summaryrefslogtreecommitdiff
path: root/src/Data/Nat/Coprimality.agda
blob: 19fdbf5439010f2d2976a40d1b780e30f25e52fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
------------------------------------------------------------------------
-- The Agda standard library
--
-- Coprimality
------------------------------------------------------------------------

module Data.Nat.Coprimality where

open import Data.Empty
open import Data.Fin using (toℕ; fromℕ≤)
open import Data.Fin.Properties using (toℕ-fromℕ≤)
open import Data.Nat
open import Data.Nat.Divisibility
open import Data.Nat.GCD
open import Data.Nat.GCD.Lemmas
open import Data.Nat.Primality
open import Data.Nat.Properties
open import Data.Product as Prod
open import Function
open import Level using (0)
open import Relation.Binary.PropositionalEquality as P
  using (_≡_; _≢_; refl; cong; subst; module ≡-Reasoning)
open import Relation.Nullary
open import Relation.Binary

-- Coprime m n is inhabited iff m and n are coprime (relatively
-- prime), i.e. if their only common divisor is 1.

Coprime : Rel ℕ 0ℓ
Coprime m n =  {i}  i ∣ m × i ∣ n  i ≡ 1

-- Coprime numbers have 1 as their gcd.

coprime-gcd :  {m n}  Coprime m n  GCD m n 1
coprime-gcd {m} {n} c = GCD.is (1∣ m , 1∣ n) greatest
  where
  greatest :  {d}  d ∣ m × d ∣ n  d ∣ 1
  greatest cd with c cd
  ... | refl = 11

-- If two numbers have 1 as their gcd, then they are coprime.

gcd-coprime :  {m n}  GCD m n 1  Coprime m n
gcd-coprime g cd with GCD.greatest g cd
... | divides q eq = i*j≡1⇒j≡1 q _ (P.sym eq)

-- Coprime is decidable.

private
  0≢1 : 01
  0≢1 ()

  2+≢1 :  {n}  suc (suc n)1
  2+≢1 ()

coprime? : Decidable Coprime
coprime? i j with gcd i j
... | (0           , g) = no  (0≢1  ∘ GCD.unique g ∘ coprime-gcd)
... | (1           , g) = yes (gcd-coprime g)
... | (suc (suc d) , g) = no  (2+≢1 ∘ GCD.unique g ∘ coprime-gcd)

-- The coprimality relation is symmetric.

sym : Symmetric Coprime
sym c = c ∘ swap

-- Everything is coprime to 1.

1-coprimeTo :  m  Coprime 1 m
1-coprimeTo m = ∣1⇒≡1 ∘ proj₁

-- Nothing except for 1 is coprime to 0.

0-coprimeTo-1 :  {m}  Coprime 0 m  m ≡ 1
0-coprimeTo-1 {m} c = c (m ∣0 , ∣-refl)

-- If m and n are coprime, then n + m and n are also coprime.

coprime-+ :  {m n}  Coprime m n  Coprime (n + m) n
coprime-+ c (d₁ , d₂) = c (∣m+n∣m⇒∣n d₁ d₂ , d₂)

-- If the "gcd" in Bézout's identity is non-zero, then the "other"
-- divisors are coprime.

Bézout-coprime :  {i j d} 
                 Bézout.Identity (suc d) (i * suc d) (j * suc d) 
                 Coprime i j
Bézout-coprime (Bézout.+- x y eq) (divides q₁ refl , divides q₂ refl) =
  lem₁₀ y q₂ x q₁ eq
Bézout-coprime (Bézout.-+ x y eq) (divides q₁ refl , divides q₂ refl) =
  lem₁₀ x q₁ y q₂ eq

-- Coprime numbers satisfy Bézout's identity.

coprime-Bézout :  {i j}  Coprime i j  Bézout.Identity 1 i j
coprime-Bézout = Bézout.identity ∘ coprime-gcd

-- If i divides jk and is coprime to j, then it divides k.

coprime-divisor :  {k i j}  Coprime i j  i ∣ j * k  i ∣ k
coprime-divisor {k} c (divides q eq′) with coprime-Bézout c
... | Bézout.+- x y eq = divides (x * k ∸ y * q) (lem₈ x y eq eq′)
... | Bézout.-+ x y eq = divides (y * q ∸ x * k) (lem₉ x y eq eq′)

-- If d is a common divisor of mk and nk, and m and n are coprime,
-- then d divides k.

coprime-factors :  {d m n k} 
                  Coprime m n  d ∣ m * k × d ∣ n * k  d ∣ k
coprime-factors c (divides q₁ eq₁ , divides q₂ eq₂) with coprime-Bézout c
... | Bézout.+- x y eq = divides (x * q₁ ∸ y * q₂) (lem₁₁ x y eq eq₁ eq₂)
... | Bézout.-+ x y eq = divides (y * q₂ ∸ x * q₁) (lem₁₁ y x eq eq₂ eq₁)

-- A variant of GCD.

data GCD′ : Set where
  gcd-* :  {d} q₁ q₂ (c : Coprime q₁ q₂) 
          GCD′ (q₁ * d) (q₂ * d) d

-- The two definitions are equivalent.

gcd-gcd′ :  {d m n}  GCD m n d  GCD′ m n d
gcd-gcd′         g with GCD.commonDivisor g
gcd-gcd′ {zero}  g | (divides q₁ refl , divides q₂ refl)
  with q₁ * 0 | *-comm 0 q₁ | q₂ * 0 | *-comm 0 q₂
... | .0 | refl | .0 | refl = gcd-* 1 1 (1-coprimeTo 1)
gcd-gcd′ {suc d} g | (divides q₁ refl , divides q₂ refl) =
  gcd-* q₁ q₂ (Bézout-coprime (Bézout.identity g))

gcd′-gcd :  {m n d}  GCD′ m n d  GCD m n d
gcd′-gcd (gcd-* q₁ q₂ c) = GCD.is (n∣m*n q₁ , n∣m*n q₂) (coprime-factors c)

-- Calculates (the alternative representation of) the gcd of the
-- arguments.

gcd′ :  m n λ d  GCD′ m n d
gcd′ m n = Prod.map id gcd-gcd′ (gcd m n)

-- Primality implies coprimality.

prime⇒coprime :  m  Prime m 
                 n  0 < n  n < m  Coprime m n
prime⇒coprime 0             () _ _  _     _
prime⇒coprime 1             () _ _  _     _
prime⇒coprime (suc (suc m)) _  0 () _     _
prime⇒coprime (suc (suc m)) _  _ _  _ {1} _                       = refl
prime⇒coprime (suc (suc m)) p  _ _  _ {0} (divides q 2+m≡q*0 , _) =
  ⊥-elim $ i+1+j≢i 0 (begin
    2 + m  ≡⟨ 2+m≡q*0 ⟩
    q * 0  ≡⟨ *-zeroʳ q ⟩
    0)
  where open ≡-Reasoning
prime⇒coprime (suc (suc m)) p (suc n) _ 1+n<2+m {suc (suc i)}
              (2+i∣2+m , 2+i∣1+n) =
  ⊥-elim (p _ 2+i′∣2+m)
  where
  i<m : i < m
  i<m = ≤-pred $ ≤-pred (begin
    3 + i  ≤⟨ s≤s (∣⇒≤ 2+i∣1+n)2 + n  ≤⟨ 1+n<2+m ⟩
    2 + m  ∎)
    where open ≤-Reasoning

  2+i′∣2+m : 2 + toℕ (fromℕ≤ i<m)2 + m
  2+i′∣2+m = subst (_∣ 2 + m)
    (P.sym (cong (2 +_) (toℕ-fromℕ≤ i<m)))
    2+i∣2+m