ show_signal_pool.add(sigmap(lhs));
+ show_signal_pool.add(sigmap(rhs));
+
+ if (lhs.width != rhs.width)
+ log_cmd_error("Set expression with different lhs and rhs sizes: %s (%s, %d bits) vs. %s (%s, %d bits)\n",
+ s.first.c_str(), log_signal(lhs), lhs.width, s.second.c_str(), log_signal(rhs), rhs.width);
+
+ log("Import set-constraint for timestep: %s = %s\n", log_signal(lhs), log_signal(rhs));
+ big_lhs.remove2(lhs, &big_rhs);
+ big_lhs.append(lhs);
+ big_rhs.append(rhs);
+ }
+
+ for (auto &s : unsets_at[timestep])
+ {
+ RTLIL::SigSpec lhs;
+
+ if (!parse_sigstr(lhs, module, s))
+ log_cmd_error("Failed to parse lhs set expression `%s'.\n", s.c_str());
+ show_signal_pool.add(sigmap(lhs));
+
+ log("Import unset-constraint for timestep: %s\n", log_signal(lhs));
+ big_lhs.remove2(lhs, &big_rhs);
+ }
+
+ log("Final constraint equation: %s = %s\n", log_signal(big_lhs), log_signal(big_rhs));
+
+ std::vector<int> lhs_vec = satgen.importSigSpec(big_lhs, timestep);
+ std::vector<int> rhs_vec = satgen.importSigSpec(big_rhs, timestep);
+ ez.assume(ez.vec_eq(lhs_vec, rhs_vec));
+
+ int import_cell_counter = 0;
+ for (auto &c : module->cells)
+ if (design->selected(module, c.second) && ct.cell_known(c.second->type)) {
+ // log("Import cell: %s\n", RTLIL::id2cstr(c.first));
+ if (satgen.importCell(c.second, timestep)) {
+ for (auto &p : c.second->connections)
+ if (ct.cell_output(c.second->type, p.first))
+ show_drivers.insert(sigmap(p.second), c.second);
+ import_cell_counter++;
+ } else
+ log("Warning: failed to import cell %s (type %s) to SAT database.\n", RTLIL::id2cstr(c.first), RTLIL::id2cstr(c.second->type));
+ }
+ log("Imported %d cells to SAT database.\n", import_cell_counter);
+ }
+
+ int setup_proof(int timestep = -1)
+ {
+ assert(prove.size() > 0);
+
+ RTLIL::SigSpec big_lhs, big_rhs;
+
+ for (auto &s : prove)
+ {
+ RTLIL::SigSpec lhs, rhs;
+
+ if (!parse_sigstr(lhs, module, s.first))
+ log_cmd_error("Failed to parse lhs proof expression `%s'.\n", s.first.c_str());
+ if (!parse_sigstr(rhs, module, s.second))
+ log_cmd_error("Failed to parse rhs proof expression `%s'.\n", s.second.c_str());
+ show_signal_pool.add(sigmap(lhs));
+ show_signal_pool.add(sigmap(rhs));
+
+ if (lhs.width != rhs.width)
+ log_cmd_error("Proof expression with different lhs and rhs sizes: %s (%s, %d bits) vs. %s (%s, %d bits)\n",
+ s.first.c_str(), log_signal(lhs), lhs.width, s.second.c_str(), log_signal(rhs), rhs.width);
+
+ log("Import proof-constraint: %s = %s\n", log_signal(lhs), log_signal(rhs));
+ big_lhs.remove2(lhs, &big_rhs);
+ big_lhs.append(lhs);
+ big_rhs.append(rhs);
+ }
+
+ log("Final proof equation: %s = %s\n", log_signal(big_lhs), log_signal(big_rhs));
+
+ std::vector<int> lhs_vec = satgen.importSigSpec(big_lhs, timestep);
+ std::vector<int> rhs_vec = satgen.importSigSpec(big_rhs, timestep);
+ return ez.vec_eq(lhs_vec, rhs_vec);
+ }
+
+ void force_unique_state(int timestep_from, int timestep_to)
+ {
+ RTLIL::SigSpec state_signals = satgen.initial_state.export_all();
+ for (int i = timestep_from; i < timestep_to; i++)
+ ez.assume(ez.vec_ne(satgen.importSigSpec(state_signals, i), satgen.importSigSpec(state_signals, timestep_to)));
+ }
+
+ bool solve(const std::vector<int> &assumptions)
+ {
+ return ez.solve(modelExpressions, modelValues, assumptions);
+ }
+
+ bool solve(int a = 0, int b = 0, int c = 0, int d = 0, int e = 0, int f = 0)
+ {
+ return ez.solve(modelExpressions, modelValues, a, b, c, d, e, f);
+ }
+
+ struct ModelBlockInfo {
+ int timestep, offset, width;
+ std::string description;
+ bool operator < (const ModelBlockInfo &other) const {
+ if (timestep != other.timestep)
+ return timestep < other.timestep;
+ if (description != other.description)
+ return description < other.description;
+ if (offset != other.offset)
+ return offset < other.offset;
+ if (width != other.width)
+ return width < other.width;
+ return false;
+ }
+ };
+
+ std::vector<int> modelExpressions;
+ std::vector<bool> modelValues;
+ std::set<ModelBlockInfo> modelInfo;
+
+ void generate_model()
+ {
+ RTLIL::SigSpec modelSig;
+ modelExpressions.clear();
+ modelInfo.clear();
+
+ // Add "show" signals or alternatively the leaves on the input cone on all set and prove signals
+
+ if (shows.size() == 0)
+ {
+ SigPool queued_signals, handled_signals, final_signals;
+ queued_signals = show_signal_pool;
+ while (queued_signals.size() > 0) {
+ RTLIL::SigSpec sig = queued_signals.export_one();
+ queued_signals.del(sig);
+ handled_signals.add(sig);
+ std::set<RTLIL::Cell*> drivers = show_drivers.find(sig);
+ if (drivers.size() == 0) {
+ final_signals.add(sig);
+ } else {
+ for (auto &d : drivers)
+ for (auto &p : d->connections) {
+ if (d->type == "$dff" && p.first == "\\CLK")
+ continue;
+ if (d->type.substr(0, 6) == "$_DFF_" && p.first == "\\C")
+ continue;
+ queued_signals.add(handled_signals.remove(p.second));
+ }
+ }
+ }
+ modelSig = final_signals.export_all();
+
+ // additionally add all set and prove signals directly
+ // (it improves user confidence if we write the constraints back ;-)
+ modelSig.append(show_signal_pool.export_all());
+ }
+ else
+ {
+ for (auto &s : shows) {
+ RTLIL::SigSpec sig;
+ if (!parse_sigstr(sig, module, s))
+ log_cmd_error("Failed to parse show expression `%s'.\n", s.c_str());
+ log("Import show expression: %s\n", log_signal(sig));
+ modelSig.append(sig);
+ }
+ }
+
+ modelSig.sort_and_unify();
+ // log("Model signals: %s\n", log_signal(modelSig));
+
+ for (auto &c : modelSig.chunks)
+ if (c.wire != NULL) {
+ ModelBlockInfo info;
+ RTLIL::SigSpec chunksig = c;
+ info.width = chunksig.width;
+ info.description = log_signal(chunksig);
+
+ for (int timestep = -1; timestep <= max_timestep; timestep++) {
+ if ((timestep == -1 && max_timestep > 0) || timestep == 0)
+ continue;
+ std::vector<int> vec = satgen.importSigSpec(chunksig, timestep);
+ info.timestep = timestep;
+ info.offset = modelExpressions.size();
+ modelExpressions.insert(modelExpressions.end(), vec.begin(), vec.end());
+ modelInfo.insert(info);
+ }
+ }
+
+ // Add zero step signals as collected by satgen
+
+ modelSig = satgen.initial_state.export_all();
+ for (auto &c : modelSig.chunks)
+ if (c.wire != NULL) {
+ ModelBlockInfo info;
+ RTLIL::SigSpec chunksig = c;
+ info.timestep = 0;
+ info.offset = modelExpressions.size();
+ info.width = chunksig.width;
+ info.description = log_signal(chunksig);
+ std::vector<int> vec = satgen.importSigSpec(chunksig, 1);
+ modelExpressions.insert(modelExpressions.end(), vec.begin(), vec.end());
+ modelInfo.insert(info);
+ }
+ }
+
+ void print_model()
+ {
+ int maxModelName = 10;
+ int maxModelWidth = 10;
+
+ for (auto &info : modelInfo) {
+ maxModelName = std::max(maxModelName, int(info.description.size()));
+ maxModelWidth = std::max(maxModelWidth, info.width);
+ }
+
+ log("\n");
+
+ int last_timestep = -2;
+ for (auto &info : modelInfo)
+ {
+ RTLIL::Const value;
+ for (int i = 0; i < info.width; i++) {
+ value.bits.push_back(modelValues.at(info.offset+i) ? RTLIL::State::S1 : RTLIL::State::S0);
+ if (modelValues.size() == 2*modelExpressions.size() && modelValues.at(modelExpressions.size()+info.offset+i))
+ value.bits.back() = RTLIL::State::Sx;
+ }
+
+ if (info.timestep != last_timestep) {
+ const char *hline = "---------------------------------------------------------------------------------------------------"
+ "---------------------------------------------------------------------------------------------------"
+ "---------------------------------------------------------------------------------------------------";
+ if (last_timestep == -2) {
+ log(max_timestep > 0 ? " Time " : " ");
+ log("%-*s %10s %10s %*s\n", maxModelName+10, "Signal Name", "Dec", "Hex", maxModelWidth+5, "Bin");
+ }
+ log(max_timestep > 0 ? " ---- " : " ");
+ log("%*.*s %10.10s %10.10s %*.*s\n", maxModelName+10, maxModelName+10,
+ hline, hline, hline, maxModelWidth+5, maxModelWidth+5, hline);
+ last_timestep = info.timestep;
+ }
+
+ if (max_timestep > 0) {
+ if (info.timestep > 0)
+ log(" %4d ", info.timestep);
+ else
+ log(" init ");
+ } else
+ log(" ");
+
+ if (info.width <= 32)
+ log("%-*s %10d %10x %*s\n", maxModelName+10, info.description.c_str(), value.as_int(), value.as_int(), maxModelWidth+5, value.as_string().c_str());
+ else
+ log("%-*s %10s %10s %*s\n", maxModelName+10, info.description.c_str(), "--", "--", maxModelWidth+5, value.as_string().c_str());
+ }
+
+ if (last_timestep == -2)
+ log(" no model variables selected for display.\n");
+ }
+
+ void invalidate_model()
+ {
+ std::vector<int> clause;
+ for (size_t i = 0; i < modelExpressions.size(); i++)
+ clause.push_back(modelValues.at(i) ? ez.NOT(modelExpressions.at(i)) : modelExpressions.at(i));
+ ez.assume(ez.expression(ezSAT::OpOr, clause));
+ }
+};
+
+static void print_proof_failed()
+{
+ log("\n");
+ log(" ______ ___ ___ _ _ _ _ \n");
+ log(" (_____ \\ / __) / __) (_) | | | |\n");
+ log(" _____) )___ ___ ___ _| |__ _| |__ _____ _| | _____ __| | |\n");
+ log(" | ____/ ___) _ \\ / _ (_ __) (_ __|____ | | || ___ |/ _ |_|\n");
+ log(" | | | | | |_| | |_| || | | | / ___ | | || ____( (_| |_ \n");
+ log(" |_| |_| \\___/ \\___/ |_| |_| \\_____|_|\\_)_____)\\____|_|\n");
+ log("\n");
+}
+
+static void print_qed()
+{
+ log("\n");
+ log(" /$$$$$$ /$$$$$$$$ /$$$$$$$ \n");
+ log(" /$$__ $$ | $$_____/ | $$__ $$ \n");
+ log(" | $$ \\ $$ | $$ | $$ \\ $$ \n");
+ log(" | $$ | $$ | $$$$$ | $$ | $$ \n");
+ log(" | $$ | $$ | $$__/ | $$ | $$ \n");
+ log(" | $$/$$ $$ | $$ | $$ | $$ \n");
+ log(" | $$$$$$/ /$$| $$$$$$$$ /$$| $$$$$$$//$$\n");
+ log(" \\____ $$$|__/|________/|__/|_______/|__/\n");
+ log(" \\__/ \n");
+ log("\n");
+}
+
+struct SatPass : public Pass {
+ SatPass() : Pass("sat", "solve a SAT problem in the circuit") { }
+ virtual void help()
+ {
+ // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
+ log("\n");
+ log(" sat [options] [selection]\n");
+ log("\n");
+ log("This command solves a SAT problem defined over the currently selected circuit\n");
+ log("and additional constraints passed as parameters.\n");
+ log("\n");
+ log(" -all\n");
+ log(" show all solutions to the problem (this can grow exponentially, use\n");
+ log(" -max <N> instead to get <N> solutions)\n");
+ log("\n");
+ log(" -max <N>\n");
+ log(" like -all, but limit number of solutions to <N>\n");
+ log("\n");
+ log(" -set <signal> <value>\n");
+ log(" set the specified signal to the specified value.\n");
+ log("\n");
+ log(" -show <signal>\n");
+ log(" show the model for the specified signal. if no -show option is\n");
+ log(" passed then a set of signals to be shown is automatically selected.\n");
+ log("\n");
+ log("The following options can be used to set up a sequential problem:\n");
+ log("\n");
+ log(" -seq <N>\n");
+ log(" set up a sequential problem with <N> time steps. The steps will\n");
+ log(" be numbered from 1 to N.\n");
+ log("\n");
+ log(" -set-at <N> <signal> <value>\n");
+ log(" -unset-at <N> <signal>\n");
+ log(" set or unset the specified signal to the specified value in the\n");
+ log(" given timestep. this has priority over a -set for the same signal.\n");
+ log("\n");
+ log("The following additional options can be used to set up a proof. If also -seq\n");
+ log("is passed, a temporal induction proof is performed.\n");
+ log("\n");
+ log(" -prove <signal> <value>\n");
+ log(" Attempt to proof that <signal> is always <value>. In a temporal\n");
+ log(" induction proof it is proven that the condition holds forever after\n");
+ log(" the number of time steps passed using -seq.\n");
+ log("\n");
+ log(" -maxsteps <N>\n");
+ log(" Set a maximum length for the induction.\n");
+ log("\n");
+ log(" -verify\n");
+ log(" Return an error and stop the synthesis script if the proof fails.\n");
+ log("\n");
+ }
+ virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
+ {
+ std::vector<std::pair<std::string, std::string>> sets, prove;
+ std::map<int, std::vector<std::pair<std::string, std::string>>> sets_at;
+ std::map<int, std::vector<std::string>> unsets_at;
+ std::vector<std::string> shows;
+ int loopcount = 0, seq_len = 0, maxsteps = 0;
+ bool verify = false;
+
+ log_header("Executing SAT_SOLVE pass (solving SAT problems in the circuit).\n");
+
+ size_t argidx;
+ for (argidx = 1; argidx < args.size(); argidx++) {
+ if (args[argidx] == "-all") {
+ loopcount = -1;
+ continue;
+ }
+ if (args[argidx] == "-verify") {
+ verify = true;
+ continue;
+ }
+ if (args[argidx] == "-max" && argidx+1 < args.size()) {
+ loopcount = atoi(args[++argidx].c_str());
+ continue;
+ }
+ if (args[argidx] == "-maxsteps" && argidx+1 < args.size()) {
+ maxsteps = atoi(args[++argidx].c_str());
+ continue;
+ }
+ if (args[argidx] == "-set" && argidx+2 < args.size()) {
+ std::string lhs = args[++argidx].c_str();
+ std::string rhs = args[++argidx].c_str();
+ sets.push_back(std::pair<std::string, std::string>(lhs, rhs));
+ continue;
+ }
+ if (args[argidx] == "-prove" && argidx+2 < args.size()) {
+ std::string lhs = args[++argidx].c_str();
+ std::string rhs = args[++argidx].c_str();
+ prove.push_back(std::pair<std::string, std::string>(lhs, rhs));
+ continue;
+ }
+ if (args[argidx] == "-seq" && argidx+1 < args.size()) {
+ seq_len = atoi(args[++argidx].c_str());
+ continue;
+ }
+ if (args[argidx] == "-set-at" && argidx+3 < args.size()) {
+ int timestep = atoi(args[++argidx].c_str());
+ std::string lhs = args[++argidx].c_str();
+ std::string rhs = args[++argidx].c_str();
+ sets_at[timestep].push_back(std::pair<std::string, std::string>(lhs, rhs));
+ continue;
+ }
+ if (args[argidx] == "-unset-at" && argidx+2 < args.size()) {
+ int timestep = atoi(args[++argidx].c_str());
+ std::string lhs = args[++argidx].c_str();
+ unsets_at[timestep].push_back(lhs);
+ continue;
+ }
+ if (args[argidx] == "-show" && argidx+1 < args.size()) {
+ shows.push_back(args[++argidx]);
+ continue;
+ }
+ break;
+ }
+ extra_args(args, argidx, design);
+
+ RTLIL::Module *module = NULL;
+ for (auto &mod_it : design->modules)
+ if (design->selected(mod_it.second)) {
+ if (module)
+ log_cmd_error("Only one module must be selected for the SAT_SOLVE pass! (selected: %s and %s)\n",
+ RTLIL::id2cstr(module->name), RTLIL::id2cstr(mod_it.first));
+ module = mod_it.second;
+ }
+ if (module == NULL)
+ log_cmd_error("Can't perform SAT_SOLVE on an empty selection!\n");
+
+ if (prove.size() == 0 && verify)
+ log_cmd_error("Got -verify but nothing to prove!\n");
+
+ if (prove.size() > 0 && seq_len > 0)
+ {
+ if (loopcount > 0)
+ log_cmd_error("The options -max and -all are not supported for temporal induction proofs!\n");
+
+ SatHelper basecase(design, module);
+ SatHelper inductstep(design, module);
+
+ basecase.sets = sets;
+ basecase.prove = prove;
+ basecase.sets_at = sets_at;
+ basecase.unsets_at = unsets_at;
+ basecase.shows = shows;
+
+ for (int timestep = 1; timestep <= seq_len; timestep++)
+ basecase.setup(timestep);
+
+ inductstep.sets = sets;
+ inductstep.prove = prove;
+ inductstep.shows = shows;
+
+ inductstep.setup(1);
+ inductstep.ez.assume(inductstep.setup_proof(1));
+
+ for (int inductlen = 1; inductlen <= maxsteps || maxsteps == 0; inductlen++)
+ {
+ log("\n** Trying induction with length %d **\n", inductlen);
+
+ // phase 1: proving base case
+
+ basecase.setup(seq_len + inductlen);
+ int property = basecase.setup_proof(seq_len + inductlen);
+ basecase.generate_model();
+
+ if (inductlen > 1)
+ basecase.force_unique_state(seq_len + 1, seq_len + inductlen);
+
+ log("\n[base case] Solving problem with %d variables and %d clauses..\n",
+ basecase.ez.numCnfVariables(), basecase.ez.numCnfClauses());
+
+ if (basecase.solve(basecase.ez.NOT(property))) {
+ log("SAT temporal induction proof finished - model found for base case: FAIL!\n");
+ print_proof_failed();
+ basecase.print_model();
+ goto tip_failed;
+ }
+
+ log("Base case for induction length %d proven.\n", inductlen);
+ basecase.ez.assume(property);
+
+ // phase 2: proving induction step
+
+ inductstep.setup(inductlen + 1);
+ property = inductstep.setup_proof(inductlen + 1);
+ inductstep.generate_model();
+
+ if (inductlen > 1)
+ inductstep.force_unique_state(1, inductlen + 1);
+
+ log("\n[induction step] Solving problem with %d variables and %d clauses..\n",
+ inductstep.ez.numCnfVariables(), inductstep.ez.numCnfClauses());
+
+ if (!inductstep.solve(inductstep.ez.NOT(property))) {
+ log("Induction step proven: SUCCESS!\n");
+ print_qed();
+ goto tip_success;
+ }
+
+ log("Induction step failed. Incrementing induction length.\n");
+ inductstep.ez.assume(property);
+
+ inductstep.print_model();
+ }
+
+ log("\nReached maximum number of time steps -> proof failed.\n");
+ print_proof_failed();
+
+ tip_failed:
+ if (verify) {
+ log("\n");
+ log_error("Called with -verify and proof did fail!\n");
+ }
+
+ tip_success:;
+ }
+ else
+ {
+ if (loopcount > 0)
+ log_cmd_error("The options -maxsteps is only supported for temporal induction proofs!\n");
+
+ SatHelper sathelper(design, module);
+ sathelper.sets = sets;
+ sathelper.prove = prove;
+ sathelper.sets_at = sets_at;
+ sathelper.unsets_at = unsets_at;
+ sathelper.shows = shows;
+
+ if (seq_len == 0) {
+ sathelper.setup();
+ if (sathelper.prove.size() > 0)
+ sathelper.ez.assume(sathelper.ez.NOT(sathelper.setup_proof()));
+ } else {
+ for (int timestep = 1; timestep <= seq_len; timestep++)
+ sathelper.setup(timestep);
+ }
+ sathelper.generate_model();
+
+#if 0
+ // print CNF for debugging
+ sathelper.ez.printDIMACS(stdout, true);
+#endif
+
+ rerun_solver:
+ log("\nSolving problem with %d variables and %d clauses..\n",
+ sathelper.ez.numCnfVariables(), sathelper.ez.numCnfClauses());
+
+ if (sathelper.solve())
+ {
+ if (prove.size() == 0) {
+ log("SAT solving finished - model found:\n");
+ } else {
+ log("SAT proof finished - model found: FAIL!\n");
+ print_proof_failed();
+ }
+
+ sathelper.print_model();
+
+ if (verify) {
+ log("\n");
+ log_error("Called with -verify and proof did fail!\n");
+ }
+
+ if (loopcount != 0) {
+ loopcount--;
+ sathelper.invalidate_model();
+ goto rerun_solver;
+ }
+ }
+ else
+ {
+ if (prove.size() == 0) {
+ log("SAT solving finished - no model found.\n");
+ } else {
+ log("SAT proof finished - no model found: SUCCESS!\n");
+ print_qed();
+ }
+ }
+ }
+ }
+} SatPass;
+