summaryrefslogtreecommitdiff
path: root/fuzzylite/src/term/GaussianProduct.cpp
blob: 791790c2791e332aa364a9f597838373bbfd190e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
/*
 fuzzylite (R), a fuzzy logic control library in C++.
 Copyright (C) 2010-2017 FuzzyLite Limited. All rights reserved.
 Author: Juan Rada-Vilela, Ph.D. <jcrada@fuzzylite.com>

 This file is part of fuzzylite.

 fuzzylite is free software: you can redistribute it and/or modify it under
 the terms of the FuzzyLite License included with the software.

 You should have received a copy of the FuzzyLite License along with
 fuzzylite. If not, see <http://www.fuzzylite.com/license/>.

 fuzzylite is a registered trademark of FuzzyLite Limited.
 */

#include "fl/term/GaussianProduct.h"

namespace fl {

    GaussianProduct::GaussianProduct(const std::string& name,
            scalar meanA, scalar standardDeviationA, scalar meanB, scalar standardDeviationB,
            scalar height)
    : Term(name, height), _meanA(meanA), _standardDeviationA(standardDeviationA),
    _meanB(meanB), _standardDeviationB(standardDeviationB) { }

    GaussianProduct::~GaussianProduct() { }

    std::string GaussianProduct::className() const {
        return "GaussianProduct";
    }

    Complexity GaussianProduct::complexity() const {
        return Complexity().comparison(1 + 2).arithmetic(9 + 9 + 2).function(2);
    }

    scalar GaussianProduct::membership(scalar x) const {
        if (Op::isNaN(x)) return fl::nan;

        scalar a = 1.0, b = 1.0;
        if (Op::isLt(x, _meanA)) {
            a = std::exp((-(x - _meanA) * (x - _meanA)) /
                    (2.0 * _standardDeviationA * _standardDeviationA));
        }
        if (Op::isGt(x, _meanB)) {
            b = std::exp((-(x - _meanB) * (x - _meanB)) /
                    (2.0 * _standardDeviationB * _standardDeviationB));
        }

        return Term::_height * a * b;
    }

    std::string GaussianProduct::parameters() const {
        return Op::join(4, " ", _meanA, _standardDeviationA, _meanB, _standardDeviationB) +
                (not Op::isEq(getHeight(), 1.0) ? " " + Op::str(getHeight()) : "");
    }

    void GaussianProduct::configure(const std::string& parameters) {
        if (parameters.empty()) return;
        std::vector<std::string> values = Op::split(parameters, " ");
        std::size_t required = 4;
        if (values.size() < required) {
            std::ostringstream ex;
            ex << "[configuration error] term <" << className() << ">"
                    << " requires <" << required << "> parameters";
            throw Exception(ex.str(), FL_AT);
        }
        setMeanA(Op::toScalar(values.at(0)));
        setStandardDeviationA(Op::toScalar(values.at(1)));
        setMeanB(Op::toScalar(values.at(2)));
        setStandardDeviationB(Op::toScalar(values.at(3)));
        if (values.size() > required)
            setHeight(Op::toScalar(values.at(required)));
    }

    void GaussianProduct::setMeanA(scalar meanA) {
        this->_meanA = meanA;
    }

    scalar GaussianProduct::getMeanA() const {
        return this->_meanA;
    }

    void GaussianProduct::setStandardDeviationA(scalar sigmaA) {
        this->_standardDeviationA = sigmaA;
    }

    scalar GaussianProduct::getStandardDeviationA() const {
        return this->_standardDeviationA;
    }

    void GaussianProduct::setMeanB(scalar meanB) {
        this->_meanB = meanB;
    }

    scalar GaussianProduct::getMeanB() const {
        return this->_meanB;
    }

    void GaussianProduct::setStandardDeviationB(scalar sigmaB) {
        this->_standardDeviationB = sigmaB;
    }

    scalar GaussianProduct::getStandardDeviationB() const {
        return this->_standardDeviationB;
    }

    GaussianProduct* GaussianProduct::clone() const {
        return new GaussianProduct(*this);
    }

    Term* GaussianProduct::constructor() {
        return new GaussianProduct;
    }


}